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Challenge of Model Mismatch

Training environment ̸= test environment

⇒ Model mismatch

⇒ Severe performance degradation

modeling error between simulator and real-world applications

non-stationary environment

unexpected perturbations and potential adversarial attacks

Robust RL:

Find good policy that performs well under model mismatch
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Markov Decision Processes

An agent interacts with a stochastic environment: Markov Decision
Process (MDP)

MDP (S,A,P, c)

S: state space

A: action space

P: transition kernel

c : cost function

A stationary policy π(a|s) is a conditional distribution over A
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Markov Decision Processes

Discounted value function for policy π at state s:

E

[ ∞∑
t=0

γtc(st , at)|S0 = s, π

]

Goal: find an optimal policy that minimizes value function

min
π

E

[ ∞∑
t=0

γtc(st , at)|S0 = s, π

]
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Robust MDPs

Robust MDP: (S,A,P, c , γ)

P: uncertainty set of transition kernels
Transition kernel at each time step comes from P:
κ = (P0,P1, ...) ∈ ⊗t≥0P

Pessimistic approach in face of uncertainty:

Worst-case overall cost over uncertainty set
Robust value function under the discounted setting:

V π
P,γ(s) = max

κ∈⊗t≥0P
Eκ

[ ∞∑
t=0

γtc(St ,At)|S0 = s, π

]

Goal: Optimize the worst-case performance:

min
π

V π
P,γ(s), ∀s ∈ S
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Related Works: Robust Discounted RL

Model-based method: P is known

e.g., Bagnell et al. (2001); Nilim and El Ghaoui (2004); Iyengar (2005);
Wiesemann et al. (2013); Tamar et al. (2014): robust dynamic
programming

Model-free method: P is unknown, samples from nominal transition
kernel are available

Roy et al. (2017); Panaganti et al. (2022): ellipsoid-structure
uncertainty set

convergence needs discount factor bounded away from 1

Liu et al. (2022): KL divergence uncertainty set

generative model, tabular setting

Wang and Zou (2021, 2022) (our work): R-contamination model

asymptotic convergence with sample complexity analysis
function approximation

Zhou et al. (2021); Yang et al. (2021): offline and tabular
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Related Works: Robust Average-Cost RL

gπ
P(s) = max

κ∈⊗t≥0P
lim
n→∞

Eκ

[
1

n

n−1∑
t=0

c(St ,At)|S0 = s, π

]

Model-based method: P is known

Tewari and Bartlett (2007): bounded-interval uncertainty set, limit
method
Wang et al. (2023b) (our work): general uncertainty set, robust
average-cost Bellman equation, limit method and direct method

Model-free method: P is unknown

Wang et al. (2023a) (our work): general uncertainty set, robut relative
value iteration with convergence guarantee
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Heuristic Approaches

Adversarial state transition perturbation: an adversary perturbs the
state transition: Vinitsky et al. (2020); Pinto et al. (2017); Abdullah
et al. (2019); Hou et al. (2020); Rajeswaran et al. (2017); Atkeson and
Morimoto (2003); Morimoto and Doya (2005)

Adversarial sample perturbation: an adversary modifies state
observations Huang et al. (2017); Kos and Song (2017); Lin et al.
(2017); Pattanaik et al. (2018); Mandlekar et al. (2017)
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Robust Average-Cost RL

Recall the robust average-cost:

gπ
P (s) ≜ lim

n→∞
EP

[
1

n

n−1∑
t=0

ct |S0 = s, π

]
gπ
P = max

P∈P
gπ
P

Goal: Find π∗ = arg minπ g
π
P
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Main Results

Fundamental understanding of robust average-cost MDPs

robust average-cost Bellman equation

Model-based methods:

Limit method
Direct method

Model-free methods: robust TD and robust Q-learning
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Robust Average-Cost MDP: Limit Method

Non-robust setting

(Puterman (1994) point-wise convergence) For any fixed P and π,
limγ→1(1− γ)V π

P,γ = gπ
P

Under non-robust setting, average-cost can be approximated by
discounted value function

In robust MDP, does it hold that

lim
γ→1

(1− γ)V π
P,γ = gπ

P ?

Robust discounted Bellman operator (Nilim and El Ghaoui, 2004;
Iyengar, 2005): TV = c + γ

∑
a π(a|s)σPa

s
(V ), where

σPa
s
(V ) = maxp∈Pa

s
p⊤V is support function

T is a γ-contraction and has V π
P,γ as its unique fixed

point:TV π
P,γ = V π

P,γ
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Tewari and Bartlett (2007): Bounded-interval Uncertainty
Set

Number of possible worst-case transition kernels is finite

Proof of this argument relies on structure of bounded-interval

Then, minP and limγ are interchangeable

Not generalizable to general uncertainty sets
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Robust Average-Cost MDP: Limit Method

Theorem: uniform convergence

lim
γ→1

(1− γ)V π
P,γ = gπ

P uniformly

Then minP and limγ→1 are interchangeable:

gπ
P = min

P∈P
gπ
P

= min
P∈P

lim
γ→1

(1− γ)V π
P,γ = lim

γ→1
min
P∈P

(1− γ)V π
P,γ

= lim
γ→1

(1− γ)V π
P,γ

Robust average-cost can be approximated by discounted robust value
functions as γ → 1
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Robust Average-Cost MDP: Limit Method

Basic idea of limit method:

Set γt → 1

Apply one-step robust discounted Bellman operator

Robust value iteration for policy evaluation

INPUT: π,V0(s) = 0, ∀s,T
FOR t = 0, 1, ...,T − 1
γt ← t+1

t+2
FOR all s ∈ S
Vt+1(s)← Eπ[(1− γt)c(s,A) + γtσPA

s
(Vt)]

OUTPUT: VT
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Robust Average-Cost MDP: Limit Method

Convergence of Robust Value Iteration

RVI algorithm converges to robust average-cost: limT→∞ VT → gπ
P

Solves the policy evaluation problem under the robust average-cost
setting

Convergence rate: ∥VT − gπ
P∥ = O

(
1
T

)
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Robust Average-Cost MDP: Limit Method

The limit method also works for optimal control problems

Robust value iteration for optimal control

INPUT: V0(s) = 0,∀s,T
FOR t = 0, 1, ...,T − 1
γt ← t+1

t+2
FOR all s ∈ S
Vt+1(s)← min

a∈A

{
(1− γt)c(s, a) + γtσPa

s
(Vt)

}
FOR s ∈ S

πt(s)← arg mina∈A
{

(1− γt)c(s, a) + γtσPa
s
(Vt)

}
OUTPUT: πT ,VT

Convergence of robust value iteration

VT → g∗
P , πT → π∗ = arg minπ g

π
P
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Robust Average-Cost MDP: Limit Method

Non-robust value iteration vs robust value iteration:

under different uncertainty sets (contamination model, total variation
model and KL-divergence model)

evaluate worst-case performance of obtained policy

RVI is more robust than non-robust value iteration method
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Robust Average-Cost MDP: Limit Method

Robust Blackwell optimality

There exists δ < 1, such that for any δ < γ < 1, if π∗ = arg minπ V
π
P,γ is

optimal to robust discounted value function, then π∗ is also optimal to
robust average-cost π∗ ∈ arg minπ g

π
P .

Fundamental relationship between the robust discounted MDPs and
robust average-cost MDPs

Analog to Blackwell optimality of non-robust setting

Proofs of non-robust setting and bounded-interval uncertainty set
Tewari and Bartlett (2007): for two policies π and ν:
fπ,ν(γ) ≜ V π

P,γ − V µ
P,γ is rational function, thus has finite many zeros.

This does not hold in robust setting as V π
P,γ − V µ

P,γ is not rational due
to max
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Robust Average-Cost MDP: Limit Method

The limit method

solves robust average-cost MDPs using robust discounted MDPs as
intermediate steps

based on robust discounted MDPs, does not directly study the
fundamental structure of robust average-cost MDPs
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Robust Average-Cost MDP: Direct Method

Assumption

The Markov chain induced by any P ∈ P and any π is a unichain.

Optimal robust Bellman equation

If (g ,V ) is a solution to

V (s) = min
a

{
c(s, a)− g + σPa

s
(V )

}
,∀s,

then g = g∗
P . If we further set

π∗(s) = arg min
a

{
c(s, a) + σPa

s
(V )

}
for any s ∈ S, then π∗ is an optimal robust policy.

Solving robust average-cost MDPs can be done by solving the robust
Bellman equation
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Robust Average-Cost MDP: Direct Method

V (s) = T(V ) = mina

{
c(s, a)− g + σPa

s
(V )

}
How to solve the robust Bellman equation?

Discounted setting: apply the robust Bellman operator recursively
(γ-contraction)

Average setting: not a contraction, may have multiple fixed
points and algorithm may diverge

Robust relative value iteration (RRVI)

subtract an offset function to keep iterates stable
prove it is multi-step contraction
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Robust Average-Cost MDP: Direct Method

Robust relative value iteration

INPUT: V0, ϵ and arbitrary s∗ ∈ S
WHILE TRUE

FOR all s ∈ S
Vt+1(s)← mina(c(s, a) + σPa

s
(Vt)− f (Vt))

OUTPUT: f (Vt),Vt

For example f (V ) = V (s∗) for some reference state s∗ and f (V ) is the
mean of V , to ”offset” the increase of V
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Robust Average-Cost MDP: Direct Method

Convergence of robust relative value iteration

(f (Vt),Vt) converges to a solution to the optimal robust Bellman equation

Finds a solution to optimal robust Bellman equation and hence optimal
robust average-cost and optimal policy

Linear convergence rate, faster than limit method
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Robust Average-Cost MDP: Limit Method

Non-robust value iteration vs robust value iteration:

under different uncertainty sets (contamination model, total variation
model and KL-divergence model)

evaluate worst-case performance of obtained policy

RRVI is more robust than non-robust relative value iteration
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Model-free Method for Robust Average-Cost RL

Idea: generalize RVI Q-learning to robust setting

Major challenges:

The Bellman operator for robust average-cost MDPs is not contraction:
possible multiple fixed point
Construction of unbiased estimator for robust Bellman operator for
various uncertainty sets
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Robust Q-Learning for Average RL

Optimal robust Bellman equation

If (g ,Q) is a solution to the optimal robust Bellman equation

Q(s, a) = r(s, a)− g + σPa
s
(VQ),∀s, a,

then 1) g = g∗
P ;

2) the greedy policy w.r.t. Q: πQ(s) = arg mina Q(s, a) is an optimal
robust policy;
3) VQ(s) ≜ mina Q(s, a) = V

πQ

P (s) + ce for some P ∈ Ω
πQ
g , c ∈ R.

worst-case transition kernels: Ωπ
g = {P ∈ P : gπ

P = gπ
P}

relative value function: V π
P = Eπ,P

[∑∞
t=0 Pt(r − gπ

P )

]

non-robust setting: Bellman equation is linear, and thus structure of
solutions can be easily characterized

robust Bellman equation is non-linear
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robust Bellman equation is non-linear
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Robust Q-Learning for Average RL

Robust RVI Q-learning

INPUT: Q0, αn,N
FOR n = 0, ...,N − 1

Qn+1 ← Qn + αn

(
ĤQn − f (Qn)− Qn

)
OUTPUT: QN

ĤQ: unbiased estimator of HQ = c(s, a) + σPa
s
(VQ)

f (Q) : R|SA| → R: ”offset” increase of Qn and keep iterates stable

f (Qn): estimator of average-cost g∗
P
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Robust Q-Learning for Average RL

Convergence of Robust Q-Learning

If Ĥ is unbiased and has bounded variance, then almost surely,
1) f (Qn) converges to g∗

P ;
2) greedy policy πQn(s) ≜ arg maxa Qn(s, a) converges to an optimal robust
average-cost policy.

To show convergence, we need structure of solution to robust
average-cost Bellman equation to characterize the equilibrium of
associated ODE, and prove it is globally asymptotically stable
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Robust Q-Learning for Robust Average-Cost RL

How to construct Ĥ?

R-contamination model: MLE method

Pa
s = {(1− R)pas + Rq|q ∈ ∆S} , for some 0 ≤ R ≤ 1

Other uncertainty models, e.g., total variation,Chi-square,Wasserstein
distance?

The support function σP(V ) w.r.t. general uncertainty sets is
non-linear in nominal kernel

MLE method ⇒ biased estimator
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Robust Q-Learning for Average RL

Multi-level Monte-Carlo method (Blanchet and Glynn, 2015)

For any s, a:

Generate N according to Geo(Ψ)

Sample 2N+1 samples: {s ′i}, i = 1, ..., 2N+1

divide these 2N+1 samples into two groups: samples with odd indices,
and samples with even indices

individually calculate the empirical distribution of s ′ using the
even-index samples, odd-index ones, all the samples, and the first

sample: P̂a,E
s,N+1 = 1

2N

∑2N

i=1 1s′2i
, P̂a,O

s,N+1 = 1
2N

∑2N

i=1 1s′2i−1
, P̂a

s,N+1 =

1
2N+1

∑2N+1

i=1 1s′i
, P̂a,1

s,N+1 = 1s′1

Use these estimated transition kernels as nominal kernels to construct
four estimated uncertainty sets P̂a,E

s,N+1, P̂
a,O
s,N+1, P̂

a
s,N+1, P̂

a,1
s,N+1
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Robust Q-Learning for Average RL

The multi-level estimator is then defined as

σ̂Pa
s
(V ) ≜ σP̂a,1

s,N+1
(V ) +

∆N(V )

pN
, (1)

where pN = Ψ(1−Ψ)N and

∆N(V ) ≜ σP̂a
s,N+1

(V )−
σP̂a,E

s,N+1
(V ) + σP̂a,O

s,N+1
(V )

2
.

Jan. 27, 2023 Robust Reinforcement Learning under Model Uncertainty 34 / 38



Robust Q-Learning for Average RL

For uncertainty sets including contamination model, total variation,
Chi-squared divergence, Kullback-Leibler (KL) divergence and Wasserstein
distance:

E[σ̂Pa
s
(V )] = σPa

s
(V ),

Var[σ̂Pa
s
(V )(s)] ≤ C (1 + ∥V ∥2).

For five uncertainty sets above, σ̂Pa
s
(V ) is unbiased and has bounded

variance

Implies convergence of robust RVI Q-learning

Can also be applied to robust discounted setting
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Experiments

Convergence of robust Q-learning

Different uncertainty sets, e.g., Chi-Square Model and Wasserstein
distance model

Plot f (Qt) (estimate of average reward)

Baseline is computed using model-based RVI method discussed before

Robust Q-learning converges to the optimal robust average-reward
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Outline

1 Introduction

2 Robust Average-Cost RL
Model-based methods
Model-free methods

3 Summary
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Summary

Robust average-cost RL

Fundamental understanding

Robust average-cost Bellman equation
Solution characterization
Blackwell optimality

Model-based approach

Limit method
Direct method

Model-free approach: robust RVI Q-learning with convergence
guarantee
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Model-Free Robust Discounted RL

Policy evaluation: robust TD (tabular), robust TDC (with function
approximation)

Optimal control: robust Q-learning (value-based), robust policy
gradient (policy-based)
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Value-Based Optimal Control: Robust Q-Learning

Goal: Find a policy optimizing the worst-case performance

Qπ
P,γ(s, a) = max

κ∈⊗t≥0P
Eκ

[ ∞∑
t=0

γtc(St ,At)|S0 = s,A0 = a, π

]

Q∗
P,γ(s, a) = min

π
max

κ∈⊗t≥0P
Eκ

[ ∞∑
t=0

γtc(St ,At)|S0 = s,A0 = a, π

]

Finding π∗ is equivalent to find Q∗
P,γ
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Value-Based Optimal Control: Robust Q-Learning

Robust Bellman operator (Nilim and El Ghaoui, 2004):
TQ(s, a) = c(s, a) + γσPa

s
(mina∈AQ(s, a)), where

σP(v) = maxp∈P p⊤v

T is a γ-contraction and has Q∗
P,γ as its unique fixed point:TQ∗ = Q∗

Idea: recursively apply T
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Value-Based Optimal Control: Robust Q-Learning

Robust Bellman operator (Nilim and El Ghaoui, 2004):
TQ(s, a) = c(s, a) + γσPa

s
(mina∈AQ(s, a))

Idea: recursively apply T

Model-free setting:

No information about the environment or the uncertainty set P
Samples are generated under the nominal environment, generally is
different from the worst-case environment

Estimated the support function σPa
s
(Q) using the nominal samples
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R-Contamination Uncertainty Sets

In this work, we mainly focus on R-contamination uncertainty set:

Pa
s =

{
(1− R)pas + Rq|q ∈ ∆|S|

}
, s ∈ S, a ∈ A, for some 0 ≤ R ≤ 1

Adversarial model: nature can arbitrarily modify transition kernel with
probability R
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Design of Robust Q-Learning

For nominal sample Ot = (st , at , st+1):

Maximum likelihood estimation of transition kernel p̂t ≜ 1st+1

Estimated uncertainty set P̂t ≜
{

(1− R)p̂t + Rq|q ∈ ∆|S|
}

Compute the support function w.r.t. P̂t :
σP̂t

(Vt) = (1− R)Vt(st+1) + R maxs Vt(s)

Update Q-function
Qt+1(st , at)← (1− αt)Qt(st , at) + αt(ct + γσP̂t

(mina Qt))
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Robust Q-learning

Initialization: T , Q0(s, a) for all (s, a), behavior policy πb, s0, step size αt

For t = 0, 1, 2, ...,T − 1
Choose at according to πb(·|st)
Observe st+1 and ct
Vt(s)← mina∈AQt(s, a), ∀s ∈ S
Qt+1(st , at)← (1− αt)Qt(st , at) + αt(ct + γσP̂t

(Vt))
Qt+1(s, a)← Qt(s, a) for (s, a) ̸= (st , at)

Output: QT
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Theoretical Results

Theorem

(Asymptotic Convergence) If step sizes αt satisfy that
∑∞

t=0 αt =∞ and∑∞
t=0 α

2
t <∞, then Qt → Q∗

P,γ as t →∞ almost surely.
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Theoretical Results

Assumption: The Markov chain induced by behavior policy πb and
transition kernel pas is uniformly ergodic

Theorem

(Finite-Time Error Bound) For any ϵ, set T = Õ
(

1
µmin(1−γ)5ϵ2

+ tmix
µmin(1−γ)

)
,

then ∥QT − Q∗
P,γ∥ ≤ O(ϵ).

Matches the sample complexity of non-robust Q-learning (up to some
constants)

First online, model-free method for robust RL with sample complexity
result
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Experiments on Robust Q-Learning

Train Q-learning and robust Q-learning under a uniformly perturbed MDP
Test their outputs in the real unperturbed environment
Robust Q-learning achieves higher reward than Q-learning

(a) FrozenLake (b) Cartpole
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Summary on Robust Q-Learning

For R-contamination model, use maximum likelihood estimation as the
estimated nominal transition kernel, and define the estimated
uncertainty set

The support function w.r.t. the estimated uncertainty set is unbiased

This method can be also applied to policy evaluation problem, e.g.,
robust TD (tabular case) or robust TDC (function approximation case)
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Policy-Based Optimal Control: Robust Policy Gradient

Value-based method:

Obtains the optimal policy using the robust value functions as an
intermediate step, not direct

Has great memory cost when the problem scale is large

Our work: Direct policy search method with global optimality for model-free
robust RL problems, and further characterize its sample complexity
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Major Challenges and Contributions

Robust value function V π
P,γ may not be differentiable and non-convex

V π
P,γ(s) = maxκ∈⊗t≥0P Eκ [

∑∞
t=0 γ

tc(St ,At)|S0 = s, π]

Generalize the vanilla policy gradient to the robust policy sub-gradient
method, which shows global optimality
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Major Challenges and Contributions

In model-free setting, robust value functions measure the worst-case
performance and are impossible to estimate using Monte Carlo
method

Propose a robust TD algorithm (which can be applied together with
function approximation) to estimate the value functions, and further
develop a robust actor-critic algorithm
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Main Contributions

Derivation of robust policy gradient: ∂V πθ
P,γ(s)

Global optimality guarantee and finite-time complexity bound

Model-free robust actor-critic, its convergence and sample complexity
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Robust Policy Gradient

Idea: derive gradient of Jρ(π) ≜ Eρ[V π
P,γ(S)], and run gradient descent

Robust value function V π
P,γ is not differentiable everywhere because of

max over κ

V π
P,γ(s) = max

κ
Eκ

[ ∞∑
t=0

γtc(St ,At)|S0 = s, π

]

Major challenge lies in the max operator
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Robust Policy Sub-gradient

Consider a parametric policy class ΠΘ = {πθ : θ ∈ Θ}

Theorem (Robust Policy Sub-gradient)

Define

ψρ(θ) ≜
γR

(1− γ)(1− γ + γR)

∑
s∈S

dπθ
sθ

(s)
∑
a∈A
∇πθ(a|s)Qπθ

P,γ(s, a)

+
1

1− γ + γR

∑
s∈S

dπθ
ρ (s)

∑
a∈A
∇πθ(a|s)Qπθ

P,γ(s, a),

then (1) almost everywhere in Θ, Jρ(θ) is differentiable and
ψρ(θ) = ∇Jρ(θ);
(2) at non-differentiable θ, ψρ(θ) ∈ ∂Jρ(θ).

∂Jρ(θ): set of Fréchet sub-differential (Kruger, 2003) of Jρ at θ

Reduces to vanilla policy gradient if R = 0
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Robust Policy Sub-gradient Algorithm

Input: T , αt

Initialization: θ0
FOR t = 0, 1, ...,T − 1
θt+1 ←

∏
Θ(θt − αtψµ(θt))

Output: θ

Vanilla policy gradient is able to find globally optimal policy for
non-robust RL, e.g., (Bhandari and Russo, 2021; Agarwal et al., 2021;
Cen et al., 2021)

Question: is robust policy sub-gradient able to converge to global
optimum of Jρ(θ)?

Answer: Yes!
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Convex-Like: PL-Condition

PL-condition (Karimi et al., 2016; Bolte et al., 2007):

Theorem (PL-Condition)

Under direct policy parameterization,

Jρ(θ)− J∗ρ ≤ CPL max
π̂∈(∆(A))|S|

⟨πθ − π̂, ψρ(θ)⟩ .
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Robust Policy Sub-gradient: Global Optimality

Theorem (Global Optimality under Direct Parameterization)

If αt > 0,
∑∞

t=0 αt =∞ and
∑∞

t=0 α
2
t <∞, then under direct policy

parameterization, θT converges to a global optimum of Jρ(θ) as T →∞
almost surely.

Sub-gradient method converges to stationary points: {θ : 0 ∈ ∂Jρ(θ)}
Stationary point is globally optimal due to PL-condition
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Outline

4 Robust Discounted RL

5 Robust Sub-gradient
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Smoothed Robust Policy Gradient

Robust policy sub-gradient method:

Complexity is generally difficult to establish

Solution: smoothed robust policy gradient
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Smoothed Robust Policy Gradient

Smoothed robust Bellman operator:

Tπ
σV (s) = EA∼π(·|s)

[
c(s,A) + γ(1− R)

∑
s′∈S

pAs,s′V (s ′) + γR · LSE(σ,V )

]
,

where LSE(σ,V ) =
log(

∑d
i=1 e

σV (i))
σ for V ∈ Rd and some σ > 0

LSE(σ,V ) converges to maxs V (s) as σ →∞
Tπ
σ is a contraction, V π

σ is the fixed point of Tπ
σ

softmax will not induce contraction (Asadi and Littman, 2017)

V π
σ is differentiable in θ and converges to V π as σ →∞
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Smoothed Robust Policy Gradient

Jσρ (θ) =
∑

s∈S ρ(s)V πθ
σ (s): smoothed robust objective

Gradient of Jσρ (θ):

∇Jσρ (θ) = B(ρ, θ) +
γR

∑
s∈S eσV

πθ
σ (s)B(s, θ)

(1− γ)
∑

s∈S eσV
πθ
σ (s)

,

where B(s, θ) ≜ 1
1−γ+γR

∑
s′∈S dπ

s (s ′)
∑

a∈A∇πθ(a|s ′)Qπθ
σ (s ′, a), and

B(ρ, θ) ≜ ES∼ρ[B(S , θ)].

Smoothed robust policy gradient: θt+1 ←
∏

Θ(θt − αt∇Jσρ (θ))

Even though gradient is for Jσρ , the algorithm can still find a global
optimum of Jρ by choosing a large σ
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Global optimality and Complexity

Consider direct policy parameterization

Theorem

For any ϵ > 0, set σ = O(ϵ−1) and T = O(ϵ−3), then

min
t≤T−1

J(θt)− J∗ ≤ 3ϵ.

If R = 0, i.e., no robustness is considered, complexity reduces to
O(ϵ−2), which matches with vanilla policy gradient in (Agarwal et al.,
2021)
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Model-free Robust Actor-Critic

Recall robust policy subgradient:

ψρ(θ) ≜
γR

(1− γ)(1− γ + γR)

∑
s∈S

dπθ
sθ

(s)
∑
a∈A
∇πθ(a|s)Qπθ

P,γ(s, a)

+
1

1− γ + γR

∑
s∈S

dπθ
ρ (s)

∑
a∈A
∇πθ(a|s)Qπθ

P,γ(s, a)

Qπθ(s, a) measures cost under worst-case transition kernel and πθ,
however, only samples from simulator are available

Monte Carlo does not work
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Critic: Robust TD

Parametric robust action value function Qζ , e.g., linear function
approximation or neural network.

Input: Tc , π, βt
Initialization: ζ, s0

Choose a0 ∼ π(·|s0)
FOR t = 0, 1, ...,Tc − 1

Observe ct , st+1

Choose at+1 ∼ π(·|st+1)
V ∗
t ← maxs

{∑
a∈A π(a|s)Qζ(s, a)

}
δt ← Qζ(st , at)− (ct + γ(1− R)Qζ(st+1, at+1) + γRV ∗

t︸ ︷︷ ︸
robust target

)(robust TD error)

ζ ← ζ − βtδt∇ζQζ(st , at)
Output: ζ
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Robust Actor-Critic Algorithm

Using robust TD algorithm to estimate robust Q-function in
(smoothed) robust policy gradient

Under tabular setting, global optimality can be established, overall
sample complexity is O(ϵ−7)

Robust actor-critic algorithm can be applied with arbitrary value
function/policy approximation.
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Experiments

Robust policy gradient v.s. vanilla policy gradient and ARPL
Mandlekar et al. (2017)

ARPL: Adversary randomly perturb observation then run vanilla policy
gradient method using these perturbed samples

Training on an unperturbed MDP, and evaluation on the worst-case
transition kernel in P

Our robust policy gradient achieves higher reward on the worst-case
transition kernel
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Experiments

Robust actor-critic v.s. RARL (Pinto et al., 2017)

RARL: Adversary perturbs state transition. Agent and adversary are
updated alternatively using gradient descent ascent.

Training on an unperturbed MDP, and evaluation on the worst-case
transition kernel in P

Our robust actor critic achieves higher reward on the worst-case
transition kernel
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Summary

Robust policy gradient with provable global optimality

Model-free robust actor-critic algorithm

Can be easily scaled to large/continuous problems
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