Robust Reinforcement Learning under Model Uncertainty

Shaofeng Zou

University at Buffalo, the State University of New York

6th Worshop on Cognition & Control Jan. 27th, 2023

Outline

Introduction

- Robust Average-Cost RL
 - Model-based methods
 - Model-free methods
- Summary

Outline

- Introduction
- 2 Robust Average-Cost RL
 - Model-based methods
 - Model-free methods
- Summary

Challenge of Model Mismatch

Training environment \neq test environment

- \Rightarrow Model mismatch
- ⇒ Severe performance degradation

Challenge of Model Mismatch

- Training environment \neq test environment
- ⇒ Model mismatch
- ⇒ Severe performance degradation
- modeling error between simulator and real-world applications
- non-stationary environment
- unexpected perturbations and potential adversarial attacks

Challenge of Model Mismatch

- Training environment \neq test environment
- \Rightarrow Model mismatch
- \Rightarrow Severe performance degradation
- modeling error between simulator and real-world applications
- non-stationary environment
- unexpected perturbations and potential adversarial attacks

Robust RL:

Find good policy that performs well under model mismatch

- An agent interacts with a stochastic environment: Markov Decision Process (MDP)
- MDP (S, A, P, c)

- An agent interacts with a stochastic environment: Markov Decision Process (MDP)
- MDP (S, A, P, c)

ullet \mathcal{S} : state space

ullet \mathcal{A} : action space

P: transition kernel

• c: cost function

• A stationary policy $\pi(a|s)$ is a conditional distribution over \mathcal{A}

• Discounted value function for policy π at state s:

$$\mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t c(s_t, a_t) | S_0 = s, \pi\right]$$

• Discounted value function for policy π at state s:

$$\mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t c(s_t, a_t) | S_0 = s, \pi\right]$$

Goal: find an optimal policy that minimizes value function

$$\min_{\pi} \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t c(s_t, a_t) | S_0 = s, \pi\right]$$

Robust MDPs

- Robust MDP: (S, A, P, c, γ)
 - \bullet \mathcal{P} : uncertainty set of transition kernels
 - Transition kernel at each time step comes from \mathcal{P} : $\kappa = (\mathsf{P}_0, \mathsf{P}_1, ...) \in \otimes_{t \geq 0} \mathcal{P}$

Robust MDPs

- Robust MDP: (S, A, P, c, γ)
 - \bullet \mathcal{P} : uncertainty set of transition kernels
 - Transition kernel at each time step comes from \mathcal{P} : $\kappa = (\mathsf{P}_0, \mathsf{P}_1, ...) \in \otimes_{t \geq 0} \mathcal{P}$
- Pessimistic approach in face of uncertainty:
 - Worst-case overall cost over uncertainty set
 - Robust value function under the discounted setting:

$$V^\pi_{\mathcal{P},\gamma}(s) = \max_{\kappa \in \otimes_{t \geq 0} \mathcal{P}} \mathbb{E}_{\kappa} \left[\sum_{t=0}^{\infty} \gamma^t c(S_t, A_t) | S_0 = s, \pi
ight]$$

• Goal: Optimize the worst-case performance:

$$\min_{\pi} V^{\pi}_{\mathcal{P},\gamma}(s), orall s \in \mathcal{S}$$

Related Works: Robust Discounted RL

- ullet Model-based method: ${\cal P}$ is known
 - e.g., Bagnell et al. (2001); Nilim and El Ghaoui (2004); Iyengar (2005);
 Wiesemann et al. (2013); Tamar et al. (2014): robust dynamic programming

Related Works: Robust Discounted RL

- Model-based method: \mathcal{P} is known
 - e.g., Bagnell et al. (2001); Nilim and El Ghaoui (2004); Iyengar (2005);
 Wiesemann et al. (2013); Tamar et al. (2014): robust dynamic programming
- ullet Model-free method: ${\mathcal P}$ is unknown, samples from nominal transition kernel are available
 - Roy et al. (2017); Panaganti et al. (2022): ellipsoid-structure uncertainty set
 - convergence needs discount factor bounded away from 1
 - Liu et al. (2022): KL divergence uncertainty set
 - generative model, tabular setting
 - Wang and Zou (2021, 2022) (our work): R-contamination model
 - asymptotic convergence with sample complexity analysis
 - function approximation
 - Zhou et al. (2021); Yang et al. (2021): offline and tabular

Related Works: Robust Average-Cost RL

$$g_{\mathcal{P}}^{\pi}(s) = \max_{\kappa \in \bigotimes_{t \geq 0} \mathcal{P}} \lim_{n \to \infty} \mathbb{E}_{\kappa} \left[\frac{1}{n} \sum_{t=0}^{n-1} c(S_t, A_t) | S_0 = s, \pi \right]$$

- ullet Model-based method: ${\cal P}$ is known
 - Tewari and Bartlett (2007): bounded-interval uncertainty set, limit method
 - Wang et al. (2023b) (our work): general uncertainty set, robust average-cost Bellman equation, limit method and direct method

Related Works: Robust Average-Cost RL

$$g_{\mathcal{P}}^{\pi}(s) = \max_{\kappa \in \bigotimes_{t \geq 0} \mathcal{P}} \lim_{n \to \infty} \mathbb{E}_{\kappa} \left[\frac{1}{n} \sum_{t=0}^{n-1} c(S_t, A_t) | S_0 = s, \pi \right]$$

- ullet Model-based method: ${\cal P}$ is known
 - Tewari and Bartlett (2007): bounded-interval uncertainty set, limit method
 - Wang et al. (2023b) (our work): general uncertainty set, robust average-cost Bellman equation, limit method and direct method
- Model-free method: \mathcal{P} is unknown
 - Wang et al. (2023a) (our work): general uncertainty set, robut relative value iteration with convergence guarantee

Heuristic Approaches

 Adversarial state transition perturbation: an adversary perturbs the state transition: Vinitsky et al. (2020); Pinto et al. (2017); Abdullah et al. (2019); Hou et al. (2020); Rajeswaran et al. (2017); Atkeson and Morimoto (2003); Morimoto and Doya (2005)

Heuristic Approaches

- Adversarial state transition perturbation: an adversary perturbs the state transition: Vinitsky et al. (2020); Pinto et al. (2017); Abdullah et al. (2019); Hou et al. (2020); Rajeswaran et al. (2017); Atkeson and Morimoto (2003); Morimoto and Doya (2005)
- Adversarial sample perturbation: an adversary modifies state observations Huang et al. (2017); Kos and Song (2017); Lin et al. (2017); Pattanaik et al. (2018); Mandlekar et al. (2017)

Outline

- Introduction
- Robust Average-Cost RL
 - Model-based methods
 - Model-free methods
- Summary

Robust Average-Cost RL

Recall the robust average-cost:

$$g_{\mathsf{P}}^{\pi}(s) \triangleq \lim_{n \to \infty} \mathbb{E}_{\mathsf{P}} \left[\frac{1}{n} \sum_{t=0}^{n-1} c_t | S_0 = s, \pi \right]$$

$$g_{\mathcal{P}}^{\pi} = \max_{\mathsf{P} \in \mathcal{P}} g_{\mathsf{P}}^{\pi}$$

Goal: Find $\pi^* = \arg \min_{\pi} g_{\mathcal{P}}^{\pi}$

Main Results

- Fundamental understanding of robust average-cost MDPs
 - robust average-cost Bellman equation
- Model-based methods:
 - Limit method
 - Direct method
- Model-free methods: robust TD and robust Q-learning

Non-robust setting

(Puterman (1994) point-wise convergence) For any fixed P and π , $\lim_{\gamma \to 1} (1 - \gamma) V_{\mathbf{P}, \gamma}^{\pi} = g_{\mathbf{P}}^{\pi}$

 Under non-robust setting, average-cost can be approximated by discounted value function

Non-robust setting

(Puterman (1994) point-wise convergence) For any fixed P and π , $\lim_{\gamma \to 1} (1 - \gamma) V_{\mathbf{P}, \gamma}^{\pi} = g_{\mathbf{P}}^{\pi}$

- Under non-robust setting, average-cost can be approximated by discounted value function
- In robust MDP, does it hold that

$$\lim_{\gamma \to 1} (1 - \gamma) V_{\mathcal{P}, \gamma}^{\pi} = g_{\mathcal{P}}^{\pi} \quad ?$$

Non-robust setting

(Puterman (1994) point-wise convergence) For any fixed P and π , $\lim_{\gamma \to 1} (1 - \gamma) V_{\mathbf{P}, \gamma}^{\pi} = g_{\mathbf{P}}^{\pi}$

- Under non-robust setting, average-cost can be approximated by discounted value function
- In robust MDP, does it hold that

$$\lim_{\gamma \to 1} (1 - \gamma) V_{\mathcal{P}, \gamma}^{\pi} = g_{\mathcal{P}}^{\pi} \quad ?$$

- Robust discounted Bellman operator (Nilim and El Ghaoui, 2004; lyengar, 2005): $\mathbf{T}V = c + \gamma \sum_{a} \pi(a|s) \sigma_{\mathcal{P}_s^a}(V)$, where $\sigma_{\mathcal{P}_s^a}(V) = \max_{p \in \mathcal{P}_s^a} p^\top V$ is support function
- **T** is a γ -contraction and has $V_{\mathcal{P},\gamma}^{\pi}$ as its unique fixed point: $\mathbf{T}V_{\mathcal{P},\gamma}^{\pi} = V_{\mathcal{P},\gamma}^{\pi}$

Tewari and Bartlett (2007): Bounded-interval Uncertainty Set

- Number of possible worst-case transition kernels is finite
 - Proof of this argument relies on structure of bounded-interval
- Then, min_P and \lim_{γ} are interchangeable
- Not generalizable to general uncertainty sets

Theorem: uniform convergence

$$\lim_{\gamma o 1} (1-\gamma) V_{\mathsf{P},\gamma}^\pi = g_\mathsf{P}^\pi$$
 uniformly

Theorem: uniform convergence

$$\lim_{\gamma o 1} (1-\gamma) V_{\mathsf{P},\gamma}^\pi = g_\mathsf{P}^\pi$$
 uniformly

• Then min_P and $\lim_{\gamma \to 1}$ are interchangeable:

$$\begin{split} & g_{\mathcal{P}}^{\pi} = \min_{\mathsf{P} \in \mathcal{P}} g_{\mathsf{P}}^{\pi} \\ & = \min_{\mathsf{P} \in \mathcal{P}\gamma \to 1} (1 - \gamma) V_{\mathsf{P},\gamma}^{\pi} = \lim_{\gamma \to 1} \min_{\mathsf{P} \in \mathcal{P}} (1 - \gamma) V_{\mathsf{P},\gamma}^{\pi} \\ & = \lim_{\gamma \to 1} (1 - \gamma) V_{\mathcal{P},\gamma}^{\pi} \end{split}$$

Theorem: uniform convergence

$$\lim_{\gamma o 1} (1-\gamma) V_{\mathsf{P},\gamma}^\pi = \mathsf{g}_\mathsf{P}^\pi$$
 uniformly

• Then min_P and $\lim_{\gamma \to 1}$ are interchangeable:

$$\begin{split} & g_{\mathcal{P}}^{\pi} = \min_{\mathsf{P} \in \mathcal{P}} g_{\mathsf{P}}^{\pi} \\ & = \min_{\mathsf{P} \in \mathcal{P}\gamma \to 1} (1 - \gamma) V_{\mathsf{P},\gamma}^{\pi} = \lim_{\gamma \to 1} \min_{\mathsf{P} \in \mathcal{P}} (1 - \gamma) V_{\mathsf{P},\gamma}^{\pi} \\ & = \lim_{\gamma \to 1} (1 - \gamma) V_{\mathcal{P},\gamma}^{\pi} \end{split}$$

 \bullet Robust average-cost can be approximated by discounted robust value functions as $\gamma \to 1$

Basic idea of limit method:

- Set $\gamma_t \to 1$
- Apply one-step robust discounted Bellman operator

Robust value iteration for policy evaluation

$$\begin{split} \textbf{INPUT:} & \ \pi, \ V_0(s) = 0, \forall s, \ T \\ \textbf{FOR} & \ t = 0, 1, ..., \ T - 1 \\ & \ \gamma_t \leftarrow \frac{t+1}{t+2} \\ & \ \textbf{FOR all} \ s \in \mathcal{S} \\ & \ V_{t+1}(s) \leftarrow \mathbb{E}_{\pi}[(1-\gamma_t)c(s,A) + \gamma_t \sigma_{\mathcal{P}_s^A}(V_t)] \\ \textbf{OUTPUT:} & \ V_T \end{split}$$

Convergence of Robust Value Iteration

RVI algorithm converges to robust average-cost: $\lim_{T o \infty} V_T o g_{\mathcal{P}}^\pi$

Convergence of Robust Value Iteration

RVI algorithm converges to robust average-cost: $\lim_{T o \infty} V_T o g_{\mathcal{P}}^{\pi}$

 Solves the policy evaluation problem under the robust average-cost setting

Convergence of Robust Value Iteration

RVI algorithm converges to robust average-cost: $\lim_{T o \infty} V_T o g_{\mathcal{D}}^{\pi}$

- Solves the policy evaluation problem under the robust average-cost setting
- ullet Convergence rate: $\|V_T g_\mathcal{P}^\pi\| = \mathcal{O}\left(rac{1}{T}
 ight)$

The limit method also works for optimal control problems

Robust value iteration for optimal control

$$\begin{split} & \textbf{INPUT: } V_0(s) = 0, \forall s, T \\ & \textbf{FOR} \quad t = 0, 1, ..., T - 1 \\ & \gamma_t \leftarrow \frac{t+1}{t+2} \\ & \textbf{FOR all } s \in \mathcal{S} \\ & V_{t+1}(s) \leftarrow \min_{a \in \mathcal{A}} \left\{ (1 - \gamma_t) c(s, a) + \gamma_t \sigma_{\mathcal{P}_s^a}(V_t) \right\} \\ & \textbf{FOR } s \in \mathcal{S} \\ & \pi_t(s) \leftarrow \arg\min_{a \in \mathcal{A}} \left\{ (1 - \gamma_t) c(s, a) + \gamma_t \sigma_{\mathcal{P}_s^a}(V_t) \right\} \\ & \textbf{OUTPUT: } \pi_T, V_T \end{split}$$

Convergence of robust value iteration

$$V_T o g_{\mathcal{D}}^*, \, \pi_T o \pi^* = \operatorname{arg\,min}_{\pi} g_{\mathcal{D}}^{\pi}$$

Non-robust value iteration vs robust value iteration:

- under different uncertainty sets (contamination model, total variation model and KL-divergence model)
- evaluate worst-case performance of obtained policy

RVI is more robust than non-robust value iteration method

Robust Blackwell optimality

There exists $\delta < 1$, such that for any $\delta < \gamma < 1$, if $\pi^* = \arg\min_{\pi} V_{\mathcal{P},\gamma}^{\pi}$ is optimal to robust discounted value function, then π^* is also optimal to robust average-cost $\pi^* \in \arg\min_{\pi} g_{\mathcal{P}}^{\pi}$.

Robust Blackwell optimality

There exists $\delta < 1$, such that for any $\delta < \gamma < 1$, if $\pi^* = \arg\min_{\pi} V_{\mathcal{P},\gamma}^{\pi}$ is optimal to robust discounted value function, then π^* is also optimal to robust average-cost $\pi^* \in \arg\min_{\pi} g_{\mathcal{P}}^{\pi}$.

 Fundamental relationship between the robust discounted MDPs and robust average-cost MDPs

Robust Blackwell optimality

There exists $\delta < 1$, such that for any $\delta < \gamma < 1$, if $\pi^* = \arg\min_{\pi} V_{\mathcal{P},\gamma}^{\pi}$ is optimal to robust discounted value function, then π^* is also optimal to robust average-cost $\pi^* \in \arg\min_{\pi} g_{\mathcal{P}}^{\pi}$.

- Fundamental relationship between the robust discounted MDPs and robust average-cost MDPs
- Analog to Blackwell optimality of non-robust setting

Robust Blackwell optimality

There exists $\delta < 1$, such that for any $\delta < \gamma < 1$, if $\pi^* = \arg\min_{\pi} V_{\mathcal{P},\gamma}^{\pi}$ is optimal to robust discounted value function, then π^* is also optimal to robust average-cost $\pi^* \in \arg\min_{\pi} g_{\mathcal{P}}^{\pi}$.

- Fundamental relationship between the robust discounted MDPs and robust average-cost MDPs
- Analog to Blackwell optimality of non-robust setting
- Proofs of non-robust setting and bounded-interval uncertainty set Tewari and Bartlett (2007): for two policies π and ν : $f_{\pi,\nu}(\gamma) \triangleq V^\pi_{\mathsf{P},\gamma} V^\mu_{\mathsf{P},\gamma}$ is rational function, thus has finite many zeros. This does not hold in robust setting as $V^\pi_{\mathcal{P},\gamma} V^\mu_{\mathcal{P},\gamma}$ is not rational due to max

The limit method

- solves robust average-cost MDPs using robust discounted MDPs as intermediate steps
- based on robust discounted MDPs, does not directly study the fundamental structure of robust average-cost MDPs

Assumption

The Markov chain induced by any $P \in \mathcal{P}$ and any π is a unichain.

Optimal robust Bellman equation

If (g, V) is a solution to

$$V(s) = \min_{a} \left\{ c(s, a) - g + \sigma_{\mathcal{P}_s^a}(V) \right\}, \forall s,$$

then $g = g_{\mathcal{D}}^*$. If we further set

$$\pi^*(s) = \arg\min_{a} \left\{ c(s, a) + \sigma_{\mathcal{P}_s^a}(V) \right\}$$

for any $s \in \mathcal{S}$, then π^* is an optimal robust policy.

 Solving robust average-cost MDPs can be done by solving the robust Bellman equation

$$V(s) = \mathbf{T}(V) = \min_{a} \left\{ c(s, a) - g + \sigma_{\mathcal{P}_s^a}(V) \right\}$$

How to solve the robust Bellman equation?

$$V(s) = \mathbf{T}(V) = \min_{a} \left\{ c(s, a) - g + \sigma_{\mathcal{P}_s^a}(V) \right\}$$

How to solve the robust Bellman equation?

• Discounted setting: apply the robust Bellman operator recursively $(\gamma$ -contraction)

$$V(s) = \mathbf{T}(V) = \min_{a} \left\{ c(s, a) - g + \sigma_{\mathcal{P}_s^a}(V) \right\}$$

How to solve the robust Bellman equation?

- Discounted setting: apply the robust Bellman operator recursively $(\gamma$ -contraction)
- Average setting: not a contraction, may have multiple fixed points and algorithm may diverge

$$V(s) = \mathsf{T}(V) = \min_{a} \left\{ c(s, a) - g + \sigma_{\mathcal{P}_s^a}(V) \right\}$$

How to solve the robust Bellman equation?

- Discounted setting: apply the robust Bellman operator recursively $(\gamma$ -contraction)
- Average setting: not a contraction, may have multiple fixed points and algorithm may diverge
- Robust relative value iteration (RRVI)
 - subtract an offset function to keep iterates stable
 - prove it is multi-step contraction

Robust relative value iteration

```
INPUT: V_0, \epsilon and arbitrary s^* \in \mathcal{S}
WHILE TRUE

FOR all s \in \mathcal{S}

V_{t+1}(s) \leftarrow \min_a(c(s,a) + \sigma_{\mathcal{P}_s^a}(V_t) - f(V_t))
OUTPUT: f(V_t), V_t
```

• For example $f(V) = V(s^*)$ for some reference state s^* and f(V) is the mean of V, to "offset" the increase of V

Convergence of robust relative value iteration

 $(f(V_t),V_t)$ converges to a solution to the optimal robust Bellman equation

Convergence of robust relative value iteration

 $(f(V_t),V_t)$ converges to a solution to the optimal robust Bellman equation

- Finds a solution to optimal robust Bellman equation and hence optimal robust average-cost and optimal policy
- Linear convergence rate, faster than limit method

Non-robust value iteration vs robust value iteration:

- under different uncertainty sets (contamination model, total variation model and KL-divergence model)
- evaluate worst-case performance of obtained policy

RRVI is more robust than non-robust relative value iteration

Model-free Method for Robust Average-Cost RL

- Idea: generalize RVI Q-learning to robust setting
- Major challenges:
 - The Bellman operator for robust average-cost MDPs is not contraction: possible multiple fixed point
 - Construction of unbiased estimator for robust Bellman operator for various uncertainty sets

Optimal robust Bellman equation

If (g,Q) is a solution to the optimal robust Bellman equation

$$Q(s,a) = r(s,a) - g + \sigma_{\mathcal{P}_s^a}(V_Q), \forall s, a,$$

then 1) $g = g_{\mathcal{P}}^*$;

- 2) the greedy policy w.r.t. Q: $\pi_Q(s) = \arg\min_a Q(s,a)$ is an optimal robust policy;
- 3) $V_Q(s) \triangleq \min_a Q(s,a) = V_{\mathsf{P}}^{\pi_Q}(s) + ce$ for some $\mathsf{P} \in \Omega_g^{\pi_Q}, c \in \mathbb{R}$.
 - ullet worst-case transition kernels: $\Omega_g^\pi = \{\mathsf{P} \in \mathcal{P} : g_\mathsf{P}^\pi = g_\mathcal{P}^\pi\}$
 - ullet relative value function: $V^\pi_{\mathsf{P}} = \mathbb{E}_{\pi,\mathsf{P}} igg[\sum_{t=0}^\infty \mathsf{P}^t (r g^\pi_{\mathsf{P}}) igg]$

Optimal robust Bellman equation

If (g,Q) is a solution to the optimal robust Bellman equation

$$Q(s, a) = r(s, a) - g + \sigma_{\mathcal{P}_s^a}(V_Q), \forall s, a,$$

then 1) $g = g_{\mathcal{P}}^*$;

- 2) the greedy policy w.r.t. Q: $\pi_Q(s) = \arg\min_a Q(s,a)$ is an optimal robust policy;
- 3) $V_Q(s) \triangleq \min_a Q(s,a) = V_{\mathsf{P}}^{\pi_Q}(s) + ce$ for some $\mathsf{P} \in \Omega_g^{\pi_Q}, c \in \mathbb{R}$.
 - ullet worst-case transition kernels: $\Omega_{m{g}}^{\pi}=\{{\sf P}\in\mathcal{P}: {\it g}_{\sf P}^{\pi}={\it g}_{\mathcal{P}}^{\pi}\}$
 - ullet relative value function: $V_{\mathsf{P}}^{\pi} = \mathbb{E}_{\pi,\mathsf{P}}igg[\sum_{t=0}^{\infty}\mathsf{P}^t(r-g_{\mathsf{P}}^{\pi})igg]$
 - non-robust setting: Bellman equation is linear, and thus structure of solutions can be easily characterized
 - robust Bellman equation is non-linear

Robust RVI Q-learning

```
INPUT: Q_0, \alpha_n, N

FOR n = 0, ..., N - 1

Q_{n+1} \leftarrow Q_n + \alpha_n (\hat{\mathbf{H}} Q_n - f(Q_n) - Q_n)

OUTPUT: Q_N
```

- $\hat{\mathbf{H}}Q$: unbiased estimator of $\mathbf{H}Q = c(s,a) + \sigma_{\mathcal{P}_s^a}(V_Q)$
- ullet $f(Q):\mathbb{R}^{|\mathcal{SA}|} o\mathbb{R}$: "offset" increase of Q_n and keep iterates stable
- $f(Q_n)$: estimator of average-cost $g_{\mathcal{P}}^*$

Convergence of Robust Q-Learning

If $\hat{\mathbf{H}}$ is unbiased and has bounded variance, then almost surely,

- 1) $f(Q_n)$ converges to $g_{\mathcal{P}}^*$;
- 2) greedy policy $\pi_{Q_n}(s) \stackrel{\triangle}{=} \arg\max_a Q_n(s,a)$ converges to an optimal robust average-cost policy.
 - To show convergence, we need structure of solution to robust average-cost Bellman equation to characterize the equilibrium of associated ODE, and prove it is globally asymptotically stable

Robust Q-Learning for Robust Average-Cost RL

- How to construct Ĥ?
 - R-contamination model: MLE method

$$\mathcal{P}_s^a = \left\{ (1-R) p_s^a + Rq | q \in \Delta_{\mathcal{S}}
ight\}, ext{ for some } 0 \leq R \leq 1$$

- Other uncertainty models, e.g., total variation, Chi-square, Wasserstein distance?
- The support function $\sigma_{\mathcal{P}}(V)$ w.r.t. general uncertainty sets is non-linear in nominal kernel
- MLE method ⇒ biased estimator

Multi-level Monte-Carlo method (Blanchet and Glynn, 2015)

For any s, a:

- Generate N according to $Geo(\Psi)$
- Sample 2^{N+1} samples: $\{s_i'\}, i = 1, ..., 2^{N+1}$
- ullet divide these 2^{N+1} samples into two groups: samples with odd indices, and samples with even indices
- individually calculate the empirical distribution of s' using the even-index samples, odd-index ones, all the samples, and the first sample: $\hat{\mathsf{P}}_{s,N+1}^{a,E} = \frac{1}{2^N} \sum_{i=1}^{2^N} \mathbb{1}_{s'_{2i}}, \quad \hat{\mathsf{P}}_{s,N+1}^{a,O} = \frac{1}{2^N} \sum_{i=1}^{2^N} \mathbb{1}_{s'_{2i-1}}, \hat{\mathsf{P}}_{s,N+1}^a = \frac{1}{2^{N+1}} \sum_{i=1}^{2^{N+1}} \mathbb{1}_{s'_i}, \quad \hat{\mathsf{P}}_{s,N+1}^{a,1} = \mathbb{1}_{s'_1}$
- Use these estimated transition kernels as nominal kernels to construct four estimated uncertainty sets $\hat{\mathcal{P}}_{s,N+1}^{a,E},\hat{\mathcal{P}}_{s,N+1}^{a,O},\hat{\mathcal{P}}_{s,N+1}^{a},\hat{\mathcal{P}}_{s,N+1}^{a,1}$

The multi-level estimator is then defined as

$$\hat{\sigma}_{\mathcal{P}_s^a}(V) \triangleq \sigma_{\hat{\mathcal{P}}_{s,N+1}^{a,1}}(V) + \frac{\Delta_N(V)}{\rho_N},\tag{1}$$

where $p_N = \Psi(1 - \Psi)^N$ and

$$\Delta_{N}(V) \triangleq \sigma_{\hat{\mathcal{P}}_{s,N+1}^{a}}(V) - \frac{\sigma_{\hat{\mathcal{P}}_{s,N+1}^{a,E}}(V) + \sigma_{\hat{\mathcal{P}}_{s,N+1}^{a,O}}(V)}{2}.$$

For uncertainty sets including contamination model, total variation, Chi-squared divergence, Kullback-Leibler (KL) divergence and Wasserstein distance:

$$\begin{split} \mathbb{E}[\hat{\sigma}_{\mathcal{P}_s^a}(V)] &= \sigma_{\mathcal{P}_s^a}(V), \\ \mathsf{Var}[\hat{\sigma}_{\mathcal{P}_s^a}(V)(s)] &\leq C(1 + \|V\|^2). \end{split}$$

- For five uncertainty sets above, $\hat{\sigma}_{\mathcal{P}_s^2}(V)$ is unbiased and has bounded variance
- Implies convergence of robust RVI Q-learning
- Can also be applied to robust discounted setting

Experiments

Convergence of robust Q-learning

- Different uncertainty sets, e.g., Chi-Square Model and Wasserstein distance model
- Plot $f(Q_t)$ (estimate of average reward)
- Baseline is computed using model-based RVI method discussed before

Robust Q-learning converges to the optimal robust average-reward

Outline

Introduction

- 2 Robust Average-Cost RL
 - Model-based methods
 - Model-free methods
- Summary

Summary

- Robust average-cost RL
- Fundamental understanding
 - Robust average-cost Bellman equation
 - Solution characterization
 - Blackwell optimality
- Model-based approach
 - Limit method
 - Direct method
- Model-free approach: robust RVI Q-learning with convergence guarantee

Reference I

- Abdullah, M. A., Ren, H., Ammar, H. B., Milenkovic, V., Luo, R., Zhang, M., and Wang, J. (2019). Wasserstein robust reinforcement learning. arXiv preprint arXiv:1907.13196.
- Agarwal, A., Kakade, S. M., Lee, J. D., and Mahajan, G. (2021). On the theory of policy gradient methods: Optimality, approximation, and distribution shift. *Journal of Machine Learning Research*, 22(98):1–76.
- Asadi, K. and Littman, M. L. (2017). An alternative softmax operator for reinforcement learning. In *Proc. International Conference on Machine Learning (ICML)*, volume 70, pages 243–252. JMLR.
- Atkeson, C. G. and Morimoto, J. (2003). Nonparametric representation of policies and value functions: A trajectory-based approach. In *Proc. Advances in Neural Information Processing Systems (NIPS)*, pages 1643–1650.
- Bagnell, J. A., Ng, A. Y., and Schneider, J. G. (2001). Solving uncertain Markov decision processes.

Reference II

- Bhandari, J. and Russo, D. (2021). On the linear convergence of policy gradient methods for finite MDPs. In *Proc. International Conference on Artifical Intelligence and Statistics (AISTATS)*, pages 2386–2394. PMLR.
- Blanchet, J. H. and Glynn, P. W. (2015). Unbiased monte carlo for optimization and functions of expectations via multi-level randomization. In 2015 Winter Simulation Conference (WSC), pages 3656–3667. IEEE.
- Bolte, J., Daniilidis, A., and Lewis, A. (2007). The łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems. *SIAM Journal on Optimization*, 17(4):1205–1223.
- Cen, S., Cheng, C., Chen, Y., Wei, Y., and Chi, Y. (2021). Fast global convergence of natural policy gradient methods with entropy regularization. *Operations Research*.
- Hou, L., Pang, L., Hong, X., Lan, Y., Ma, Z., and Yin, D. (2020). Robust reinforcement learning with Wasserstein constraint. arXiv preprint arXiv:2006.00945.

Reference III

- Huang, S., Papernot, N., Goodfellow, I., Duan, Y., and Abbeel, P. (2017). Adversarial attacks on neural network policies. In *Proc. International Conference on Learning Representations (ICLR)*.
- Iyengar, G. N. (2005). Robust dynamic programming. *Mathematics of Operations Research*, 30(2):257–280.
- Karimi, H., Nutini, J., and Schmidt, M. (2016). Linear convergence of gradient and proximal-gradient methods under the Polyak-łojasiewicz condition. In *Joint European Conference on Machine Learning and Knowledge Discovery in Databases*, pages 795–811. Springer.
- Kos, J. and Song, D. (2017). Delving into adversarial attacks on deep policies. In *Proc. International Conference on Learning Representations (ICLR)*.
- Kruger, A. Y. (2003). On Fréchet subdifferentials. *Journal of Mathematical Sciences*, 116(3):3325–3358.

Reference IV

- Lin, Y.-C., Hong, Z.-W., Liao, Y.-H., Shih, M.-L., Liu, M.-Y., and Sun, M. (2017). Tactics of adversarial attack on deep reinforcement learning agents. In *Proc. International Joint Conferences on Artificial Intelligence (IJCAI)*, pages 3756–3762.
- Liu, Z., Bai, Q., Blanchet, J., Dong, P., Xu, W., Zhou, Z., and Zhou, Z.
 (2022). Distributionally robust q-learning. In *International Conference on Machine Learning*, pages 13623–13643. PMLR.
- Mandlekar, A., Zhu, Y., Garg, A., Fei-Fei, L., and Savarese, S. (2017). Adversarially robust policy learning: Active construction of physically-plausible perturbations. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 3932–3939. IEEE.
- Morimoto, J. and Doya, K. (2005). Robust reinforcement learning. *Neural computation*, 17(2):335–359.

Reference V

- Nilim, A. and El Ghaoui, L. (2004). Robustness in Markov decision problems with uncertain transition matrices. In *Proc. Advances in Neural Information Processing Systems (NIPS)*, pages 839–846.
- Panaganti, K., Xu, Z., Kalathil, D., and Ghavamzadeh, M. (2022). Robust reinforcement learning using offline data. arXiv preprint arXiv:2208.05129.
- Pattanaik, A., Tang, Z., Liu, S., Bommannan, G., and Chowdhary, G. (2018). Robust deep reinforcement learning with adversarial attacks. In *Proc. International Conference on Autonomous Agents and MultiAgent Systems*, pages 2040–2042.
- Pinto, L., Davidson, J., Sukthankar, R., and Gupta, A. (2017). Robust adversarial reinforcement learning. In *Proc. International Conference on Machine Learning (ICML)*, pages 2817–2826. PMLR.
- Puterman, M. L. (1994). Markov decision processes: Discrete stochastic dynamic programming.

Reference VI

- Rajeswaran, A., Ghotra, S., Ravindran, B., and Levine, S. (2017). Epopt: Learning robust neural network policies using model ensembles. In *Proc. International Conference on Learning Representations (ICLR)*.
- Roy, A., Xu, H., and Pokutta, S. (2017). Reinforcement learning under model mismatch. In *Proc. Advances in Neural Information Processing Systems (NIPS)*, pages 3046–3055.
- Tamar, A., Mannor, S., and Xu, H. (2014). Scaling up robust MDPs using function approximation. In *Proc. International Conference on Machine Learning (ICML)*, pages 181–189. PMLR.
- Tewari, A. and Bartlett, P. L. (2007). Bounded parameter markov decision processes with average reward criterion. In *International Conference on Computational Learning Theory*, pages 263–277. Springer.
- Vinitsky, E., Du, Y., Parvate, K., Jang, K., Abbeel, P., and Bayen, A. (2020). Robust reinforcement learning using adversarial populations. arXiv preprint arXiv:2008.01825.

Reference VII

- Wang, Y., Velasquez, A., Atia, G., Prater-Bennette, A., and Zou, S. (2023a). Model-free robust average-reward reinforcement learning. In *submitted to ICML*.
- Wang, Y., Velasquez, A., Atia, G., Prater-Bennette, A., and Zou, S. (2023b). Robust average-reward Markov decision processes. In *Proc. Conference on Artificial Intelligence (AAAI)*.
- Wang, Y. and Zou, S. (2021). Online robust reinforcement learning with model uncertainty. In *Proc. Advances in Neural Information Processing Systems (NeurIPS)*.
- Wang, Y. and Zou, S. (2022). Policy gradient method for robust reinforcement learning. In *Proc. International Conference on Machine Learning (ICML)*, volume 162, pages 23484–23526. PMLR.
- Wiesemann, W., Kuhn, D., and Rustem, B. (2013). Robust Markov decision processes. *Mathematics of Operations Research*, 38(1):153–183.

Reference VIII

- Yang, W., Zhang, L., and Zhang, Z. (2021). Towards theoretical understandings of robust Markov decision processes: Sample complexity and asymptotics. *arXiv* preprint *arXiv*:2105.03863.
- Zhou, Z., Bai, Q., Zhou, Z., Qiu, L., Blanchet, J., and Glynn, P. (2021). Finite-sample regret bound for distributionally robust offline tabular reinforcement learning. In *Proc. International Conference on Artifical Intelligence and Statistics (AISTATS)*, pages 3331–3339. PMLR.

Outline

4 Robust Discounted RL

6 Robust Sub-gradient

Model-Free Robust Discounted RL

- Policy evaluation: robust TD (tabular), robust TDC (with function approximation)
- Optimal control: robust Q-learning (value-based), robust policy gradient (policy-based)

Value-Based Optimal Control: Robust Q-Learning

• Goal: Find a policy optimizing the worst-case performance

$$Q_{\mathcal{P},\gamma}^{\pi}(s,a) = \max_{\kappa \in \otimes_{t \geq 0} \mathcal{P}} \mathbb{E}_{\kappa} \left[\sum_{t=0}^{\infty} \gamma^{t} c(S_{t}, A_{t}) | S_{0} = s, A_{0} = a, \pi \right]$$

$$Q_{\mathcal{P},\gamma}^*(s,a) = \min_{\pi} \max_{\kappa \in \otimes_{t \geq 0} \mathcal{P}} \mathbb{E}_{\kappa} \left[\sum_{t=0}^{\infty} \gamma^t c(S_t, A_t) | S_0 = s, A_0 = a, \pi \right]$$

ullet Finding π^* is equivalent to find $Q_{\mathcal{P},\gamma}^*$

Value-Based Optimal Control: Robust Q-Learning

Robust Bellman operator (Nilim and El Ghaoui, 2004):

$$\mathbf{T}Q(s, a) = c(s, a) + \gamma \sigma_{\mathcal{P}_s^a}(\min_{a \in \mathcal{A}} Q(s, a)), \text{ where } \sigma_{\mathcal{P}}(v) = \max_{p \in \mathcal{P}} p^\top v$$

- ullet f T is a γ -contraction and has $Q_{\mathcal{P},\gamma}^*$ as its unique fixed point: $f TQ^*=Q^*$
- Idea: recursively apply T

Value-Based Optimal Control: Robust Q-Learning

- Robust Bellman operator (Nilim and El Ghaoui, 2004):
- $\mathbf{T}Q(s,a) = c(s,a) + \gamma \sigma_{\mathcal{P}_s^a}(\min_{a \in \mathcal{A}} Q(s,a))$ Idea: recursively apply \mathbf{T}
- Model-free setting:
 - ullet No information about the environment or the uncertainty set ${\cal P}$
 - Samples are generated under the nominal environment, generally is different from the worst-case environment
- ullet Estimated the support function $\sigma_{\mathcal{P}_s^a}(Q)$ using the nominal samples

R-Contamination Uncertainty Sets

In this work, we mainly focus on *R*-contamination uncertainty set:

- $\bullet \ \mathcal{P}_s^{\textit{a}} = \left\{ (1-R) \textit{p}_s^{\textit{a}} + Rq | q \in \Delta_{|\mathcal{S}|} \right\}, s \in \mathcal{S}, \textit{a} \in \mathcal{A}, \text{ for some } 0 \leq R \leq 1$
- Adversarial model: nature can arbitrarily modify transition kernel with probability R

Design of Robust Q-Learning

For nominal sample $O_t = (s_t, a_t, s_{t+1})$:

- ullet Maximum likelihood estimation of transition kernel $\hat{
 ho}_t riangleq \mathbb{1}_{s_{t+1}}$
- ullet Estimated uncertainty set $\hat{\mathcal{P}}_t riangleq \left\{ (1-R)\hat{p}_t + Rq|q \in \Delta_{|\mathcal{S}|}
 ight\}$
- Compute the support function w.r.t. $\hat{\mathcal{P}}_t$: $\sigma_{\hat{\mathcal{P}}_t}(V_t) = (1-R)V_t(s_{t+1}) + R \max_s V_t(s)$
- Update Q-function $Q_{t+1}(s_t, a_t) \leftarrow (1 \alpha_t)Q_t(s_t, a_t) + \alpha_t(c_t + \gamma \sigma_{\hat{\mathcal{P}}_t}(\min_a Q_t))$

Robust Q-learning

```
Initialization: T, Q_0(s,a) for all (s,a), behavior policy \pi_b, s_0, step size \alpha_t For t=0,1,2,...,T-1 Choose a_t according to \pi_b(\cdot|s_t) Observe s_{t+1} and c_t V_t(s) \leftarrow \min_{a \in \mathcal{A}} Q_t(s,a), \forall s \in \mathcal{S} Q_{t+1}(s_t,a_t) \leftarrow (1-\alpha_t)Q_t(s_t,a_t) + \alpha_t(c_t + \gamma\sigma_{\hat{\mathcal{P}}_t}(V_t)) Q_{t+1}(s,a) \leftarrow Q_t(s,a) for (s,a) \neq (s_t,a_t)
```

Output: Q_T

Theoretical Results

Theorem

(Asymptotic Convergence) If step sizes α_t satisfy that $\sum_{t=0}^{\infty} \alpha_t = \infty$ and $\sum_{t=0}^{\infty} \alpha_t^2 < \infty$, then $Q_t \to Q_{\mathcal{P},\gamma}^*$ as $t \to \infty$ almost surely.

Theoretical Results

Assumption: The Markov chain induced by behavior policy π_b and transition kernel p_s^a is uniformly ergodic

Theorem

(Finite-Time Error Bound) For any
$$\epsilon$$
, set $T = \tilde{\mathcal{O}}\left(\frac{1}{\mu_{\min}(1-\gamma)^5\epsilon^2} + \frac{t_{\min}}{\mu_{\min}(1-\gamma)}\right)$, then $\|Q_T - Q_{\mathcal{P},\gamma}^*\| \leq \mathcal{O}(\epsilon)$.

- Matches the sample complexity of non-robust Q-learning (up to some constants)
- First online, model-free method for robust RL with sample complexity result

Experiments on Robust Q-Learning

Train Q-learning and robust Q-learning under a uniformly perturbed MDP Test their outputs in the real unperturbed environment Robust Q-learning achieves higher reward than Q-learning

(a) FrozenLake

(b) Cartpole

Summary on Robust Q-Learning

- For R-contamination model, use maximum likelihood estimation as the estimated nominal transition kernel, and define the estimated uncertainty set
- The support function w.r.t. the estimated uncertainty set is unbiased
- This method can be also applied to policy evaluation problem, e.g., robust TD (tabular case) or robust TDC (function approximation case)

20 / 40

Policy-Based Optimal Control: Robust Policy Gradient

Value-based method:

- Obtains the optimal policy using the robust value functions as an intermediate step, not direct
- Has great memory cost when the problem scale is large

Our work: Direct policy search method with global optimality for model-free robust RL problems, and further characterize its sample complexity

Major Challenges and Contributions

Robust value function $V^{\pi}_{\mathcal{P},\gamma}$ may not be differentiable and non-convex $V^{\pi}_{\mathcal{P},\gamma}(s) = \max_{\kappa \in \otimes_{t \geq 0} \mathcal{P}} \mathbb{E}_{\kappa} \left[\sum_{t=0}^{\infty} \gamma^t c(S_t, A_t) | S_0 = s, \pi \right]$

 Generalize the vanilla policy gradient to the robust policy sub-gradient method, which shows global optimality

22 / 40

Major Challenges and Contributions

In model-free setting, robust value functions measure the worst-case performance and are impossible to estimate using Monte Carlo method

 Propose a robust TD algorithm (which can be applied together with function approximation) to estimate the value functions, and further develop a robust actor-critic algorithm

Main Contributions

- Derivation of robust policy gradient: $\partial V_{\mathcal{P},\gamma}^{\pi_{\theta}}(s)$
- Global optimality guarantee and finite-time complexity bound
- Model-free robust actor-critic, its convergence and sample complexity

Robust Policy Gradient

• Idea: derive gradient of $J_{\rho}(\pi) \triangleq \mathbb{E}_{\rho}[V^{\pi}_{\mathcal{P},\gamma}(S)]$, and run gradient descent

Robust Policy Gradient

- Idea: derive gradient of $J_{\rho}(\pi) \triangleq \mathbb{E}_{\rho}[V^{\pi}_{\mathcal{P},\gamma}(S)]$, and run gradient descent
- Robust value function $V^\pi_{\mathcal{P},\gamma}$ is not differentiable everywhere because of max over κ

$$V^\pi_{\mathcal{P},\gamma}(s) = \max_{\kappa} \mathbb{E}_{\kappa} \left[\sum_{t=0}^{\infty} \gamma^t c(S_t, A_t) | S_0 = s, \pi
ight]$$

Robust Policy Gradient

- Idea: derive gradient of $J_{\rho}(\pi) \triangleq \mathbb{E}_{\rho}[V_{\mathcal{P},\gamma}^{\pi}(S)]$, and run gradient descent
- Robust value function $V^\pi_{\mathcal{P},\gamma}$ is not differentiable everywhere because of max over κ

$$V^\pi_{\mathcal{P},\gamma}(s) = \max_{\kappa} \mathbb{E}_{\kappa} \left[\sum_{t=0}^{\infty} \gamma^t c(S_t, A_t) | S_0 = s, \pi
ight]$$

Major challenge lies in the max operator

Robust Policy Sub-gradient

• Consider a parametric policy class $\Pi_{\Theta} = \{\pi_{\theta} : \theta \in \Theta\}$

Theorem (Robust Policy Sub-gradient)

Define

$$egin{aligned} \psi_{
ho}(heta) & riangleq rac{\gamma_{R}}{(1-\gamma)(1-\gamma+\gamma_{R})} \sum_{s \in \mathcal{S}} d^{\pi_{ heta}}_{s_{ heta}}(s) \sum_{oldsymbol{a} \in \mathcal{A}}
abla \pi_{ heta}(oldsymbol{a}|s) Q^{\pi_{ heta}}_{\mathcal{P},\gamma}(s,oldsymbol{a}) \ &+ rac{1}{1-\gamma+\gamma_{R}} \sum_{oldsymbol{s} \in \mathcal{S}} d^{\pi_{ heta}}_{
ho}(s) \sum_{oldsymbol{a} \in \mathcal{A}}
abla \pi_{ heta}(oldsymbol{a}|s) Q^{\pi_{ heta}}_{\mathcal{P},\gamma}(s,oldsymbol{a}), \end{aligned}$$

then (1) almost everywhere in Θ , $J_{\rho}(\theta)$ is differentiable and $\psi_{\rho}(\theta) = \nabla J_{\rho}(\theta)$; (2) at non-differentiable θ , $\psi_{\rho}(\theta) \in \partial J_{\rho}(\theta)$.

• $\partial J_{\rho}(\theta)$: set of Fréchet sub-differential (Kruger, 2003) of J_{ρ} at θ

Robust Policy Sub-gradient

• Consider a parametric policy class $\Pi_{\Theta} = \{\pi_{\theta} : \theta \in \Theta\}$

Theorem (Robust Policy Sub-gradient)

Define

$$egin{aligned} \psi_{
ho}(heta) & riangleq rac{\gamma_{R}}{(1-\gamma)(1-\gamma+\gamma_{R})} \sum_{s \in \mathcal{S}} d^{\pi_{ heta}}_{s_{ heta}}(s) \sum_{m{a} \in \mathcal{A}}
abla \pi_{ heta}(m{a}|s) Q^{\pi_{ heta}}_{\mathcal{P},\gamma}(s,m{a}) \ &+ rac{1}{1-\gamma+\gamma_{R}} \sum_{s \in \mathcal{S}} d^{\pi_{ heta}}_{
ho}(s) \sum_{m{a} \in \mathcal{A}}
abla \pi_{ heta}(m{a}|s) Q^{\pi_{ heta}}_{\mathcal{P},\gamma}(s,m{a}), \end{aligned}$$

then (1) almost everywhere in Θ , $J_{\rho}(\theta)$ is differentiable and $\psi_{\rho}(\theta) = \nabla J_{\rho}(\theta)$; (2) at non-differentiable θ , $\psi_{\rho}(\theta) \in \partial J_{\rho}(\theta)$.

- $\partial J_{\rho}(\theta)$: set of Fréchet sub-differential (Kruger, 2003) of J_{ρ} at θ
- Reduces to vanilla policy gradient if R = 0

```
\begin{array}{l} \text{Input: } \mathcal{T}, \ \alpha_t \\ \text{Initialization: } \theta_0 \\ \text{FOR } t = 0, 1, ..., \mathcal{T} - 1 \\ \theta_{t+1} \leftarrow \prod_{\Theta} (\theta_t - \alpha_t \psi_{\mu}(\theta_t)) \\ \text{Output: } \theta \end{array}
```

```
\begin{array}{l} \text{Input: } \mathcal{T}, \ \alpha_t \\ \text{Initialization: } \theta_0 \\ \text{FOR } t = 0, 1, ..., \mathcal{T} - 1 \\ \theta_{t+1} \leftarrow \prod_{\Theta} (\theta_t - \alpha_t \psi_{\mu}(\theta_t)) \\ \text{Output: } \theta \end{array}
```

 Vanilla policy gradient is able to find globally optimal policy for non-robust RL, e.g., (Bhandari and Russo, 2021; Agarwal et al., 2021; Cen et al., 2021)

```
\begin{array}{l} \text{Input: } \mathcal{T}, \ \alpha_t \\ \text{Initialization: } \theta_0 \\ \text{FOR } t = 0, 1, ..., \mathcal{T} - 1 \\ \theta_{t+1} \leftarrow \prod_{\Theta} (\theta_t - \alpha_t \psi_{\mu}(\theta_t)) \\ \text{Output: } \theta \end{array}
```

- Vanilla policy gradient is able to find globally optimal policy for non-robust RL, e.g., (Bhandari and Russo, 2021; Agarwal et al., 2021; Cen et al., 2021)
- Question: is robust policy sub-gradient able to converge to global optimum of $J_{\rho}(\theta)$?

```
\begin{array}{ll} \text{Input: } \mathcal{T}, \ \alpha_t \\ \text{Initialization: } \theta_0 \\ \text{FOR } t = 0, 1, ..., \mathcal{T} - 1 \\ \theta_{t+1} \leftarrow \prod_{\Theta} (\theta_t - \alpha_t \psi_{\mu}(\theta_t)) \\ \text{Output: } \theta \end{array}
```

- Vanilla policy gradient is able to find globally optimal policy for non-robust RL, e.g., (Bhandari and Russo, 2021; Agarwal et al., 2021; Cen et al., 2021)
- Question: is robust policy sub-gradient able to converge to global optimum of $J_{\rho}(\theta)$?
- Answer: Yes!

Convex-Like: PL-Condition

PL-condition (Karimi et al., 2016; Bolte et al., 2007):

Theorem (PL-Condition)

Under direct policy parameterization,

$$J_{\rho}(\theta) - J_{\rho}^* \leq C_{PL} \max_{\hat{\pi} \in (\Delta(\mathcal{A}))^{|\mathcal{S}|}} \langle \pi_{\theta} - \hat{\pi}, \psi_{\rho}(\theta) \rangle.$$

28 / 40

Robust Policy Sub-gradient: Global Optimality

Theorem (Global Optimality under Direct Parameterization)

If $\alpha_t > 0$, $\sum_{t=0}^{\infty} \alpha_t = \infty$ and $\sum_{t=0}^{\infty} \alpha_t^2 < \infty$, then under direct policy parameterization, θ_T converges to a global optimum of $J_{\rho}(\theta)$ as $T \to \infty$ almost surely.

Robust Policy Sub-gradient: Global Optimality

Theorem (Global Optimality under Direct Parameterization)

If $\alpha_t > 0$, $\sum_{t=0}^{\infty} \alpha_t = \infty$ and $\sum_{t=0}^{\infty} \alpha_t^2 < \infty$, then under direct policy parameterization, θ_T converges to a global optimum of $J_{\rho}(\theta)$ as $T \to \infty$ almost surely.

- Sub-gradient method converges to stationary points: $\{\theta: 0 \in \partial J_{\rho}(\theta)\}$
- Stationary point is globally optimal due to PL-condition

Outline

4 Robust Discounted RL

Sobust Sub-gradient

Robust policy sub-gradient method:

Complexity is generally difficult to establish

Robust policy sub-gradient method:

Complexity is generally difficult to establish

Solution: smoothed robust policy gradient

Smoothed robust Bellman operator:

$$\mathbf{T}_{\sigma}^{\pi}V(s) = \mathbb{E}_{A \sim \pi(\cdot|s)} \bigg[c(s,A) + \gamma(1-R) \sum_{s' \in \mathcal{S}} p_{s,s'}^{A}V(s') + \gamma R \cdot \mathsf{LSE}(\sigma,V) \bigg],$$

where LSE
$$(\sigma, V) = \frac{\log(\sum_{i=1}^d e^{\sigma V(i)})}{\sigma}$$
 for $V \in \mathbb{R}^d$ and some $\sigma > 0$

Smoothed robust Bellman operator:

$$\mathbf{T}_{\sigma}^{\pi}V(s) = \mathbb{E}_{A \sim \pi(\cdot | s)} \bigg[c(s, A) + \gamma(1 - R) \sum_{s' \in \mathcal{S}} p_{s, s'}^{A}V(s') + \gamma R \cdot \mathsf{LSE}(\sigma, V) \bigg],$$

where LSE
$$(\sigma, V) = \frac{\log(\sum_{i=1}^d e^{\sigma V(i)})}{\sigma}$$
 for $V \in \mathbb{R}^d$ and some $\sigma > 0$

• LSE (σ, V) converges to max_s V(s) as $\sigma \to \infty$

Smoothed robust Bellman operator:

$$\mathbf{T}_{\sigma}^{\pi}V(s) = \mathbb{E}_{A \sim \pi(\cdot|s)} \bigg[c(s,A) + \gamma(1-R) \sum_{s' \in \mathcal{S}} p_{s,s'}^{A}V(s') + \gamma R \cdot \mathsf{LSE}(\sigma,V) \bigg],$$

where LSE
$$(\sigma, V) = \frac{\log(\sum_{i=1}^d e^{\sigma V(i)})}{\sigma}$$
 for $V \in \mathbb{R}^d$ and some $\sigma > 0$

- LSE (σ, V) converges to $\max_s V(s)$ as $\sigma \to \infty$
- T_{σ}^{π} is a contraction, V_{σ}^{π} is the fixed point of T_{σ}^{π} softmax will not induce contraction (Asadi and Littman, 2017)

Smoothed robust Bellman operator:

$$\mathbf{T}_{\sigma}^{\pi}V(s) = \mathbb{E}_{A \sim \pi(\cdot|s)} \bigg[c(s,A) + \gamma(1-R) \sum_{s' \in \mathcal{S}} p_{s,s'}^{A}V(s') + \gamma R \cdot \mathsf{LSE}(\sigma,V) \bigg],$$

where LSE $(\sigma, V) = \frac{\log(\sum_{i=1}^d e^{\sigma V(i)})}{\sigma}$ for $V \in \mathbb{R}^d$ and some $\sigma > 0$

- LSE (σ, V) converges to $\max_s V(s)$ as $\sigma \to \infty$
- T_{σ}^{π} is a contraction, V_{σ}^{π} is the fixed point of T_{σ}^{π} softmax will not induce contraction (Asadi and Littman, 2017)
- ullet V^π_σ is differentiable in heta and converges to V^π as $\sigma o \infty$

32 / 40

• $J^{\sigma}_{\rho}(\theta) = \sum_{s \in \mathcal{S}} \rho(s) V^{\pi_{\theta}}_{\sigma}(s)$: smoothed robust objective

- $J^{\sigma}_{\rho}(\theta) = \sum_{s \in \mathcal{S}} \rho(s) V^{\pi_{\theta}}_{\sigma}(s)$: smoothed robust objective
- Gradient of $J_{\rho}^{\sigma}(\theta)$:

$$\nabla J_{\rho}^{\sigma}(\theta) = B(\rho, \theta) + \frac{\gamma R \sum_{s \in \mathcal{S}} e^{\sigma V_{\sigma}^{n\theta}(s)} B(s, \theta)}{(1 - \gamma) \sum_{s \in \mathcal{S}} e^{\sigma V_{\sigma}^{n\theta}(s)}},$$

where $B(s,\theta) \triangleq \frac{1}{1-\gamma+\gamma R} \sum_{s' \in \mathcal{S}} d_s^{\pi}(s') \sum_{a \in \mathcal{A}} \nabla \pi_{\theta}(a|s') Q_{\sigma}^{\pi_{\theta}}(s',a)$, and $B(\rho,\theta) \triangleq \mathbb{E}_{S \sim \rho}[B(S,\theta)]$.

• Smoothed robust policy gradient: $\theta_{t+1} \leftarrow \prod_{\Theta} (\theta_t - \alpha_t \nabla J_{\rho}^{\sigma}(\theta))$

- $J^{\sigma}_{\rho}(\theta) = \sum_{s \in \mathcal{S}} \rho(s) V^{\pi_{\theta}}_{\sigma}(s)$: smoothed robust objective
- Gradient of $J_{\rho}^{\sigma}(\theta)$:

$$\nabla J_{\rho}^{\sigma}(\theta) = B(\rho, \theta) + \frac{\gamma R \sum_{s \in \mathcal{S}} e^{\sigma V_{\sigma}^{n\theta}(s)} B(s, \theta)}{(1 - \gamma) \sum_{s \in \mathcal{S}} e^{\sigma V_{\sigma}^{n\theta}(s)}},$$

where $B(s, \theta) \triangleq \frac{1}{1 - \gamma + \gamma R} \sum_{s' \in \mathcal{S}} d_s^{\pi}(s') \sum_{a \in \mathcal{A}} \nabla \pi_{\theta}(a|s') Q_{\sigma}^{\pi_{\theta}}(s', a)$, and $B(\rho, \theta) \triangleq \mathbb{E}_{S \sim \rho}[B(S, \theta)]$.

• Smoothed robust policy gradient: $\theta_{t+1} \leftarrow \prod_{\Theta} (\theta_t - \alpha_t \nabla J_{\rho}^{\sigma}(\theta))$

Even though gradient is for J_{ρ}^{σ} , the algorithm can still find a global optimum of J_{ρ} by choosing a large σ

Global optimality and Complexity

Consider direct policy parameterization

Theorem

For any
$$\epsilon>0$$
, set $\sigma=\mathcal{O}(\epsilon^{-1})$ and $T=\mathcal{O}(\epsilon^{-3})$, then
$$\min_{t< T-1}J(\theta_t)-J^*\leq 3\epsilon.$$

Global optimality and Complexity

Consider direct policy parameterization

Theorem

For any $\epsilon>0$, set $\sigma=\mathcal{O}(\epsilon^{-1})$ and $T=\mathcal{O}(\epsilon^{-3})$, then

$$\min_{t \le T-1} J(\theta_t) - J^* \le 3\epsilon.$$

• If R=0, i.e., no robustness is considered, complexity reduces to $\mathcal{O}(\epsilon^{-2})$, which matches with vanilla policy gradient in (Agarwal et al., 2021)

Model-free Robust Actor-Critic

• Recall robust policy subgradient:

$$egin{aligned} \psi_{
ho}(heta) & ext{ } ext{ } rac{\gamma R}{(1-\gamma)(1-\gamma+\gamma R)} \sum_{s \in \mathcal{S}} d^{\pi_{ heta}}_{s_{ heta}}(s) \sum_{m{a} \in \mathcal{A}}
abla \pi_{ heta}(m{a}|m{s}) m{Q}^{\pi_{ heta}}_{\mathcal{P},\gamma}(m{s},m{a}) \ &+ rac{1}{1-\gamma+\gamma R} \sum_{m{s} \in \mathcal{S}} d^{\pi_{ heta}}_{
ho}(m{s}) \sum_{m{a} \in \mathcal{A}}
abla \pi_{ heta}(m{a}|m{s}) m{Q}^{\pi_{ heta}}_{\mathcal{P},\gamma}(m{s},m{a}) \end{aligned}$$

• $Q^{\pi_{\theta}}(s, a)$ measures cost under worst-case transition kernel and π_{θ} , however, only samples from simulator are available

Model-free Robust Actor-Critic

• Recall robust policy subgradient:

$$egin{aligned} \psi_{
ho}(heta) & riangleq rac{\gamma R}{(1-\gamma)(1-\gamma+\gamma R)} \sum_{s \in \mathcal{S}} d_{s_{ heta}}^{\pi_{ heta}}(s) \sum_{m{a} \in \mathcal{A}}
abla \pi_{ heta}(m{a}|s) Q_{\mathcal{P},\gamma}^{\pi_{ heta}}(s,m{a}) \\ &+ rac{1}{1-\gamma+\gamma R} \sum_{s \in \mathcal{S}} d_{
ho}^{\pi_{ heta}}(s) \sum_{m{a} \in \mathcal{A}}
abla \pi_{ heta}(m{a}|s) Q_{\mathcal{P},\gamma}^{\pi_{ heta}}(s,m{a}) \end{aligned}$$

• $Q^{\pi_{\theta}}(s, a)$ measures cost under worst-case transition kernel and π_{θ} , however, only samples from simulator are available

Monte Carlo does not work

Critic: Robust TD

• Parametric robust action value function Q_{ζ} , e.g., linear function approximation or neural network.

```
Input: T_c, \pi, \beta_t
Initialization: \zeta, s_0
    Choose a_0 \sim \pi(\cdot|s_0)
FOR t = 0, 1, ..., T_c - 1
    Observe c_t, s_{t+1}
    Choose a_{t+1} \sim \pi(\cdot|s_{t+1})
    V_t^* \leftarrow \max_s \left\{ \sum_{a \in A} \pi(a|s) Q_{\mathcal{C}}(s,a) \right\}
   \delta_t \leftarrow Q_{\zeta}(s_t, a_t) - (c_t + \gamma(1 - R)Q_{\zeta}(s_{t+1}, a_{t+1}) + \gamma RV_t^*) \text{(robust TD error)}
                                                             robust target
    \zeta \leftarrow \zeta - \beta_t \delta_t \nabla_{\zeta} Q_{\zeta}(s_t, a_t)
Output: \zeta
```

Robust Actor-Critic Algorithm

- Using robust TD algorithm to estimate robust Q-function in (smoothed) robust policy gradient
- Under tabular setting, global optimality can be established, overall sample complexity is $\mathcal{O}(\epsilon^{-7})$

Robust actor-critic algorithm can be applied with arbitrary value function/policy approximation.

Experiments

- Robust policy gradient v.s. vanilla policy gradient and ARPL Mandlekar et al. (2017)
- ARPL: Adversary randomly perturb observation then run vanilla policy gradient method using these perturbed samples
- \bullet Training on an unperturbed MDP, and evaluation on the worst-case transition kernel in ${\cal P}$

 Our robust policy gradient achieves higher reward on the worst-case transition kernel

Experiments

- Robust actor-critic v.s. RARL (Pinto et al., 2017)
- RARL: Adversary perturbs state transition. Agent and adversary are updated alternatively using gradient descent ascent.
- \bullet Training on an unperturbed MDP, and evaluation on the worst-case transition kernel in ${\cal P}$

 Our robust actor critic achieves higher reward on the worst-case transition kernel

Summary

- Robust policy gradient with provable global optimality
- Model-free robust actor-critic algorithm
- Can be easily scaled to large/continuous problems