
Optimization Meets Reinforcement Learning

Yingbin Liang, The Ohio State University

Shaofeng Zou, University at Buffalo, SUNY

Yi Zhou, University of Utah

IEEE BigData 2021

Dec 17, 2021

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 1 / 81

Outline

1 Introduction to Reinforcement Learning and Applications

2 Policy Evaluation and TD Learning

3 Value-based Method for Optimal Control

4 Policy Gradient Algorithms

5 Advanced Topics on RL and Open Directions

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 2 / 81

Outline

1 Introduction to Reinforcement Learning and Applications

2 Policy Evaluation and TD Learning

3 Value-based Method for Optimal Control

4 Policy Gradient Algorithms

5 Advanced Topics on RL and Open Directions

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 3 / 81

Reinforcement Learning

An agent learns to interact with environment in the best way
I Agent observes state, and takes an action based on a policy
I Agent receives a reward
I Environment changes the state
I Agent finds a policy to maximize reward

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 4 / 81

Markov Decision Process (MDP)

Markov decision process (MDP): (S,A, r ,P)
I S and A: state and action spaces
I r : S ×A× S → R: reward function
I P(s ′|s, a): transition kernel; prob of s → s ′ given action a

Agent’s policy π(a|s): prob of selecting action a in state s

MDP trajectory {st , at , rt , st+1}∞t=0 defined by

s0
π(·|s0)−→ a0

P(·|s0,a0)−→ (s1, r0)
π(·|s1)−→ a1 · · ·

Randomness: actions, state transitions

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 5 / 81

Markov Decision Process (MDP)

Markov decision process (MDP): (S,A, r ,P)
I S and A: state and action spaces
I r : S ×A× S → R: reward function
I P(s ′|s, a): transition kernel; prob of s → s ′ given action a

Agent’s policy π(a|s): prob of selecting action a in state s

MDP trajectory {st , at , rt , st+1}∞t=0 defined by

s0
π(·|s0)−→ a0

P(·|s0,a0)−→ (s1, r0)
π(·|s1)−→ a1 · · ·

Randomness: actions, state transitions
YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 5 / 81

Application: Autonomous Driving

Collects driving data

AI agent trained to optimize driving control

Specification of MDP
I State: driving environment (distance to nearby cars, weather, etc)
I Action: turn left/right, accelerate, brake
I Reward: stay safe, drive smoothly
I Policy: vehicle control in a state

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 6 / 81

Application: Wireless Communication

Downlink Scheduling [1]

Learn optimal scheduling to minimize average queuing delay

Specification of MDP
I State: buffer status and channel state
I Action: assign resource block, determine number of transmitted bits
I Reward: buffer cost
I Policy: determine action in a given state

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 7 / 81

Application: Robotics

Robotics: LunarLander Control (left figure)
I Robot learns the landing environment
I Robot follows a policy to adjust the landing direction

Robotics: Arm Manipulation (right figure)
I Robot learns the warehouse environment
I Robot follows a policy to manipulate its arm

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 8 / 81

Formulation of RL

MDP trajectory {st , at , rt , st+1}t with rt := r(st , at , st+1)

Quality of s, a: discount factor γ ∈ (0, 1)

(State value): Vπ(s) = E
[∑∞

t=0 γ
trt |s0 = s, π

]
(State-action value): Qπ(s, a) = E

[∑∞
t=0 γ

trt |s0 = s, a0 = a, π
]

Expected long-term accumulated reward start with s, a

RL Goal: find the best policy π∗

(Criterion I): Vπ∗(s) ≥ Vπ(s), ∀π,∀s
(Criterion II): max

π
J(π) := Es∼ξ[Vπ(s)]

Tutorial will not cover all the RL formulations

Finite-time horizon, Average reward, Regret analysis

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 9 / 81

Formulation of RL

MDP trajectory {st , at , rt , st+1}t with rt := r(st , at , st+1)

Quality of s, a: discount factor γ ∈ (0, 1)

(State value): Vπ(s) = E
[∑∞

t=0 γ
trt |s0 = s, π

]
(State-action value): Qπ(s, a) = E

[∑∞
t=0 γ

trt |s0 = s, a0 = a, π
]

Expected long-term accumulated reward start with s, a

RL Goal: find the best policy π∗

(Criterion I): Vπ∗(s) ≥ Vπ(s), ∀π,∀s
(Criterion II): max

π
J(π) := Es∼ξ[Vπ(s)]

Tutorial will not cover all the RL formulations

Finite-time horizon, Average reward, Regret analysis

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 9 / 81

Outline

1 Introduction to Reinforcement Learning and Applications

2 Policy Evaluation and TD Learning

3 Value-based Method for Optimal Control

4 Policy Gradient Algorithms

5 Advanced Topics on RL and Open Directions

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 10 / 81

Formulation of Policy Evaluation

Recall Markov Decision Process: {st , at , rt , st+1}t

s0
π(·|s0)−→ a0

P(·|s0,a0)−→ (s1, r0)
π(·|s1)−→ a1 · · ·

State value function:

Vπ(s) = E
[∑∞

t=0 γ
trt |s0 = s, π

]
I Expected accumulated reward, start with s follow π.

Policy Evaluation Problem:

Given a fixed policy π, how to evaluate its state value function Vπ?

Foundation for policy optimization

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 11 / 81

Formulation of Policy Evaluation

Recall Markov Decision Process: {st , at , rt , st+1}t

s0
π(·|s0)−→ a0

P(·|s0,a0)−→ (s1, r0)
π(·|s1)−→ a1 · · ·

State value function:

Vπ(s) = E
[∑∞

t=0 γ
trt |s0 = s, π

]
I Expected accumulated reward, start with s follow π.

Policy Evaluation Problem:

Given a fixed policy π, how to evaluate its state value function Vπ?

Foundation for policy optimization

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 11 / 81

Summary of Policy Evaluation Approaches

Known transition kernel P(·|s, a)
I Solving Bellman equation

Unknown transition kernel P(·|s, a) (Model-free)
I On-policy TD learning
I Off-policy TD learning

Our focus is model-free approaches.

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 12 / 81

Summary of Policy Evaluation Approaches

Known transition kernel P(·|s, a)
I Solving Bellman equation

Unknown transition kernel P(·|s, a) (Model-free)
I On-policy TD learning
I Off-policy TD learning

Our focus is model-free approaches.

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 12 / 81

Known P: Bellman Equation

Transition kernel P(·|s, a) is known

By definition of Vπ(s):

Vπ(s) = E[r0 + γr1 + γ2r2 + · · · |s0 = s, π]

= E[r0|s0 = s, π] + γE[r1 + γr2 + · · · |s0 = s, π]

Note that

E[r1 + γr2 + · · · |s0 = s, π]

= Es1

[
E[r1 + γr2 + · · · |s0 = s, s1 = s ′, π]

]
= Es1 [Vπ(s1)]

Vπ(s) =
∑

a,s′ P(s ′|s, a)π(a|s)
(
r(s, a, s ′) + γVπ(s ′)

)

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 13 / 81

Known P: Bellman Equation

Transition kernel P(·|s, a) is known

By definition of Vπ(s):

Vπ(s) = E[r0 + γr1 + γ2r2 + · · · |s0 = s, π]

= E[r0|s0 = s, π] + γE[r1 + γr2 + · · · |s0 = s, π]

Note that

E[r1 + γr2 + · · · |s0 = s, π]

= Es1

[
E[r1 + γr2 + · · · |s0 = s, s1 = s ′, π]

]
= Es1 [Vπ(s1)]

Vπ(s) =
∑

a,s′ P(s ′|s, a)π(a|s)
(
r(s, a, s ′) + γVπ(s ′)

)
YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 13 / 81

Vπ(s) =
∑

a,s′ P(s ′|s, a)π(a|s)
(
r(s, a, s ′) + γVπ(s ′)

)
Define Bellman operator

(Bellman operator):

TπVπ(s) =
∑

a,s′ P(s ′|s, a)π(a|s)
(
r(s, a, s ′) + γVπ(s ′)

)
Bellman Equation for Value Function

Vπ(s) = TπVπ(s)

Linear programming: Directly solve the linear equation
I High computation complexity

Value iteration: fixed point update

Vt+1(s) = TπVt(s)

I Tπ is contraction ⇒ Vt → Vπ.

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 14 / 81

Vπ(s) =
∑

a,s′ P(s ′|s, a)π(a|s)
(
r(s, a, s ′) + γVπ(s ′)

)
Define Bellman operator

(Bellman operator):

TπVπ(s) =
∑

a,s′ P(s ′|s, a)π(a|s)
(
r(s, a, s ′) + γVπ(s ′)

)
Bellman Equation for Value Function

Vπ(s) = TπVπ(s)

Linear programming: Directly solve the linear equation
I High computation complexity

Value iteration: fixed point update

Vt+1(s) = TπVt(s)

I Tπ is contraction ⇒ Vt → Vπ.

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 14 / 81

Model-Free: On-Policy TD Learning

Model-Free

Transition kernel P(·|s, a) is unknown

On-Policy Data

Collect Markovian data {st , at , rt , st+1}t following target policy π

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 15 / 81

On-Policy TD(0) Algorithm
Recall Bellman equation

Vπ(s) = E[r(s, a, s ′) + γVπ(s ′)]

Idea: update Vπ(s) using r(s, a, s ′) + γVπ(s ′)

Formally: collect {st , at , rt , st+1}t and do

V (st) = rt+1 + γV (st+1)︸ ︷︷ ︸
Target (one-step bootstrap)

, (*)

TD learning is a damped version of (*): 0 < η < 1,

V (st)← (1− η)V (st) + η
(
rt+1 + γV (st+1)

)
, (TD)

TD(0) Algorithm [2]

V (st)← V (st) + η
(
rt+1 + γV (st+1)− V (st)︸ ︷︷ ︸

temporal difference

)

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 16 / 81

On-Policy TD(0) Algorithm
Recall Bellman equation

Vπ(s) = E[r(s, a, s ′) + γVπ(s ′)]

Idea: update Vπ(s) using r(s, a, s ′) + γVπ(s ′)

Formally: collect {st , at , rt , st+1}t and do

V (st) = rt+1 + γV (st+1)︸ ︷︷ ︸
Target (one-step bootstrap)

, (*)

TD learning is a damped version of (*): 0 < η < 1,

V (st)← (1− η)V (st) + η
(
rt+1 + γV (st+1)

)
, (TD)

TD(0) Algorithm [2]

V (st)← V (st) + η
(
rt+1 + γV (st+1)− V (st)︸ ︷︷ ︸

temporal difference

)
YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 16 / 81

TD(λ) Algorithm

TD(0) Algorithm

V (st)← V (st) + η
(
rt+1 + γV (st+1)− V (st)

)
In TD(0), target rt+1 + γV (st+1) is one-step bootstrap

Extension: n-step bootstrap

G
(n)
t := rt+1 + γrt+2 + · · ·+ γn−1rt+n + γnV (st+n)

Define λ-return: Gλ
t := (1− λ)

∑∞
n=1 λ

n−1G
(n)
t .

TD(λ) Algorithm [3]

V (st)← V (st) + η
(
Gλ
t − V (st)

)
Reduce the variance of TD target

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 17 / 81

Value Function Approximation

Curse of dimensionality: state space is often large or infinite

Solution: approximate Vπ using parameterized model Vθ
I Linear model: Vθ(s) := φ>s θ, where φs is feature vector of s
I Neural model: Vθ(s) := NNθ(s), where NNθ is neural network

TD(0) learning with function approximation

Initialize model θ0.

Observe sample {st , at , rt , st+1}, define target Gt = rt + γVθt (st+1)

Define loss `t(θ) := 1
2 (Vθ(st)− Gt)

2, compute gt(θt) = −∂`t(θ)
∂θ |θ=θt

TD update:
θt+1 = θt + ηgt(θt),

where gt(θt) = (rt + γVθt (st+1)− Vθt (st))∇Vθt (st)

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 18 / 81

Value Function Approximation

Curse of dimensionality: state space is often large or infinite

Solution: approximate Vπ using parameterized model Vθ
I Linear model: Vθ(s) := φ>s θ, where φs is feature vector of s
I Neural model: Vθ(s) := NNθ(s), where NNθ is neural network

TD(0) learning with function approximation

Initialize model θ0.

Observe sample {st , at , rt , st+1}, define target Gt = rt + γVθt (st+1)

Define loss `t(θ) := 1
2 (Vθ(st)− Gt)

2, compute gt(θt) = −∂`t(θ)
∂θ |θ=θt

TD update:
θt+1 = θt + ηgt(θt),

where gt(θt) = (rt + γVθt (st+1)− Vθt (st))∇Vθt (st)

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 18 / 81

Analysis of TD(0) with Linear Approximation

TD(0) with linear approximation Vθ(s) := φ>s θ

θt+1 = ProjR
(
θt + ηgt(θt)

)
,

where gt(θt) = (rt + γφ>st+1
θt − φ>st θt)φst

Challenge: gt(θt) is gradient of time-varying function `t

Challenge: Samples {st , at , rt , st+1}t are Markovian and correlated

Non-exhaustive summary of existing work:

Asymptotic convergence: [4, 5, 6, 7]

Non-asymptotic (finite-time) convergence
I I.I.D. samples: [8]
I Markovian samples: [9], [10] (will be presented)

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 19 / 81

Finite-Time Convergence of TD(0)

Key Assumption: Geometric Mixing

State stationary distribution µ. There exist κ > 0, ρ ∈ (0, 1) such that

sup
s∈S

dTV
(
P(st |s0 = s), µ

)
≤ κρt , ∀t ∈ N0

Hold for irreducible and aperiodic Markov chains

Given s0 and large t, st is almost like being sampled from µ

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 20 / 81

Finite-Time Convergence of TD(0)

Key Assumption: Geometric Mixing

State stationary distribution µ. There exist κ > 0, ρ ∈ (0, 1) such that

sup
s∈S

dTV
(
P(st |s0 = s), µ

)
≤ κρt , ∀t ∈ N0

Hold for irreducible and aperiodic Markov chains

Given s0 and large t, st is almost like being sampled from µ

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 20 / 81

Feature matrix Φ = [φ>s1
; ...;φ>sn] full column rank, Vθ = Φθ

Solution point θ∗ satisfies [4]

Vθ∗ = ΠLTπVθ∗ , where L = {Φx |x ∈ Rd}

Theorem: finite-time convergence [10]

Set learning rate η ≤ O(1
1−γ). After T iterations,

E
[
‖θT − θ∗‖2

]
≤ O

(
exp(−cηT)‖θ0 − θ∗‖2 + η

τmix(η)

1− γ

)
,

where τmix(η) := min{t | κρt ≤ η} is the mixing time of Markov chain.

A faster mixing implies smaller convergence error

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 21 / 81

Feature matrix Φ = [φ>s1
; ...;φ>sn] full column rank, Vθ = Φθ

Solution point θ∗ satisfies [4]

Vθ∗ = ΠLTπVθ∗ , where L = {Φx |x ∈ Rd}

Theorem: finite-time convergence [10]

Set learning rate η ≤ O(1
1−γ). After T iterations,

E
[
‖θT − θ∗‖2

]
≤ O

(
exp(−cηT)‖θ0 − θ∗‖2 + η

τmix(η)

1− γ

)
,

where τmix(η) := min{t | κρt ≤ η} is the mixing time of Markov chain.

A faster mixing implies smaller convergence error

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 21 / 81

TD Learning for Off-Policy Evaluation

Previous TD(0) uses on-policy data

On-Policy Data

Collect Markovian data {st , at , rt , st+1}t following target policy π

Limitation: requires executing the target policy

Limitation: in practice may not have sufficient on-policy data

Off-policy data

Collect Markovian data {st , at , rt , st+1}t following behavior policy πb. The
goal is to evaluate Vπ of the target policy π.

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 22 / 81

TD Learning for Off-Policy Evaluation

Previous TD(0) uses on-policy data

On-Policy Data

Collect Markovian data {st , at , rt , st+1}t following target policy π

Limitation: requires executing the target policy

Limitation: in practice may not have sufficient on-policy data

Off-policy data

Collect Markovian data {st , at , rt , st+1}t following behavior policy πb. The
goal is to evaluate Vπ of the target policy π.

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 22 / 81

Divergence of Off-Policy TD(0)

Key message: TD(0) with linear approximation may diverge in the
off-policy setting [11]

Zero reward, function approximation

V (s) = 2θ(s) + θ0, s = 1, ..., 6

V (7) = θ(7) + 2θ0

Under certain initialization, parameter diverges

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 23 / 81

Gradient TD for Off-Policy Evaluation

Recall Vθ(s) = φ>s θ. Optimal θ∗ satisfies

Vθ∗ = ΠLTπVθ∗

Data sampled by behavior policy πb, stationary distribution µb

Mean-square projected Bellman error (MSPBE) [12]

(MSPBE): J(θ) := Es∼µb
[
Vθ(s)− ΠLTπVθ(s)

]2
Error Vθ(s)− ΠLTπVθ(s) based on target policy

Es∼µb : stationary state distribution induced by behavior policy

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 24 / 81

Gradient TD for Off-Policy Evaluation

Recall Vθ(s) = φ>s θ. Optimal θ∗ satisfies

Vθ∗ = ΠLTπVθ∗

Data sampled by behavior policy πb, stationary distribution µb

Mean-square projected Bellman error (MSPBE) [12]

(MSPBE): J(θ) := Es∼µb
[
Vθ(s)− ΠLTπVθ(s)

]2
Error Vθ(s)− ΠLTπVθ(s) based on target policy

Es∼µb : stationary state distribution induced by behavior policy

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 24 / 81

Idea of Importance Sampling

Denote TD error δt(θ) = rt + γφ>st+1
θ − φ>st θ

MSPBE can be rewritten as

J(θ) = Eµb,π[δt(θ)φst]
>Eµb [φstφ

>
st]
−1Eµb,π[δt(θ)φst]

Importance Sampling Lemma

Eµb,π[δt(θ)φst] = Eµb,πb
[π(at |st)
πb(at |st)

δt(θ)φst

]
,

where ρt = π(at |st)
πb(at |st) is the importance sampling ratio. Then, we have

−1

2
∇J(θ) = E

[
ρt(φst − γφst+1)φ>st

]
E
[
φstφ

>
st

]−1E[ρtδt(θ)φst]

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 25 / 81

GTD2 Algorithm

−1

2
∇J(θ) = E

[
ρt(φst − γφst+1)φ>st

]
E
[
φstφ

>
st

]−1E[ρtδt(θ)φst]︸ ︷︷ ︸
ω∗(θ)

ω∗(θ) can be viewed as solution to the LMS

(LMS): ω∗(θ) = argmin
u

E
[
φ>stu − ρtδt(θ)

]2

GTD2 algorithm [12]

θt+1 = θt + αtρt(φst − γφst+1)φ>stωt

ωt+1 = ωt + βt(ρtδt(θt)φst − φstφ>stωt)

Two timescale updates

ω update is one-step SGD applied to LMS

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 26 / 81

GTD2 Algorithm

−1

2
∇J(θ) = E

[
ρt(φst − γφst+1)φ>st

]
E
[
φstφ

>
st

]−1E[ρtδt(θ)φst]︸ ︷︷ ︸
ω∗(θ)

ω∗(θ) can be viewed as solution to the LMS

(LMS): ω∗(θ) = argmin
u

E
[
φ>stu − ρtδt(θ)

]2
GTD2 algorithm [12]

θt+1 = θt + αtρt(φst − γφst+1)φ>stωt

ωt+1 = ωt + βt(ρtδt(θt)φst − φstφ>stωt)

Two timescale updates

ω update is one-step SGD applied to LMS

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 26 / 81

TDC Algorithm

−1

2
∇J(θ) = E

[
ρt(φst − γφst+1)φ>st

]
E
[
φstφ

>
st

]−1E[ρtδt(θ)φst]︸ ︷︷ ︸
ω∗(θ)

= E
[
ρtδt(θ)φst

]
− γE

[
ρtφst+1φ

>
st

]
ω∗(θ)

TDC algorithm [12]

θt+1 = θt + αtρt(δt(θt)φst − γφst+1φ
>
stωt)

ωt+1 = ωt + βt(ρtδt(θt)φst − φstφ>stωt)

θ update is different from GTD2

ω update is the same as GTD2

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 27 / 81

Convergence of TDC with Linear Approximation

TDC with linear approximation

θt+1 = ΠRθ

(
θt + αtρt(δt(θt)φst − γφst+1φ

>
stωt)

)
ωt+1 = ΠRω

(
ωt + βt(ρtδt(θt)φst − φstφ>stωt)

)
Challenge: Correlated Markovian samples

Challenge: Correlated two timescale updates

Non-exhaustive of existing work:

Asymptotic convergence: [12, 13, 14]

Non-asymptotic (finite-time) convergence
I I.I.D. samples: [8]
I Markovian samples: [15], [16] (will be presented)

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 28 / 81

Finite-Time Convergence of TDC

Key Assumptions:

(Geometric mixing): There exist κ > 0, ρ ∈ (0, 1) such that

sup
s∈S

dTV
(
P(st |s0 = s), µ

)
≤ κρt , ∀t ∈ N0

(Non-singularity): The following matrices are non-singular

A := Eµb [ρs,a(γφsφ
>
s′ − φsφ>s)], C := −Eµb [φsφ

>
s]

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 29 / 81

Finite-Time Convergence of TDC

Theorem: finite-time convergence [16]

Set learning rates α < 1
|λmax(2A>C−1A)| , β <

1
|λmax(2C)| . After T iterations,

E
[
‖θT − θ∗‖2

]
≤ O

(
(1− cα)t + α logα−1 +

√
β log β−1 +

α

β

)
Need small α, β and α

β

Small αβ : ωt takes faster update than θt , because it needs to
approximate the double expectation in θ update

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 30 / 81

Extension: Mini-batch TDC [17]

Mini-batch TDC with linear approximation

θt+1 = θt +
αt

M

(t+1)M−1∑
i=tM

ρi (δi (θt)φsi − γφsi+1φ
>
si
ωt)

ωt+1 = ωt +
βt
M

(t+1)M−1∑
i=tM

(ρiδi (θt)φsi − φsiφ
>
si
ωt)

No need to use bounded projection

Allow large constant learning rates

Reduce variance of two timescale stochastic updates

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 31 / 81

Outline

1 Introduction to Reinforcement Learning and Applications

2 Policy Evaluation and TD Learning

3 Value-based Method for Optimal Control

4 Policy Gradient Algorithms

5 Advanced Topics on RL and Open Directions

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 32 / 81

Optimal Value/State-Action Value Function
Recall definition of value and state-action value functions:

Vπ(s) = E

[∞∑
t=0

γtr(st , at , st+1)

∣∣∣∣s0 = s, π

]

Qπ(s, a) = E

[∞∑
t=0

γtr(st , at , st+1)

∣∣∣∣s0 = s, a0 = a, π

]
Goal: to find an optimal policy that maximizes the value function
from any initial state s0

Optimal value function:

V ∗(s) = sup
π

Vπ(s), ∀s ∈ S

Optimal state-action value function:

Q∗(s, a) = sup
π

Qπ(s, a), ∀(s, a) ∈ S ×A

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 33 / 81

Bellman Operator and Contraction

Optimal policy π∗: take action arg max
a∈A

Q∗(s, a) at state s ∈ S

V ∗(s) = maxa∈AQ∗(s, a),∀s ∈ S
The Bellman operator T is defined as

(TV)(s) = max
a∈A

Es′∼P(·|s,a)

[
r(s, a, s ′) + γV (s ′)

]
T is contraction: for any V1 and V2

‖TV1 − TV2‖∞ ≤ γ‖V1 − V2‖∞

V ∗ is the fixed point of T: V ∗ = TV ∗

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 34 / 81

Value Iteration

Assume known reward r and transition kernel P

Value Iteration

Initialize V (s) arbitrarily for any s ∈ S
Repeat until convergence

I V (s)← max
a∈A

∑
s′∈S

P(s ′|s, a)(r(s, a, s ′) + γV (s ′)), for all s ∈ S

Repeatedly update V (s) using Bellman operator, i.e, V ← TV

Convergence can be proved using contraction of T
I ‖TV − V ∗‖∞ = ‖TV − TV ∗‖∞ ≤ γ‖V − V ∗‖∞
I ‖T · · ·T︸ ︷︷ ︸

t times

V − V ∗‖∞ ≤ γt‖V − V ∗‖∞ → 0, as t →∞

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 35 / 81

Policy Iteration

Assume known reward r and transition kernel P

Policy Iteration

Initialize π arbitrarily

Repeat until convergence
I Evaluate Qπ
I π′(s)← arg max

a∈A
Qπ(s, a) for all s ∈ S

I π ← π′

Policy improvement theorem: Let π and π′ be any pair of
deterministic policies such that for all s ∈ S, Qπ(s, π′(s)) ≥ Vπ(s),
then π′ is no worse than π: Vπ′(s) ≥ Vπ(s),∀s ∈ S
Policy from policy iteration has higher or same value than before

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 36 / 81

SARSA: On-Policy TD Control

Finite S and A, unknown reward r and transition kernel P

SARSA

I Parameter: step size α ∈ (0, 1]

I Initialize Q(s, a) for all s ∈ S and a ∈ A arbitrarily

I Initialize s0 and a0, t = 0

I Repeat until convergence

F Observe state st+1, receive reward r(st , at , st+1)
F Take action at+1 using target policy derived from Q (e.g., ε-greedy)
F Q(st , at)← Q(st , at) + α(r(st , at , st+1) + γQ(st+1, at+1)︸ ︷︷ ︸

target, one-step bootstrap

−Q(st , at))

F t ← t + 1

SARSA converges to Q∗ if
I All state-action pairs are visited infinitely often
I The policy converges to the greedy policy (e.g., ε-greedy with ε = 1/t)

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 37 / 81

SARSA with Linear Function Approximation

Large S and A, unknown r and P

SARSA

Initialization: θ0, s0, φi , for i = 1, 2, ...,N

πθ0 ← Γ(φ>θ0) (e.g., ε-greedy, softmax w.r.t. φ>θ0)

Choose a0 according to πθ0

For t = 0, 1, 2, ...
I Observe st+1 and r(st , at , st+1), choose at+1 according to πθt
I θt+1 ← θt + αtgt(θt)
I Policy improvement: πθt+1 ← Γ(φ>θt+1)

gt(θt) = φ(st , at)∆t : gradient of
`(θ) = 1

2 (r(st , at , st+1) + γφ>(st+1, at+1)θt︸ ︷︷ ︸
target, one-step bootstrap

−φ>θ)2

∆t denotes the temporal difference error at time t:
∆t = target− φ>(st , at)θt ,

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 38 / 81

SARSA Sample Path

As θt is updated, πθt changes with time

On-policy algorithm, time-varying policy

Non-i.i.d. data

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 39 / 81

Finite-Sample Analysis [19]

The limit point θ∗ of the projected SARSA [18]: Aθ∗θ
∗ + bθ∗ = 0,

where Aθ∗ = Eθ∗ [φ(s, a)(γφT (s ′, a′)− φ>(s, a)] and
bθ∗ = Eθ∗ [φ(s, a)r(s, a, s ′)]

The limiting point θ∗ is the one such that Eθ∗ [g(θ∗)] = 0, where
s ∼ µπθ∗ , a ∼ πθ∗(·|s)

Theorem

I Finite-sample bound on convergence of SARSA with diminishing step-size:

E‖θT − θ∗‖2
2 ≤ O

(
log T
T

)
I Finite-sample bound on convergence of SARSA with constant step-size:

E‖θT − θ∗‖2
2 ≤ O

(
e−cT

)
+O(α)

With diminishing step-size, SARSA converges exactly to optimal θ∗

With constant step-size, SARSA converges exponentially fast to a
small neighborhood of θ∗

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 40 / 81

Q-Learning: Off-Policy TD Control
Finite S and A, unknown r and P

Q-Learning

I Parameter: step size α ∈ (0, 1]

I Initialize Q(s, a) for all s ∈ S and a ∈ A arbitrarily

I Initialize s0, behavior policy πb, t = 0

I For t = 0, 1, 2, ...

F Take action at following fixed πb, observe next state st+1, receive reward
r(st , at , st+1)

F Q(st , at)← Q(st , at) + α(r(st , at , st+1) + γ max
a′∈A

Q(st+1, a
′)︸ ︷︷ ︸

target, one-step bootstrap

−Q(st , at))

Q-learning converges to Q∗ if all state-action pairs are visited
infinitely often

Q-learning sample complexity studies, e.g., [20], [21] and [22]

Deep Q-learning: use neural network to approximate Q-function [23]

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 41 / 81

Gradient TD Method for Optimal Control

Q-learning with function approximation may suffer from divergence
issue

Solution: Greedy-Gradient Q-learning (Greedy-GQ) with linear
function approximation [24]

Consider mean squared projected Bellman error (MSPBE):

J(θ) , ‖ΠTQθ − Qθ‖2
µ

I µ: stationary distribution induced by behavior policy πb
I ‖Q(·, ·)‖µ ,

∫
s∈S,a∈A dµs,aQ(s, a)

I Π: projection operator ΠQ̂ = arg minQ∈Q ‖Q − Q̂‖µ
I Q =

{
Qθ = φ>θ : θ ∈ RN

}
Goal: minθ J(θ)

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 42 / 81

Two Time-Scale Update Rule

Define V̄s′(θ) = maxa′∈A θ
>φs′,a′

TD error: δs,a,s′(θ) = r(s, a, s ′) + γV̄s′(θ)− θ>φs,a
Let φ̂s′(θ) = ∇V̄s′(θ). Then gradient of MSPBE is

∇J(θ)

2
= −Eµ[δs,a,s′(θ)φs,a] + γEµ[φ̂s′(θ)φ>s,a]ω∗(θ),

where ω∗(θ) = Eµ[φs,aφ
>
s,a]−1Eµ[δs,a,s′(θ)φs,a].

Double-sampling issue for estimating Eµ[φ̂s′(θ)φ>s,a]ω∗(θ): it involves
product of two expectations

Weight doubling trick [12]:

Slow time-scale: θt+1 = θt + α(δt+1(θt)φt − γ(ω>t φt)φ̂t+1(θt)),

Fast time-scale: ωt+1 = ωt + β(δt+1(θt)− φ>t ωt)φt ,

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 43 / 81

Finite-Sample Analysis [25, 26]

Challenges:

Non-convex objective J(θ) with two time-scale update rule

Non-smooth due to max in V̄s′(θ) = maxa′∈A θ
>φs′,a′

I Approximate max with a smooth approximation, e.g., softmax

Biased gradient estimate due to two time-scale update and Markovian
noise

Theorem [25]

Finite-sample bound on convergence of Greedy-GQ with linear function

approximation: E[‖∇J(θW)‖2] = O
(

log T√
T

)
Gradient norm converges to 0 implies convergence to stationary points

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 44 / 81

Variance Reduced Greedy-GQ [28]

Greedy-GQ update: denote Ot = (st , at , rt , st+1)

θt+1 = θt − αGOt (θt , ωt), ωt+1 = ωt − βHOt (θt , ωt)

Variance reduction [27]: reference parameters θ̃, ω̃

(Reference updates) G̃ :=
1

M

M∑
i=1

GOi
(θ̃, ω̃), H̃ :=

1

M

M∑
i=1

HOi
(θ̃, ω̃)

(Variance-reduced Greedy-GQ):

θt+1 = θt − α
(
GOt (θt , ωt)− GOt (θ̃, ω̃) + G̃

)
ωt+1 = ωt − β

(
HOt (θt , ωt)− HOt (θ̃, ω̃) + H̃

)
Periodically update θ̃, ω̃, G̃ , H̃

Improved sample complexity

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 45 / 81

Outline

1 Introduction to Reinforcement Learning and Applications

2 Policy Evaluation and TD Learning

3 Value-based Method for Optimal Control

4 Policy Gradient Algorithms

5 Advanced Topics on RL and Open Directions

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 46 / 81

Formulation of RL
State value function:

Vπ(s) = E[
∑∞

t=0 γ
tr(st , at , st+1)|s0 = s, π]

State-action value function:

Qπ(s, a) = E[
∑∞

t=0 γ
tr(st , at , st+1)|s0 = s, a0 = a, π]

where at ∼ π(·|st) for all t ≥ 0.

Average value function:

J(π) = (1− γ)E[
∑∞

t=0 γ
tr(st , at , st+1)] = Es∼ξ[Vπ(s)]

where ξ(·) denotes initial distribution.

RL Goal: find the best policy π∗

(Criterion I): Vπ∗(s) ≥ Vπ(s), ∀π,∀s
(Criterion II): max

π
J(π) := Es∼ξ[Vπ(s)]

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 47 / 81

Parameterization of Policy
Central idea:

I Parameterize the policy as {πw ,w ∈ W}
I J(π) = J(πw) := J(w)

Goal of Policy-Based RL: maxw∈W J(πw) := J(w)

Example parameterizations of policy
I Direct parameterization: πw (a|s) = ws,a, where w ∈ 4(A)|S|, i.e.,

ws,a ≥ 0, and
∑

a∈A ws,a = 1 for all (s, a)

I Tabular softmax parameterization:

πw (a|s) =
exp(ws,a)∑

a′∈A exp(ws,a′)

I Linear softmax parameterization:

πw (a|s) ∝ exp(φ(s, a)Tw)

I Gaussian policy: πw (a|s) = N (φ(s)Tw , σ2)

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 48 / 81

Parameterization of Policy
Central idea:

I Parameterize the policy as {πw ,w ∈ W}
I J(π) = J(πw) := J(w)

Goal of Policy-Based RL: maxw∈W J(πw) := J(w)

Example parameterizations of policy
I Direct parameterization: πw (a|s) = ws,a, where w ∈ 4(A)|S|, i.e.,

ws,a ≥ 0, and
∑

a∈A ws,a = 1 for all (s, a)

I Tabular softmax parameterization:

πw (a|s) =
exp(ws,a)∑

a′∈A exp(ws,a′)

I Linear softmax parameterization:

πw (a|s) ∝ exp(φ(s, a)Tw)

I Gaussian policy: πw (a|s) = N (φ(s)Tw , σ2)

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 48 / 81

Policy Gradient Algorithm

Goal of Policy-Based RL: maxw∈W J(πw) := J(w)

Policy gradient ∇J(w) [29]

∇wJ(w) = Eνπw
[
Qπw (s, a)∇w log πw (a|s)

]
I Define score function ψw (s, a) := ∇w log πw (a|s)
I Visitation distribution: νπ(s, a) = (1− γ)

∑∞
t=0 γ

tP(st = s, at = a)
I Define advantage function: Aπ(s, a) = Qπ(s, a)− Vπ(s)

∇wJ(w) = Eνπw
[
Qπw (s, a)ψw (s, a)] = Eνπw

[
Aπw (s, a)ψw (s, a)

]
Policy gradient algorithm [29, 30]

update the parameter w via gradient ascent

wt+1 = wt + αt∇wJ(wt)

where αt > 0 is the stepsize.

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 49 / 81

Policy Gradient Algorithm

Goal of Policy-Based RL: maxw∈W J(πw) := J(w)

Policy gradient ∇J(w) [29]

∇wJ(w) = Eνπw
[
Qπw (s, a)∇w log πw (a|s)

]
I Define score function ψw (s, a) := ∇w log πw (a|s)
I Visitation distribution: νπ(s, a) = (1− γ)

∑∞
t=0 γ

tP(st = s, at = a)
I Define advantage function: Aπ(s, a) = Qπ(s, a)− Vπ(s)

∇wJ(w) = Eνπw
[
Qπw (s, a)ψw (s, a)] = Eνπw

[
Aπw (s, a)ψw (s, a)

]

Policy gradient algorithm [29, 30]

update the parameter w via gradient ascent

wt+1 = wt + αt∇wJ(wt)

where αt > 0 is the stepsize.

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 49 / 81

Policy Gradient Algorithm

Goal of Policy-Based RL: maxw∈W J(πw) := J(w)

Policy gradient ∇J(w) [29]

∇wJ(w) = Eνπw
[
Qπw (s, a)∇w log πw (a|s)

]
I Define score function ψw (s, a) := ∇w log πw (a|s)
I Visitation distribution: νπ(s, a) = (1− γ)

∑∞
t=0 γ

tP(st = s, at = a)
I Define advantage function: Aπ(s, a) = Qπ(s, a)− Vπ(s)

∇wJ(w) = Eνπw
[
Qπw (s, a)ψw (s, a)] = Eνπw

[
Aπw (s, a)ψw (s, a)

]
Policy gradient algorithm [29, 30]

update the parameter w via gradient ascent

wt+1 = wt + αt∇wJ(wt)

where αt > 0 is the stepsize.

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 49 / 81

TRPO/PPO Algorithm

Trusted Region Policy Optimization (TRPO) [31]

Update the parameter w under KL constraint

wt+1 = argmax
w

[J(wt) + (w − wt)
T∇wJ(wt)]

subject to Eν(s)[KL(πwt ||πw)] ≤ c

where c > 0 is a hyperparameter.

Proximal Policy Optimization (PPO) [32]

Update the parameter w via KL-regularized gradient ascent

wt+1 = argmax
w

[J(wt) + (w − wt)
T∇wJ(wt)− αEνw (s)[KL(πwt ||πw)]]

where α > 0 is a hyperparameter.

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 50 / 81

TRPO/PPO Algorithm

Trusted Region Policy Optimization (TRPO) [31]

Update the parameter w under KL constraint

wt+1 = argmax
w

[J(wt) + (w − wt)
T∇wJ(wt)]

subject to Eν(s)[KL(πwt ||πw)] ≤ c

where c > 0 is a hyperparameter.

Proximal Policy Optimization (PPO) [32]

Update the parameter w via KL-regularized gradient ascent

wt+1 = argmax
w

[J(wt) + (w − wt)
T∇wJ(wt)− αEνw (s)[KL(πwt ||πw)]]

where α > 0 is a hyperparameter.

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 50 / 81

Natural Policy Gradient (NPG) Algorithm
Second-order Taylor approximation to KL distance

KL(πwt ||πw) ≈1

2
(w − wt)

TF (w)(w − wt)

I Fisher information matrix F (w) = Eνπw
[∇w log πwt∇w log πT

wt
]

KL-regularized update: at time t

argmax
w

[
J(wt) + (w − wt)

T∇wJ(wt)− αEνw (s)[KL(πwt ||πw)]
]

≈ argmax
w

[
J(wt) + (w − wt)

T∇wJ(wt)−
α

2
(w − wt)

TF (wt)(w − wt)
]

= wt + αF (wt)
†∇wJ(wt)

where F (wt)
† denotes the pseudo-inverse of F (wt).

Natural Policy Gradient (NPG) [33]

Update parameter w via KL approximator based regularizer

wt+1 = wt + αF (wt)
†∇wJ(wt)

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 51 / 81

Natural Policy Gradient (NPG) Algorithm
Second-order Taylor approximation to KL distance

KL(πwt ||πw) ≈1

2
(w − wt)

TF (w)(w − wt)

I Fisher information matrix F (w) = Eνπw
[∇w log πwt∇w log πT

wt
]

KL-regularized update: at time t

argmax
w

[
J(wt) + (w − wt)

T∇wJ(wt)− αEνw (s)[KL(πwt ||πw)]
]

≈ argmax
w

[
J(wt) + (w − wt)

T∇wJ(wt)−
α

2
(w − wt)

TF (wt)(w − wt)
]

= wt + αF (wt)
†∇wJ(wt)

where F (wt)
† denotes the pseudo-inverse of F (wt).

Natural Policy Gradient (NPG) [33]

Update parameter w via KL approximator based regularizer

wt+1 = wt + αF (wt)
†∇wJ(wt)

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 51 / 81

Natural Policy Gradient (NPG) Algorithm
Second-order Taylor approximation to KL distance

KL(πwt ||πw) ≈1

2
(w − wt)

TF (w)(w − wt)

I Fisher information matrix F (w) = Eνπw
[∇w log πwt∇w log πT

wt
]

KL-regularized update: at time t

argmax
w

[
J(wt) + (w − wt)

T∇wJ(wt)− αEνw (s)[KL(πwt ||πw)]
]

≈ argmax
w

[
J(wt) + (w − wt)

T∇wJ(wt)−
α

2
(w − wt)

TF (wt)(w − wt)
]

= wt + αF (wt)
†∇wJ(wt)

where F (wt)
† denotes the pseudo-inverse of F (wt).

Natural Policy Gradient (NPG) [33]

Update parameter w via KL approximator based regularizer

wt+1 = wt + αF (wt)
†∇wJ(wt)

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 51 / 81

Convergence with Exact Policy Gradient

Policy gradient
I Direct and tabular softmax policy: global sublinear convergence [34]
I Direct policy: global linear convergence via regularized MDP [35]
I Direct policy: global linear convergence via line search [36]

TRPO/PPO
I Direct policy: global sublinear convergence via adaptivity [37]
I Direct policy: global linear convergence via regularized MDP [35]
I Direct policy: global convergence via line search [36]

NPG
I Tabular softmax policy: global sublinear convergence [34]
I Tabular softmax policy: global linear convergence via regularized

MDP [38]

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 52 / 81

Policy Gradient Algorithms under Unknown MDP

∇J(w) = Eνπw
[
Qπw (s, a)ψw (s, a)

]
= Eνπw

[
Aπw (s, a)ψw (s, a)

]
Let P̂(·|st , at) = γP(·|st , at) + (1− γ)ξ(·) [39]

I ξ(·): initial distribution
I Samples drawn from P̂(·|st , at) converge to visitation distribution νπw

Model-free Policy Gradient

Sample st ∼ P̂(·|st−1, at−1), at ∼ πwt (·|st)
Unbiased estimation of Aπwt (st , at)

I Sample a length-K trajectory starting at (st , at), K ∼ Geom(1− γ)
I Estimate Q̂(st , at) by adding rewards over the sample path
I Sample a length-K trajectory starting at (st), K ∼ Geom(1− γ)
I Estimate V̂ (st) by adding rewards over the sample path
I Âπwt

(st , at) = Q̂(st , at)− V̂ (st)

Estimate policy gradient gt = Âπwt (st , at)∇wt log(πwt (at |st))

Update wt+1 = wt + αtgt

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 53 / 81

Policy Gradient Algorithms under Unknown MDP

∇J(w) = Eνπw
[
Qπw (s, a)ψw (s, a)

]
= Eνπw

[
Aπw (s, a)ψw (s, a)

]
Let P̂(·|st , at) = γP(·|st , at) + (1− γ)ξ(·) [39]

I ξ(·): initial distribution
I Samples drawn from P̂(·|st , at) converge to visitation distribution νπw

Model-free Policy Gradient

Sample st ∼ P̂(·|st−1, at−1), at ∼ πwt (·|st)
Unbiased estimation of Aπwt (st , at)

I Sample a length-K trajectory starting at (st , at), K ∼ Geom(1− γ)
I Estimate Q̂(st , at) by adding rewards over the sample path
I Sample a length-K trajectory starting at (st), K ∼ Geom(1− γ)
I Estimate V̂ (st) by adding rewards over the sample path
I Âπwt

(st , at) = Q̂(st , at)− V̂ (st)

Estimate policy gradient gt = Âπwt (st , at)∇wt log(πwt (at |st))

Update wt+1 = wt + αtgt

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 53 / 81

Convergence of Model-free PG Algorithms

Theorem ([40])

Consider a general nonlinear policy {πw : w ∈ W}. Under a constant
stepsize αt = α, the output of model-free PG satisfies

min
t∈[T]

E
[
‖∇wtJ(wt)‖2

]
≤ O

(
1
αT

)
+O(α log2 1

α).

PG converges to a neighborhood of a stationary point at a rate of
O
(

1
T

)
.

I α controls a tradeoff between convergence rate and accuracy
I Decreasing α improves accuracy, but slows down convergence

I Let αt = 1√
T

, PG converges with a rate of O
(

log2 T√
T

)

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 54 / 81

Actor-Critic Algorithms [41]

Actor-Critic Algorithm

Critic
I Estimates Vθ(s) by linear function approximation φ(s)>θ
I Takes Tc length-M minibatch TD learning updates and outputs θt

Actor
I Approximates Aπw (s, a) by temporal difference error δθ(s, a, s ′)

Âπw (s, a) = δθ(s, a, s ′) = r(s, a, s ′) + γφ(s ′)>θ − φ(s)>θ

I Estimate policy gradient vt(θt) by averaging δθt (st , at , st+1)ψwt (st , at)
over a length-B sample trajectory

I Updates wt+1 = wt + αtvt(θt)

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 55 / 81

Convergence Rate of Actor-Critic Algorithm

Theorem ([42])

Consider a general nonlinear policy {πw : w ∈ W}, and T̂ is chosen
uniformly from {1, · · · ,T}.

E[
∥∥∇wJ(wT̂)

∥∥2

2
] ≤ O

(
1
T

)
+O

(
1
B

)
+ (1−O(λAπ

β))Tc +O
(
β
M

)
+O(ζcriticapprox).

Actor has sublinear convergence, and critic has linear convergence

Actor’s bias and variance O
(

1
B

)
; Critic’s bias and variance O

(
β
M

)
Critic’s approximation error: ζcritic

approx = maxw∈W Eνw [|Vπw (s)− Vθ∗πw
(s)|2]

Actor’s mini-batch yields faster convergence rate of O(1/T) rather
than O(1/

√
T)

This further yields better overall sample complexity

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 56 / 81

Natural Policy Gradient under Unknown MDP

Natural policy gradient (NPG) [33, 43],

wt+1 = wt + αtF (wt)
†∇J(wt)

Consider minθ∈Rd Lw (θ) = Eνπw [Aπw (s, a)− ψ(s, a)>θ]2

I Minimum norm solution satisfies θw = F (w)†∇J(w)

NPG update [34]: wt+1 = wt + αtθt

Model-free NPG [34]

At step t, solve least square problem via K iterations
I Obtain unbiased estimator Âπwt

(sk , ak) (same as PG)
I Update θk+1 = θk − β∇θLwt (θk)

Update wt+1 = wt + αtθK

NPG with general nonlinear policy converges globally as O
(

1√
T

)
[34]

Can achieve O
(

1
T

)
by self-variance reduction of gradient norm [42]

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 57 / 81

Natural Policy Gradient under Unknown MDP

Natural policy gradient (NPG) [33, 43],

wt+1 = wt + αtF (wt)
†∇J(wt)

Consider minθ∈Rd Lw (θ) = Eνπw [Aπw (s, a)− ψ(s, a)>θ]2

I Minimum norm solution satisfies θw = F (w)†∇J(w)

NPG update [34]: wt+1 = wt + αtθt

Model-free NPG [34]

At step t, solve least square problem via K iterations
I Obtain unbiased estimator Âπwt

(sk , ak) (same as PG)
I Update θk+1 = θk − β∇θLwt (θk)

Update wt+1 = wt + αtθK

NPG with general nonlinear policy converges globally as O
(

1√
T

)
[34]

Can achieve O
(

1
T

)
by self-variance reduction of gradient norm [42]

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 57 / 81

Natural Policy Gradient under Unknown MDP

Natural policy gradient (NPG) [33, 43],

wt+1 = wt + αtF (wt)
†∇J(wt)

Consider minθ∈Rd Lw (θ) = Eνπw [Aπw (s, a)− ψ(s, a)>θ]2

I Minimum norm solution satisfies θw = F (w)†∇J(w)

NPG update [34]: wt+1 = wt + αtθt

Model-free NPG [34]

At step t, solve least square problem via K iterations
I Obtain unbiased estimator Âπwt

(sk , ak) (same as PG)
I Update θk+1 = θk − β∇θLwt (θk)

Update wt+1 = wt + αtθK

NPG with general nonlinear policy converges globally as O
(

1√
T

)
[34]

Can achieve O
(

1
T

)
by self-variance reduction of gradient norm [42]

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 57 / 81

Natural Actor-Critic Algorithm

J(w) = Eνπw
[
Qπw (s, a)ψw (s, a)

]
= Eνπw

[
Aπw (s, a)ψw (s, a)

]
wt+1 = wt + αtF (wt)

†∇J(wt)

Natural Actor-Critic Algorithm

Critic (same as critic in actor-critic algorithm)
I Estimates Vθ(s) by linear function approximation φ(s)>θ
I Takes Tc length-M minibatch TD learning updates and outputs θt

Actor
I Computes policy gradient estimator vt(θt) as in actor-critic algorithm
I Computes Fisher information estimator Ft(wt) by averaging over a

length-B sample trajectory
I Updates wt+1 = wt + αtFt(wt)

†vt(θt)

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 58 / 81

Convergence Rate of Natural Actor-Critic Algorithm

Theorem ([42])

Consider a general nonlinear policy {πw : w ∈ W}, and T̂ is chosen
uniformly from {1, · · · ,T}.

J(π∗)− E
[
J(πwT̂

)
]
≤ O

(
1
T

)
+O

(
1√
B

)
+ (1−O(λAπ

β))Tc/2 +O
(

1√
M

)
+O(

√
ζcriticapprox) +O

(
1
B

)
+ (1−O(λAπβ))Tc +O

(
β
M

)
+O(ζcriticapprox) +O(

√
ζactorapprox)

Actor has sublinear convergence, and critic has linear convergence

Critic’s approx. error: ζcritic
approx = maxw∈W Eνw [|Vπw (s)− Vθ∗πw

(s)|2]

Actor’s approx. error:
ζactor

approx = maxw∈W minp∈Rd2 Eνπw
[
ψw (s, a)>p − Aπw (s, a)

]2
Diminishing variance in actor’s update yields a faster convergence
rate of O(1/T) than O(1/

√
T)

Performance difference lemma [34] of NAC yields global convergence

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 59 / 81

Outline

1 Introduction to Reinforcement Learning and Applications

2 Policy Evaluation and TD Learning

3 Value-based Method for Optimal Control

4 Policy Gradient Algorithms

5 Advanced Topics on RL and Open Directions

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 60 / 81

Topic 1: Safe Reinforcement Learning

Practical RL applications involve various safety/resource constraints
I Left: Power constraint on battery powered devices
I Right: Safety constraints on autonomous robotics and vehicles
I Bottom: Delay constraint in communication system

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 61 / 81

Constrained Markov Decision Process (CMDP)

Same dynamics as general MDP

Agent receives reward R and cost C

Value function w.r.t. reward R:

V π
R (ρ) := E

[∑∞
t=0 γ

tR(st , at , st+1)
∣∣S0 ∼ ρ

]
Value function w.r.t. cost C :

V π
C (ρ) := E

[∑∞
t=0 γ

tC (st , at , st+1)
∣∣S0 ∼ ρ

]
Goal of CMDP

max
π

V π
R (ρ) subject to V π

C (ρ) ≤ c (P)

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 62 / 81

Primal-Dual Approach: e.g. CPO [46], PDO [47]

Let λ > 0 be Lagrangian multiplier. Define Lagrangian:

L(π, λ) = V π
R (ρ) + λ(V π

C (ρ)− c).

Dual function: dλ := maxπ L(π, λ)
I dλ provides an upper bound on value of (P) for any λ > 0

Dual problem:

min
λ∈R+

dλ := min
λ∈R+

max
π
L(π, λ) (D)

Duality gap: ∆ = D∗ − P∗

I Zero duality gap [44, 45]
I (P) can be equivalently solved by solving (D)

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 63 / 81

Primal-Dual Approach

Primal-Dual Algorithm

For t = 0, 1, ...,T
I Compute πt+1 based on L(π, λt) and πt . Example methods:

F Dual descent [45]: πt+1 = arg maxπ L(π, λt) using some RL oracle
F Natural policy gradient [48]: πt+1 = πt + ηFρ(πt)

† · ∇πL(πt , λt)

I Compute the dual ascent step λk+1 = (λk − η(V πt+1 (ρ)− c))+.

Performance metric:
I Let π∗ denote the optimal solution to primal problem P
I Optimality gap: V π∗

R (ρ)− V π
R (ρ).

I Constraint violation: (V π
C (ρ)− c)+.

Convergence Rate:
I Duality gap decays at a rate of O(1/

√
T) [45]

I Optimality gap decays O(1/
√
T) and constraint violation decays

O(1/T
1
4) [48]

Accelerated primal-dual algorithm: optimality gap and constraint
violation decay O(1/T) [49]

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 64 / 81

Primal-Dual Approach

Primal-Dual Algorithm

For t = 0, 1, ...,T
I Compute πt+1 based on L(π, λt) and πt . Example methods:

F Dual descent [45]: πt+1 = arg maxπ L(π, λt) using some RL oracle
F Natural policy gradient [48]: πt+1 = πt + ηFρ(πt)

† · ∇πL(πt , λt)

I Compute the dual ascent step λk+1 = (λk − η(V πt+1 (ρ)− c))+.

Performance metric:
I Let π∗ denote the optimal solution to primal problem P
I Optimality gap: V π∗

R (ρ)− V π
R (ρ).

I Constraint violation: (V π
C (ρ)− c)+.

Convergence Rate:
I Duality gap decays at a rate of O(1/

√
T) [45]

I Optimality gap decays O(1/
√
T) and constraint violation decays

O(1/T
1
4) [48]

Accelerated primal-dual algorithm: optimality gap and constraint
violation decay O(1/T) [49]

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 64 / 81

Primal-Dual Approach

Primal-Dual Algorithm

For t = 0, 1, ...,T
I Compute πt+1 based on L(π, λt) and πt . Example methods:

F Dual descent [45]: πt+1 = arg maxπ L(π, λt) using some RL oracle
F Natural policy gradient [48]: πt+1 = πt + ηFρ(πt)

† · ∇πL(πt , λt)

I Compute the dual ascent step λk+1 = (λk − η(V πt+1 (ρ)− c))+.

Performance metric:
I Let π∗ denote the optimal solution to primal problem P
I Optimality gap: V π∗

R (ρ)− V π
R (ρ).

I Constraint violation: (V π
C (ρ)− c)+.

Convergence Rate:
I Duality gap decays at a rate of O(1/

√
T) [45]

I Optimality gap decays O(1/
√
T) and constraint violation decays

O(1/T
1
4) [48]

Accelerated primal-dual algorithm: optimality gap and constraint
violation decay O(1/T) [49]

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 64 / 81

A Primal Approach: CRPO [50]

No dual variable is needed, and easier to implement

Constraint-Rectified Policy Optimization (CRPO)

For t = 0, 1, ...,T − 1
I Constraint satisfaction: If V πt

c (ρ) ≤ c − δ: πt+1 ← take one step
natural policy gradient update towards minimize V πt

C (ρ)
I Objective improvement: Else πt+1 ← take one step natural policy

gradient update towards maximize V πt

R (ρ)

Optimize policy alternatively between objective improvement and
constraint satisfaction

Optimality gap and constraint violation decay O(1/
√
T)

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 65 / 81

A Primal Approach: CRPO [50]

No dual variable is needed, and easier to implement

Constraint-Rectified Policy Optimization (CRPO)

For t = 0, 1, ...,T − 1
I Constraint satisfaction: If V πt

c (ρ) ≤ c − δ: πt+1 ← take one step
natural policy gradient update towards minimize V πt

C (ρ)
I Objective improvement: Else πt+1 ← take one step natural policy

gradient update towards maximize V πt

R (ρ)

Optimize policy alternatively between objective improvement and
constraint satisfaction

Optimality gap and constraint violation decay O(1/
√
T)

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 65 / 81

Topic 2: Imitation Learning

Practical RL applications often encounter:
I Reward function is unknown
I Some expert demonstrations are available
I Goal: find a learner’s policy that produces behaviors as close as

possible to expert demonstrations

RL Goal: Learn a desired policy by imitation

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 66 / 81

Two Major Approaches on Imitation Learning
Behavioral Cloning [51]

I Directly learns a mapping from state to action based on supervised
learning to match expert demonstrations

Inverse Reinforcement Learning [52, 53]
I First recovers unknown reward function based on expert’s trajectories,

and then find an optimal policy using such a reward function
I Generative adversarial imitation learning (GAIL) framework [54]

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 67 / 81

Two Major Approaches on Imitation Learning
Behavioral Cloning [51]

I Directly learns a mapping from state to action based on supervised
learning to match expert demonstrations

Inverse Reinforcement Learning [52, 53]
I First recovers unknown reward function based on expert’s trajectories,

and then find an optimal policy using such a reward function
I Generative adversarial imitation learning (GAIL) framework [54]

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 67 / 81

Generative Adversarial Imitation Learning (GAIL)

Parameterize reward function as rα(s, a) where α ∈ Λ ⊂ Rq

πE : expert policy; demonstration samples under πE are available

πL: learner’s policy to be optimized

J(πE , rα): average value function under expert policy

J(πL, rα): average value function under learner’s policy

ψ(α): regularizer of reward parameter

GAIL Framework [54]

min
πL

max
α∈Λ

F (πL, α) := J(πE , rα)− J(πL, rα)− ψ(α)

Maximization: find reward function that best distinguishes between
expert’s and learner’s policies

Minimization: find learner’s policy that matches expert’s policy as
close as possible

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 68 / 81

GAIL Policy Gradient Algorithm

Reward update:
I Query expert sample (sE , aE) ∼ P̃πE and learner’s sample

(sw , aw) ∼ P̃πw

I Estimate stochastic gradient with respect to reward parameter

∇̂αF (w , α) =
1

(1− γ)

[
∇αrα(sE , aE)−∇αrα(sw , aw)

]
−∇αψ(α)

I Update αk+1 = Proj
(
αk + β∇̂αF (w , αk)

)
Policy update:

I Use any policy gradient algorithm to update policy parameter w for
reward rα(s, a)

Convergence rate with global optimality under various
conditions [55, 56, 57]

Convergence rate to stationary point [58]

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 69 / 81

Topic 3: Multi-Agent Reinforcement Learning
(MARL)

Many RL applications involve multiple agents
I Left: stock market with numerous investors
I Middle: multi-drone control
I Bottom: multi-agent power network

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 70 / 81

Formulation of MARL

State value function (of joint policy π):

Vπ(s) = E
[∑∞

t=0 γ
t 1
M

∑M
m=1 r

(m)
t |s0 = s, π

]
Average value function:

J(π) = (1− γ)E
[∑∞

t=0 γ
t 1
M

∑M
m=1 r

(m)
t] = Eξ[Vπ(s)

]
MARL Problem:

max
{π(m)}m

J(π)

Agents need synchronize info (local states, actions, rewards, etc)

Tradeoff between communication & computation complexities

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 71 / 81

Decentralized Policy Optimization for MARL

Policy gradient with regard to agent m’s parameter ω(m):

∇ω(m)J(ωt)≈
[
Rt + γV (s ′t+1)− V (st)

]
ψ

(m)
t (a

(m)
t |st). (1)

I V (s): learned via standard decentralized TD learning
I ψ

(m)
t (a

(m)
t |st): locally computed by the agent m

I Challenge 1: need R t–average reward over all agents. Sensitive!
I Challenge 2: How to achieve good communication & computation

complexities at the same time?

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 72 / 81

Solution proposed by [59]:

Corrupt local rewards using Gaussian with very large variance

R̃(m) = R(m)
(
1 +N (0, σ2)

)
Estimate R via standard local averaging among all agents

R0 = R̃(m),

R`+1 =
∑

m′∈Nm
Wm,m′ R`, ` = 0, 1, . . . ,T ′ − 1.

Further use mini-batch updates to reduce the estimation error

∇̂ω(m)J(ωt) =
1

N

(t+1)N−1∑
i=tN

[
R i + γV (s ′i+1)− V (si)

]
ψ

(m)
t (a

(m)
i |si)

I Can suppress noise with sufficiently large batch size N
I Substantially reduces communication frequency and rounds
I Helps achieve great sample/computation complexity

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 73 / 81

Topic 4: Robust Reinforcement Learning

Motivations:
I Possible model deviation between training and test environments, e.g.,

training is on simulator
I Adversarial attacks to MDPs
I These could lead to severe performance degradation

Robust Markov decision process (MDP): (S,A, r ,P), where P ∈P,
and P is an uncertainty set of transition kernels

Robust value function: Ṽ π(s) = infP∈P EP [
∑∞

t=0 γ
trt |S0 = s, π]

I Worst-case performance

Goal: Learn policy robust to model uncertainty

max
π

Ṽ π(s), ∀s ∈ S

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 74 / 81

Robust Reinforcement Learning

Model-Based Approach [60, 61]
I Assume knowledge of uncertainty set
I Robust value function satisfies robust Bellman equation, which is a

contraction
I Robust value/policy iteration

Adversarial Training [62,63,64,65,66,67,68,69,70,71,72,73,74,75]
I Reformulate robust RL as a game between agent and nature, where

nature chooses transition kernel P
I Alternatively optimize agent’s policy towards maximizing cumulative

reward and nature’s policy towards minimizing cumulative reward
I Empirical success, but lack of theoretical robustness guarantee

Model-free Approach [76, 77, 78]
I Uncertainty set is centered at an unknown MDP from which samples

can be taken
I Online algorithms that can be updated efficiently

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 75 / 81

ε-Contamination Model

ε-contamination uncertainty set:

Pa
s = {(1− ε)pas + εq} , for some 0 ≤ ε ≤ 1

With probability 1− ε, state transition is perturbed using any
arbitrary distribution q over the state space S
ε-contamination can be related to total-variation/KL divergence
defined uncertainty set via Pinsker’s inequality

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 76 / 81

Robust Q-learning [78]
Initialization: T , Q̃0(s, a) for all (s, a), behavior policy πb, s0, step size αt

For t = 0, 1, 2, ...,T − 1
Choose at according to πb(·|st)
Observe st+1 and rt
Update Q̃t+1:

Ṽt(s)← max
a∈A

Q̃t(s, a),∀s ∈ S

Q̃t+1(st , at)← (1− αt)Q̃t(st , at) + αt(rt + γ((1− ε)Ṽt(st+1) + εmin
s∈S

Ṽt(s))

Output: Q̃T

Performance guarantee:

Robust Q-learning converges to robust solution of maxπ Ṽ
π

Same sample and computational complexity (within a constant
factor) as vanilla Q-learning algorithm [78]

Extension to function approximation also discussed in [78]

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 77 / 81

Experiments on Robust Q-Learning

Train Q-learning and robust Q-learning under a perturbed MDP

Test on real unperturbed environment

Robust Q-learning achieves higher reward than vanilla Q-learning

(a) FrozenLake (b) Cartpole

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 78 / 81

Open Problems in Reinforcement Learning

Multi-task reinforcement learning
I Tasks can share similar but different transition kernels
I Meta-learning can be applied to achieve sampling efficiency
I Open issues in theory: characterization of sample complexity

improvement due to meta-learning

Off-policy/Offline reinforcement learning
I No access to online interaction with environment, but access only to a

given set of data samples
I Dataset has limited coverage over state-action space, and is sampled

under behavior policy, not target policy
I Open issues in design: how to design desirable algorithms to address

overestimation and distribution shift
I Open issues in theory: what is the minimum requirement to achieve

polynomial sample complexity efficiency

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 79 / 81

Open Problems (Cont.)

Partially observable MDP
I No access to full state information
I Optimal policy is not stationary
I Markovian structure does not hold anymore
I Open issues in design: how to design efficient model-free and

model-based methods
I Open issues in theory: how to characterize sample complexity

Multi-agent RL
I Agents need to jointly achieve a design goal
I Decentralized algorithms under partial observations of environments
I Challenges in design: delayed communication; communication depends

on network topology
I Open issues in theory: tradeoff among communications, computations,

privacy

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 80 / 81

Questions?

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 81 / 81

References
[1] N. Sharma, S. Zhang, S. R. S. Venkata, F. Malandra,

N. Mastronarde, and J. Chakareski, “Deep reinforcement learning for
delay-sensitive lte downlink scheduling,” in IEEE Annual International
Symposium on Personal, Indoor and Mobile Radio Communications,
pp. 1–6, IEEE, 2020.

[2] R. S. Sutton, “Learning to predict by the methods of temporal
differences,” Machine learning, vol. 3, no. 1, pp. 9–44, 1988.

[3] R. S. Sutton and A. G. Barto, Reinforcement learning: An
introduction.
2018.

[4] J. N. Tsitsiklis and B. Van Roy, “An analysis of temporal-difference
learning with function approximation,” IEEE transactions on
automatic control, vol. 42, no. 5, pp. 674–690, 1997.

[5] V. S. Borkar, Stochastic approximation: a dynamical systems
viewpoint, vol. 48.
2009.

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 81 / 81

[6] A. Benveniste, P. Priouret, and M. Métivier, Adaptive Algorithms and
Stochastic Approximations.
Springer-Verlag, 1990.

[7] V. Tadić, “On the convergence of temporal-difference learning with
linear function approximation,” Machine learning, vol. 42, no. 3,
pp. 241–267, 2001.

[8] G. Dalal, B. Szörényi, G. Thoppe, and S. Mannor, “Finite sample
analyses for td (0) with function approximation,” in Proc. Association
for the Advancement of Artificial Intelligence (AAAI), vol. 32, 2018.

[9] R. Srikant and L. Ying, “Finite-time error bounds for linear stochastic
approximation andtd learning,” in Proc. Conference on Learning
Theory (COLT), pp. 2803–2830, 2019.

[10] J. Bhandari, D. Russo, and R. Singal, “A finite time analysis of
temporal difference learning with linear function approximation,” in
Proc. Conference on Learning Theory (COLT), vol. 75,
pp. 1691–1692, 2018.

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 81 / 81

[11] L. Baird, “Residual algorithms: Reinforcement learning with function
approximation,” in Proc. International Conference on Machine
Learning (ICML), pp. 30–37, 1995.

[12] R. S. Sutton, H. R. Maei, D. Precup, S. Bhatnagar, D. Silver,
C. Szepesvári, and E. Wiewiora, “Fast gradient-descent methods for
temporal-difference learning with linear function approximation,” in
Proc. International Conference on Machine Learning (ICML),
pp. 993–1000, 2009.

[13] H. R. Maei, Gradient temporal-difference learning algorithms.
PhD thesis, University of Alberta, 2011.

[14] H. Yu, “On convergence of some gradient-based temporal-differences
algorithms for off-policy learning,” arXiv1712.09652, 2018.

[15] M. Kaledin, E. Moulines, A. Naumov, V. Tadic, and H.-T. Wai,
“Finite time analysis of linear two-timescale stochastic approximation
with markovian noise,” in Proc. Conference on Learning Theory
(COLT), pp. 2144–2203, 2020.

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 81 / 81

[16] T. Xu, S. Zou, and Y. Liang, “Two time-scale off-policy td learning:
Non-asymptotic analysis over markovian samples,” in Proc. Advances
in Neural Information Processing Systems (NeurIPS),
pp. 10634–10644, 2019.

[17] T. Xu and Y. Liang, “Sample complexity bounds for two timescale
value-based reinforcement learning algorithms,” in Proc. International
Conference on Artificial Intelligence and Statistics, vol. 130,
pp. 811–819, 13–15 Apr 2021.

[18] F. S. Melo, S. P. Meyn, and M. I. Ribeiro, “An analysis of
reinforcement learning with function approximation,” in Proc.
International Conference on Machine Learning (ICML), pp. 664–671,
ACM, 2008.

[19] S. Zou, T. Xu, and Y. Liang, “Finite-sample analysis for sarsa with
linear function approximation,” in Proc. Advances in Neural
Information Processing Systems, pp. 8665–8675, 2019.

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 81 / 81

[20] G. Li, C. Cai, Y. Chen, Y. Gu, Y. Wei, and Y. Chi, “Is q-learning
minimax optimal? a tight sample complexity analysis,” arXiv preprint
arXiv:2102.06548, 2021.

[21] M. J. Wainwright, “Variance-reduced q-learning is minimax optimal,”
arXiv preprint arXiv:1906.04697, 2019.

[22] G. Li, Y. Wei, Y. Chi, Y. Gu, and Y. Chen, “Sample complexity of
asynchronous q-learning: Sharper analysis and variance reduction,”
arXiv preprint arXiv:2006.03041, 2020.

[23] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, and
G. Ostrovski, “Human-level control through deep reinforcement
learning,” Nature, vol. 518, pp. 529–533, 2015.

[24] H. R. Maei, C. Szepesvári, S. Bhatnagar, and R. S. Sutton, “Toward
off-policy learning control with function approximation,” in Proc.
International Conference on Machine Learning (ICML), 2010.

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 81 / 81

[25] Y. Wang and S. Zou, “Finite-sample analysis of Greedy-GQ with
linear function approximation under Markovian noise,” in Proc.
International Conference on Uncertainty in Artificial Intelligence
(UAI), vol. 124, pp. 11–20, 2020.

[26] T. Xu and Y. Liang, “Sample complexity bounds for two timescale
value-based reinforcement learning algorithms,” ArXiv:2011.05053,
2020.

[27] R. Johnson and T. Zhang, “Accelerating stochastic gradient descent
using predictive variance reduction,” in Proc. Advances in Neural
Information Processing Systems, vol. 26, 2013.

[28] S. Ma, Z. Chen, Y. Zhou, and S. Zou, “Greedy-GQ with variance
reduction: Finite-time analysis and improved complexity,” in Proc.
International Conference on Learning Representations (ICLR), 2021.

[29] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy
gradient methods for reinforcement learning with function
approximation,” in Proc. Advances in Neural Information Processing
Systems (NIPS), pp. 1057–1063, 2000.

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 81 / 81

[30] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine Learning, vol. 8,
no. 3-4, pp. 229–256, 1992.

[31] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in The 32nd International Conference on
Machine Learning (ICML), pp. 1889–1897, 2015.

[32] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[33] S. M. Kakade, “A natural policy gradient,” in Advances in Neural
Information Processing Systems (NeurIPS), pp. 1531–1538, 2002.

[34] A. Agarwal, S. M. Kakade, J. D. Lee, and G. Mahajan, “Optimality
and approximation with policy gradient methods in Markov decision
processes,” arXiv preprint arXiv:1908.00261, 2019.

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 81 / 81

[35] G. Lan, “Policy mirror descent for reinforcement learning: Linear
convergence, new sampling complexity, and generalized problem
classes,” ArXiv:2102.00135, 2021.

[36] J. Bhandari and D. Russo, “Global optimality guarantees for policy
gradient methods,” arXiv preprint arXiv:1906.01786, 2019.

[37] L. Shani, Y. Efroni, and S. Mannor, “Adaptive trust region policy
optimization: Global convergence and faster rates for regularized
MDPs,” arXiv preprint arXiv:1909.02769, 2019.

[38] S. Cen, C. Cheng, Y. Chen, Y. Wei, and Y. Chi, “Fast global
convergence of natural policy gradient methods with entropy
regularization,” arXiv:2007.06558, 2020.

[39] V. Konda, “Actor-critic algorithms (ph.d. thesis),” Department of
Electrical Engineering and Computer Science, Massachusetts Institute
of Technology, 2002.

[40] H. Xiong, T. Xu, YingbinLiang, and W. Zhang, “Non-asymptotic
convergence of Adam-type reinforcement learning algorithms under

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 81 / 81

Markovian sampling,” in Proc. AAAI Conference on Artificial
Intelligence (AAAI), 2021.

[41] V. R. Konda and J. N. Tsitsiklis, “Actor-critic algorithms,” in Proc.
Advances in Neural Information Processing Systems (NeurIPS),
pp. 1008–1014, 2000.

[42] T. Xu, Z. Wang, and Y. Liang, “Improving sample complexity bounds
for (natural) actor-critic algorithms,” in Proc. Advances in Neural
Information Processing Systems (NeurIPS), also available as arXiv
preprint arXiv:2004.12956, 2020.

[43] S.-I. Amari, “Natural gradient works efficiently in learning,” Neural
Computation, vol. 10, no. 2, pp. 251–276, 1998.

[44] E. Altman, Constrained Markov Decision Processes, vol. 7.
CRC Press, 1999.

[45] S. Paternain, L. F. Chamon, M. Calvo-Fullana, and A. Ribeiro,
“Constrained reinforcement learning has zero duality gap,” in Proc.
Advances in Neural Information Processing Systems (NIPS), 2019.

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 81 / 81

[46] J. Achiam, D. Held, A. Tamar, and P. Abbeel, “Constrained policy
optimization,” in Proc. International Conference on Machine Learning
(ICML), pp. 22–31, 2017.

[47] Y. Chow, M. Ghavamzadeh, L. Janson, and M. Pavone,
“Risk-constrained reinforcement learning with percentile risk criteria,”
The Journal of Machine Learning Research, vol. 18, no. 1,
pp. 6070–6120, 2017.

[48] D. Ding, K. Zhang, T. Basar, and M. Jovanovic, “Natural policy
gradient primal-dual method for constrained markov decision
processes,” in Proc. Advances in Neural Information Processing
Systems (NeurIPS), vol. 33, 2020.

[49] T. Li, Z. Guan, S. Zou, T. Xu, Y. Liang, and G. Lan, “Faster
algorithm and sharper analysis for constrained Markov decision
process,” arXiv preprint arXiv:2110.10351, 2021.

[50] T. Xu, Y. Liang, and G. Lan, “CRPO: A new approach for safe
reinforcement learning with convergence guarantee,” in Proc.
International Conference on Machine Learning (ICML), 2021.

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 81 / 81

[51] D. A. Pomerleau, “Efficient training of artificial neural networks for
autonomous navigation.,” Neural Computation, vol. 3, no. 1,
pp. 88–97, 1991.

[52] S. Russell, “Learning agents for uncertain environments,” in Proc.
Eleventh Annual Conference on Computational Learning Theory,
1998.

[53] A. Y. Ng and S. Russell, “Algorithms for inverse reinforcement
learning,” in Proc. International Conference on Machine Learning
(ICML), 2000.

[54] J. Ho and S. Ermon, “Generative adversarial imitation learning,” in
Proc. Advances in Neural Information Processing Systems (NIPS),
2016.

[55] Q. Cai, M. Hong, Y. Chen, and Z. Wang, “On the global convergence
of imitation learning: A case for linear quadratic regulator,” arXiv
preprint arXiv:1901.03674, 2019.

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 81 / 81

[56] Y. Zhang, Q. Cai, Z. Yang, and Z. Wang, “Generative adversarial
imitation learning with neural networks: Global optimality and
convergence rate,” arXiv preprint arXiv:2003.03709, 2020.

[57] Z. Guan, T. Xu, and Y. Liang, “When will generative adversarial
imitation learning algorithms attain global convergence,” in Proc.
International Conference on Artificial Intelligence and Statistics
(AISTATS), 2021.

[58] M. Chen, Y. Wang, T. Liu, Z. Yang, X. Li, Z. Wang, and T. Zhao,
“On computation and generalization of generative adversarial
imitation learning,” in Proc. International Conference on Learning
Representations (ICLR), 2020.

[59] Anonymous, “Sample and communication-efficient decentralized
actor-critic algorithms with finite-time analysis,” in Submitted to The
Tenth International Conference on Learning Representations, 2022.

[60] G. N. Iyengar, “Robust dynamic programming,” Mathematics of
Operations Research, vol. 30, no. 2, pp. 257–280, 2005.

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 81 / 81

[61] A. Nilim and L. El Ghaoui, “Robustness in Markov decision problems
with uncertain transition matrices,” in Proc. Advances in Neural
Information Processing Systems (NIPS), pp. 839–846, 2004.

[62] E. Vinitsky, Y. Du, K. Parvate, K. Jang, P. Abbeel, and A. Bayen,
“Robust reinforcement learning using adversarial populations,” arXiv
preprint arXiv:2008.01825, 2020.

[63] L. Pinto, J. Davidson, R. Sukthankar, and A. Gupta, “Robust
adversarial reinforcement learning,” in International Conference on
Machine Learning, pp. 2817–2826, PMLR, 2017.

[64] M. A. Abdullah, H. Ren, H. B. Ammar, V. Milenkovic, R. Luo,
M. Zhang, and J. Wang, “Wasserstein robust reinforcement
learning,” arXiv preprint arXiv:1907.13196, 2019.

[65] L. Hou, L. Pang, X. Hong, Y. Lan, Z. Ma, and D. Yin, “Robust
reinforcement learning with wasserstein constraint,” arXiv preprint
arXiv:2006.00945, 2020.

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 81 / 81

[66] A. Rajeswaran, S. Ghotra, B. Ravindran, and S. Levine, “Epopt:
Learning robust neural network policies using model ensembles,”
arXiv preprint arXiv:1610.01283, 2016.

[67] C. G. Atkeson and J. Morimoto, “Nonparametric representation of
policies and value functions: A trajectory-based approach,” in Proc.
Advances in Neural Information Processing Systems (NIPS),
pp. 1643–1650, 2003.

[68] J. Morimoto and K. Doya, “Robust reinforcement learning,” Neural
computation, vol. 17, no. 2, pp. 335–359, 2005.

[69] S. Huang, N. Papernot, I. Goodfellow, Y. Duan, and P. Abbeel,
“Adversarial attacks on neural network policies,” arXiv preprint
arXiv:1702.02284, 2017.

[70] J. Kos and D. Song, “Delving into adversarial attacks on deep
policies,” arXiv preprint arXiv:1705.06452, 2017.

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 81 / 81

[71] Y.-C. Lin, Z.-W. Hong, Y.-H. Liao, M.-L. Shih, M.-Y. Liu, and
M. Sun, “Tactics of adversarial attack on deep reinforcement learning
agents,” arXiv preprint arXiv:1703.06748, 2017.

[72] A. Pattanaik, Z. Tang, S. Liu, G. Bommannan, and G. Chowdhary,
“Robust deep reinforcement learning with adversarial attacks,” arXiv
preprint arXiv:1712.03632, 2017.

[73] A. Mandlekar, Y. Zhu, A. Garg, L. Fei-Fei, and S. Savarese,
“Adversarially robust policy learning: Active construction of
physically-plausible perturbations,” in 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
pp. 3932–3939, IEEE, 2017.

[74] S. H. Lim, H. Xu, and S. Mannor, “Reinforcement learning in robust
Markov decision processes,” Proc. Advances in Neural Information
Processing Systems (NIPS), vol. 26, pp. 701–709, 2013.

[75] K. Zhang, B. Hu, and T. Basar, “On the stability and convergence of
robust adversarial reinforcement learning: A case study on linear

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 81 / 81

quadratic systems,” Advances in Neural Information Processing
Systems, vol. 33, 2020.

[76] A. Roy, H. Xu, and S. Pokutta, “Reinforcement learning under model
mismatch,” in Proceedings of the 31st International Conference on
Neural Information Processing Systems, pp. 3046–3055, 2017.

[77] K. P. Badrinath and D. Kalathil, “Robust reinforcement learning using
least squares policy iteration with provable performance guarantees,”
in International Conference on Machine Learning, pp. 511–520, 2021.

[78] Y. Wang and S. Zou, “Online robust reinforcement learning with
model uncertainty,” in Proc. Advances in Neural Information
Processing Systems (NeurIPS), 2021.

YL, SZ, YZ (OSU, SUNY-Buffalo, Utah) Optimization Meets Reinforcement Learning IEEE BigData 2021 81 / 81

	Introduction to Reinforcement Learning and Applications
	Policy Evaluation and TD Learning
	Value-based Method for Optimal Control
	Policy Gradient Algorithms
	Advanced Topics on RL and Open Directions

