Two Time-scale Off-Policy TD Learning: Non-asymptotic Analysis over Markovian Samples

Tengyu Xu *; Shaofeng Zou [†]; Yingbin Liang *; *The Ohio State University, [†] University at Buffalo, The State University of New York

Introduction and Motivation

- Markov Decision Process (MDP) $(S, A, P, r, \gamma, \pi, \mu_{\pi})$: $-\mathcal{S}$: state space, \mathcal{A} : action space. $-\mathcal{P}(s'|s, a)$: transition kernel, r(s, a, s'): reward function. $-\gamma \in (0, 1)$: discount factor.
- $-\pi(a|s)$: policy, i.e. conditional probability of choosing action a under state s. $-\mu_{\pi}$: stationary distribution, i.e. $\sum_{s} p(s'|s)\mu_{\pi}(s) = \mu_{\pi}(s')$.
- Off-policy value function evaluation:
- -Value function: $v^{\pi}(s) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r(s_t, a_t, s_{t+1}) | s_0 = s, \pi\right].$
- -Goal: obtain the value function of target policy π given sample trajectory generated by behavior policy π_b .
- -Linear function approximation: using a linear function $\hat{v}(s,\theta) = \phi(s)\theta$ to approximate $v^{\pi}(s)$.
- -Challenge: vanilla TD learning could diverge in off-policy setting.

TDC Algorithm and Open Issues

• TD with gradient correction (TDC) (R. Sutton (2009)): minimizing mean-square projected Bellman error:

 $J(\theta) = \mathbb{E}_{\mu_{\pi_h}} [\hat{v}(s,\theta) - \Pi T^{\pi} \hat{v}(s,\theta)]^2.$

► Global minimizer: $J(\theta^*) = 0$.

• Two time-scale TDC update:

 $\theta_{t+1} = \prod_{R_{\theta}} (\theta + \alpha_t (A_t \theta_t + b_t + B_t w_t)),$

$$w_{t+1} = \prod_{R_w} (w_t + \beta_t (A_t \theta_t + b_t + C_t w_t)),$$

- $-A_t = \rho(s_t, a_t)\phi(s_t)(\gamma\phi(s_{t+1}) \phi(s_t)), \quad B_t = -\gamma\rho(s_t, a_t)\phi(s_{t+1})\phi(s_t)^{\top}, \quad C_t = -\gamma\rho(s_t, a_t)\phi(s_t)^{\top}, \quad C_t = -\gamma\rho(s_t, a_t)\phi(s_t)\phi(s_t)^{\top}, \quad C_t = -\gamma\rho(s_t, a_t)\phi(s_t)\phi(s_t)\phi(s_t)\phi(s_t)^{\top}, \quad C_t = -\gamma\rho(s_t, a_t)\phi(s_t)$ $-\phi(s_t)\phi(s_t)^{\top}$ and $b_t = \rho(s_t, a_t)r(s_t, a_t, s_{t+1})\phi(s_t)$.
- $-\Pi_R(x) = \operatorname{argmin}_{x': \|x'\|_2 \le R} \|x x'\|_2 \text{ is the projection operator.}$
- $-R_{\theta} \ge ||A||_2 ||b||_2$ and $R_w \ge 2 ||C^{-1}||_2 ||A||_2 R_{\theta}$.
- $-\rho(s,a) = \pi(s,a)/\pi_b(s,a)$ is the importance weighting factor.
- Previous work: G. Dalal et al.(2018): Two time-scale TDC under diminishing stepsize with i.i.d. samples satisfies:

 $\|\theta_t - \theta^*\|_2 = \mathcal{O}(t^{-2/3})$ with high probability.

• Open issues:

- -Convergence rate of TDC under diminishing stepsize with Markovian samples.
- -Convergence rate and convergence error of TDC under constant stepsize.
- -New update scheme for TDC that converges fast with small convergence error.

Technical Assumptions

- Problem solvability: $A = \mathbb{E}_{\mu_{\pi_h}}[\rho(s, a)\phi(s)(\gamma\phi(s') \phi(s))^{\top}]$ and C = $-\mathbb{E}_{\mu_{\pi_i}}[\phi(s)\phi(s)^{\top}]$ are non-singular.
- Bounded feature: $\|\phi(s)\|_2 \leq 1$ for all $s \in S$ and $\rho_{\max} < \infty$.
- Geometric ergodicity: There exist constants m > 0 and $\rho \in (0, 1)$ such that

$$\sup_{s \in \mathcal{S}} d_{TV}(\mathbb{P}(s_t \in \cdot | s_0 = s), \mu_{\pi_b}) \le m\rho^t, \forall t \ge 0,$$

where $d_{TV}(P,Q)$ denotes the total-variation distance between P and Q.

Optimal Constant Stepsize

Comparison between TDC updates under constant stepsizes and diminishing stepsize. (left: full; right: tail)

• TDC with large constant stepsize converges fast but has large training error

Contribution 3: Blockwise Diminishing Stepsize

Key idea: α_s and β_s are kept constant within each block with length T_s and diminished blockwisely.

Theor	rem	3.	Su_I	ppose	max
$1/2 \mathrm{ma}$	$x\{0, z\}$	$\lambda_{ m min}$	$_{ m n}(C^{-}$	$^{-1}(A^{ op}$	(+A)
stant.	Ther	l, c	ifter	S =	$\lceil \log_2($

 $\left\{ \log(1/\alpha_s)\alpha_s, \alpha_s \right\} \leq \|\theta_0 - \theta^*\|_2 / 2^s, \alpha_s / \beta_s \geq$))} and $T_s = \lceil \log_{1/(1-|\lambda_x|\alpha_s)} 4 \rceil$, where λ_x is a con- $(\|\theta_0 - \theta^*\|_2 / \epsilon)$ blocks, we have $\mathbb{E} \|\theta_S - \theta^*\|_2^2 \leq \epsilon.$ The total sample complexity is $\mathcal{O}(\frac{1}{\epsilon}\log^2(\frac{1}{\epsilon}))$.

Comparison between Different Stepsizes

Comparison between TDC updates under blockwise diminishing stepsizes, diminishing stepsize and constant stepsize. (left: full; right: tail)

• TDC under blockwise diminishing stepsize converges faster than that under diminishing stepsize and almost as fast as that under constant stepsize. • TDC under blockwise diminishing stepsize has comparable training error as that

under diminishing stepsize