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Introduction and Motivation

e Markov Decision Process (MDP) (S, A, P,r,v, 7, tiz):
— & state space, A: action space.
—P(s|s,a): transition kernel, r(s, a, s'): reward function.
—~ € (0, 1): discount factor.
—m(als): policy, i.e. conditional probability of choosing action a under state s.
— o stationary distribution, i.e. Y p(s'|s)ur(s) = px(s).
e Off-policy value function evaluation:
— Value function: v™(s) = E[> .2 "7 (st, ar.st11)|s0 = s, 7.
— Goal: obtain the value function of target policy 7 given sample trajectory generated
by behavior policy 7.
— Linear function approximation: using a linear function v(s, #) = ¢(s)f to approxi-
mate v™(s).
— Challenge: vanilla TD learning could diverge in off-policy setting.

TDC Algorithm and Open Issues

e TD with gradient correction (TDC) (R. Sutton (2009)): minimizing
mean-square projected Bellman error:

J(0) =E,_[0(s,0) — 1IT0(s,0)]".
» Global minimizer: J(6*) = 0.
e Two time-scale TDC update:
0r1 = g, (0 + ar(Aby + by + Brwy)),
wiy1 = g, (wi + Bi( Ay + by + Cywy)),
—Ar = p(s,a)p(se)(vp(ser1) — d(se)), Br = —yp(s, ar)d(ser1)@(si)', Cr =
—@(s1)0(s¢) " and by = p(sy, ar)r (s, ar, se41)P(s1).

—Ilg(x) = argmin,. . <p ||z — 2’|, is the projection operator.
~ Ry > || All, bl and By > 2| ¢ 1Al Bo
—p(s,a) = m(s,a)/m(s,a) is the importance weighting factor.
e Previous work: G. Dalal et al.(2018): Two time-scale TDC under diminishing
stepsize with i.i.d. samples satisfies:

16, — 0|, = O(t*?) with high probability.

e Open issues:

— Convergence rate of TDC under diminishing stepsize with Markovian samples.
— Convergence rate and convergence error of TDC under constant stepsize.
— New update scheme for TDC that converges fast with small convergence error.

Technical Assumptions

e Problem solvability: A = E, [o(s,a)¢(s)(v¢(s') — ¢(s))'] and C =
—IE,,. [¢(s)¢(s)'] are non-singular.

¢ Bounded feature: ||¢(s)||, <1 forall s €S and ppax < 0.

e Geometric ergodicity: There exist constants m > 0 and p € (0, 1) such that

sup dry (P(sy € +[so = 8), ptr,) < mp', ¥t > 0,
seS

where dpy (P, Q)) denotes the total-variation distance between P and Q).
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Contribution 1: Non-asymptotic Analysis
under Diminishing Stepsize

Theorem 1. Considering the diminishing stepsize oy = O(t77) and By =
Ot™). If 0 <v <o <1, the output of two time-scale TDC satisfies
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—The optimal convergence is obtained when o = 1.5v, with o = 1 yields the best
error decay rate O(log”t/t*/%).
e Proof Sketch

—Formulate update of training error |6, — 8*||, and tracking error ||z, =
wy + C7H b+ Ay)]],.

Derive preliminary bound of tracking error: E ||z]|; = O(t~(7Y)).

Recursively refine bound of tracking error: E ||z = O(logt/t" + h(o,v)).
Derive bound of E ||6; — 6*||5 based on the bound of E ||z]|5.
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Optimal Diminishing Stepsize
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Comparison among diminishing stepsize with o = 0.6. (left: full; right: tail)

e Diminishing stepsize satistying o = 1.5v yields the best error decay rate.

Contribution 2: Non-asymptotic Analysis
under Constant Stepsize

Theorem 2. Considering the constant stepsize oy = o, By = 8. The output of

two time-scale TDC' satisfies:

L 1
E |6, — 9*\\3 = O((1 = |M|a))) + O(max{a, aln a}) + O(max{, ﬁlng’% )05
e Converges fast to a neighborhood of 6* at a linear rate when « is large.

e Large o, f and o/ cause large training error.
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Optimal Constant Stepsize

at=0.01, Bt=0.006 at=0.01, Bt=0.006

_at=0.02, Bt=0.008 | _ _at=0.02, Bt=0.008 _
_O‘t=0'05’ Bt=0.02 | * _O‘t=0'05’ Bt=0.02
_O‘t=0'1’ Bt=0.02 : _O‘t=0'1’ Bt=0.02
— Diminishing — Diminishing

2 3 4 4.2 4.4 4.6 4.8 5
# of iterations %10° # of iterations < 10°

Comparison between TDC updates under constant stepsizes and diminishing
stepsize. (left: full; right: tail)

e TDC with large constant stepsize converges fast but has large training error

Contribution 3: Blockwise Diminishing
Stepsize

Key idea: a, and (3 are kept constant within each block with length T and
diminished blockwisely.

Theorem 3. Suppose max{log(l/as)as, st < |60 — 0%, /2%, as/Bs >

1/2max{0, \uin(C~ (A" + A))} and Ty = [log) 1 x, 1) 4], where Xy is a con-
stant. Then, after S = [log,(||6y — 0%, /€)| blocks, we have

E |65 — 6|5 < e.
The total sample complexity is O(Xlog(2)).

Comparison between Different Stepsizes
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Comparison between TDC updates under blockwise diminishing stepsizes,
diminishing stepsize and constant stepsize. (left: full; right: tail)

e TDC under blockwise diminishing stepsize converges faster than that under di-
minishing stepsize and almost as fast as that under constant stepsize.

e T'DC under blockwise diminishing stepsize has comparable training error as that
under diminishing stepsize



