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Introduction and Motivation

•Markov Decision Process (MDP) (S,A,P , r, γ, π, µπ):

–S : state space, A: action space.

–P(s′|s, a): transition kernel, r(s, a, s′): reward function.

– γ ∈ (0, 1): discount factor.

– π(a|s): policy, i.e. conditional probability of choosing action a under state s.

–µπ: stationary distribution, i.e.
∑

s p(s′|s)µπ(s) = µπ(s′).

•Off-policy value function evaluation:

– Value function: vπ(s) = E[
∑∞

t=0 γ
tr(st, at.st+1)|s0 = s, π].

– Goal: obtain the value function of target policy π given sample trajectory generated
by behavior policy πb.

– Linear function approximation: using a linear function v̂(s, θ) = φ(s)θ to approxi-
mate vπ(s).

– Challenge: vanilla TD learning could diverge in off-policy setting.

TDC Algorithm and Open Issues

•TD with gradient correction (TDC) (R. Sutton (2009)): minimizing
mean-square projected Bellman error:

J(θ) = Eµπb[v̂(s, θ)− ΠT πv̂(s, θ)]2.

IGlobal minimizer: J(θ∗) = 0.

•Two time-scale TDC update:

θt+1 = ΠRθ
(θ + αt(Atθt + bt + Btwt)),

wt+1 = ΠRw
(wt + βt(Atθt + bt + Ctwt)),

–At = ρ(st, at)φ(st)(γφ(st+1) − φ(st)), Bt = −γρ(st, at)φ(st+1)φ(st)
>, Ct =

−φ(st)φ(st)
> and bt = ρ(st, at)r(st, at, st+1)φ(st).

– ΠR(x) = argminx′:‖x′‖2≤R ‖x− x
′‖2 is the projection operator.

–Rθ ≥ ‖A‖2 ‖b‖2 and Rw ≥ 2
∥∥C−1

∥∥
2
‖A‖2Rθ.

– ρ(s, a) = π(s, a)/πb(s, a) is the importance weighting factor.

•Previous work: G. Dalal et al.(2018): Two time-scale TDC under diminishing
stepsize with i.i.d. samples satisfies:

‖θt − θ∗‖2 = O(t−2/3) with high probability.

•Open issues:

– Convergence rate of TDC under diminishing stepsize with Markovian samples.

– Convergence rate and convergence error of TDC under constant stepsize.

– New update scheme for TDC that converges fast with small convergence error.

Technical Assumptions

•Problem solvability: A = Eµπb[ρ(s, a)φ(s)(γφ(s′) − φ(s))>] and C =

−Eµπb[φ(s)φ(s)>] are non-singular.

•Bounded feature: ‖φ(s)‖2 ≤ 1 for all s ∈ S and ρmax <∞.

•Geometric ergodicity: There exist constants m > 0 and ρ ∈ (0, 1) such that

sup
s∈S

dTV (P(st ∈ ·|s0 = s), µπb) ≤ mρt,∀t ≥ 0,

where dTV (P,Q) denotes the total-variation distance between P and Q.

Contribution 1: Non-asymptotic Analysis

under Diminishing Stepsize

Theorem 1. Considering the diminishing stepsize αt = O(t−σ) and βt =
O(t−ν). If 0 < ν < σ < 1, the output of two time-scale TDC satisfies

E ‖θt − θ∗‖2
2 = O

(log t

tν
+ h(σ, ν)

)
where

h(σ, ν) =

{
log t
tν , σ > 1.5ν,

1
t2(σ−ν)

, σ ≤ 1.5ν.

If 0 < ν < σ = 1, then we have

E ‖θt − θ∗‖2
2 = O

(log2 t

tν
+ h(1, ν)

)
.

– The optimal convergence is obtained when σ = 1.5ν, with σ = 1 yields the best
error decay rate O(log2 t/t2/3).

•Proof Sketch

– Formulate update of training error ‖θt − θ∗‖2 and tracking error ‖zt‖2 =∥∥wt + C−1(b + Aθt)
∥∥

2
.

– Derive preliminary bound of tracking error: E ‖zt‖2
2 = O(t−(σ−ν)).

– Recursively refine bound of tracking error: E ‖zt‖2
2 = O(log t/tν + h(σ, ν)).

– Derive bound of E ‖θt − θ∗‖2
2 based on the bound of E ‖zt‖2

2.

Optimal Diminishing Stepsize
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Comparison among diminishing stepsize with σ = 0.6. (left: full; right: tail)

•Diminishing stepsize satisfying σ = 1.5ν yields the best error decay rate.

Contribution 2: Non-asymptotic Analysis

under Constant Stepsize

Theorem 2. Considering the constant stepsize αt = α, βt = β. The output of
two time-scale TDC satisfies:

E ‖θt − θ∗‖2
2 = O((1− |λθ|α)t) +O(max{α, α ln

1

α
}) +O(max{β, β ln

1

β
,
α

β
})0.5

•Converges fast to a neighborhood of θ∗ at a linear rate when α is large.

•Large α, β and α/β cause large training error.

Optimal Constant Stepsize
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Comparison between TDC updates under constant stepsizes and diminishing
stepsize. (left: full; right: tail)

•TDC with large constant stepsize converges fast but has large training error

Contribution 3: Blockwise Diminishing

Stepsize

Key idea: αs and βs are kept constant within each block with length Ts and
diminished blockwisely.

Theorem 3. Suppose max{log(1/αs)αs, αs} ≤ ‖θ0 − θ∗‖2 /2s, αs/βs ≥
1/2 max{0, λmin(C−1(A> + A))} and Ts = dlog1/(1−|λx|αs) 4e, where λx is a con-
stant. Then, after S = dlog2(‖θ0 − θ∗‖2 /ε)e blocks, we have

E ‖θS − θ∗‖2
2 ≤ ε.

The total sample complexity is O(1
ε log2(1

ε)).

Comparison between Different Stepsizes
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Comparison between TDC updates under blockwise diminishing stepsizes,
diminishing stepsize and constant stepsize. (left: full; right: tail)

•TDC under blockwise diminishing stepsize converges faster than that under di-
minishing stepsize and almost as fast as that under constant stepsize.

•TDC under blockwise diminishing stepsize has comparable training error as that
under diminishing stepsize


