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Reinforcement Learning
• An agent interacts with a stochastic environment: Markov De-

cision Process (MDP)

• An MDP: (X ,A,P, r, γ)

– X : state space
– A: action space
– P: action dependent transition kernel
∗ P(Xt+1 ∈ U |Xt = x,At = a) =

∫
U
P(dy|x, a)

– r(Xt, At): one-stage at time t
– γ: discount factor

• A policy π(a|x) is a conditional distribution over A

• Agent’s goal: maximize cumulative discounted reward
– Value function for policy π:
V π(x0) = E [

∑∞
t=0 γ

tr(Xt, At)]
– Action-value function:
Qπ(x, a) = r(x, a) + γ

∫
X P(dy|x, a)V π(y)

– Goal: an optimal policy that maximizes value/action-
value function
V ∗(x) = supπ V

π(x),∀x ∈ X
Q∗(x, a) = supπ Q

π(x, a),∀(x, a) ∈ X ×A

• Linear function approximation:

Qθ(x, a) =
N∑
i=1

θiφi(x, a) = φ>(x, a)θ

SARSA with Linear Function Approx.

• At time t, given (xt, at, xt+1)

• Policy: πθt = Γ(φ>(xt, at)θt), where Γ is a policy improve-
ment operator

• Take action at+1 based on πθt

• Updates: θt+1 = θt + αtproj2,R(gt(θt)), where the “gradient"
is given by gt(θt) = φ(xt, at)(r(xt, at) + γφT (xt+1, at+1)θt −
φT (xt, at)θt)

• As θt is updated, πθt changes with time

• On-policy algorithm, changing policy

• Non-i.i.d. data

• Goal: finite-sample analysis for this algorithm

Related Work
• Q-learning with a single sample path

– Q-learning with linear function approximation [Melo et al.
2008]

– K-nearest neighbor Q-learning: non-i.i.d. sample [Shah
and Xie 2018]

– More recent studies: [Chen et al. 2019]

• SARSA with a single sample path
– Asymptotic analysis: SARSA with linear function approx-

imation [Melo et al. 2008] and [Perkins & Precup 2003],
which suggests convergence

• Our study: SARSA with a single sample path
– Non-asymptotic analysis: How fast the convergence is;

and how the convergence rate depends on parameters of
RL algorithms and underlying MDP?

Technical Assumptions
• Lipschitz policy improvement [Perkins & Precup 2003]:

|πθ1(a|x)− πθ2(a|x)| ≤ C‖θ1 − θ2‖2,∀(x, a) ∈ X ×A

• Smoothness: C is small so that Aθ∗ +CλI is negative definite
[Melo et al. 2008]

• Uniformly ergodic MDPs: for fixed θ, the Markov chain
{Xt}t≥0 induced by πθ and P is uniformly ergodic with invari-
ant measure Pθ, and there are constants m > 0 and ρ ∈ (0, 1)

supx∈X dTV (P(Xt ∈ ·|X0 = x),Pθ) ≤ mρt,∀t ≥ 0

Definitions:
• Aθ = Eθ[φ(X,A)(γφ>(X ′, A′)− φ>(X,A)]
• bθ = Eθ[φ(X,A)r(X,A)]
• Limit point θ∗ of SARSA satisfies [Melo et al. 2008]:
Aθ∗θ

∗ + bθ∗ = 0

Challenge in Technical Analysis
• Non-i.i.d. samples

– Complicated coupling between sample path {Xt, At}t≥0
and {θt}t≥0, which introduces bias in gt

– Samples are used to compute gradient gt and θt+1

– θt is further used (as in policy πθt)) to generate subse-
quent actions

• Convergence can be established using O.D.E approach

• For finite time bound, stochastic bias in gt needs to be explicitly
characterized

• Dynamically changing learning policy
– Analysis in [Bhandari et al. 2018] for TD relies on the
fact that the learning policy is fixed so that the Markov
process reaches its stationary distribution quickly

– Episodic SARSA in [Perkins & Precup 2003], within each
episode, learning policy is fixed, and the Markov process
reach its stationary distribution within each episode

– No such nice properties for SARSA!

Convergence Results
Theorem 1 Finite-sample bound on convergence of SARSA
with diminishing step-size:

E‖θT − θ∗‖22 ≤ c1
log T + 1

T
+
c2
T
.

Theorem 2 Finite-sample bound on convergence of SARSA
with constant step-size:

E‖θT − θ∗‖22 ≤ c3e−c4T + c5 × stepsize.

• With constant step-size, SARSA converges faster to a small
neighborhood of θ∗.

Proof Sketch
Key idea: design auxiliary uniformly ergodic Markov chain to
approximate original Markov chain induced by SARSA

• Step 1. Error decomposition

• Step 2. Gradient descent type analysis

• Step 3. Stochastic bias analysis

• Step 4. Putting the first three steps together and recursively
apply step 1 completes the proof

Notations:

• Noiseless gradient at θ: ḡ(θ) = Eθ[gt(θ)]

• Bias by using non-i.i.d. samples to estimate the gradient:

Λt(θ) = 〈θ − θ∗, gt(θ)− ḡ(θ)〉

Proof Sketch
• Step 1. Error decomposition

• Step 2. Gradient descent type analysis because the accurate
gradient ḡt at θt is used

– 2.1 ‖gt(θt)‖2 is upper bounded by G.

– 2.2 E[〈θt − θ∗, ḡ(θt)− ḡ(θ∗)〉] ≤ −wsE[‖θt − θ∗‖22]

• Step 3. Stochastic bias analysis. E[Λt(θt)] is bias caused by
using a single sample path with non-i.i.d. data and time-varying
behavior policy
Rewrite Λt(θt) as Λt(θt, Ot), where Ot =
(Xt, At, Xt+1, At+1)

Challenge: complicated dependency between θt and Ot

– 3.1 Pre-decoupling dependency between θt and Ot by
looking τ steps back

Λt(θt, Ot) ≤ Λt(θt−τ , Ot) + (6 + λC)G2
t−1∑
i=t−τ

αi

∗ If Markov chain induced by SARSA is uniformly er-
godic, then given any θt−τ , Ot would reach its sta-
tionary distribution quickly for large τ

∗ This argument is not necessarily true since policy πθt
changes with time.

– 3.2 Decoupling by Auxiliary Markov Chain
∗ Key idea: design an auxiliary Markov chain to assist

proof
∗ Auxiliary Markov chain design:

(i) Before time t − τ + 1, everything is the same as
SARSA
(ii) After time t − τ + 1, fix behavior policy as πθt−τ
to generate all subsequent actions
Denote new observations as Õt =
(X̃t, Ãt, X̃t+1, Ãt+1)
Since πθt−τ is kept fixed, for large τ , Õt reaches
stationary distribution induced by policy πθt−τ and P

∗ E[Λt(θt−τ , Õt)] ≤ 4G2mρτ−1

– 3.3 Stochastic Bias Analysis
∗ Bound difference between SARSA Markov chain and

auxiliary Markov chain
∗ θt changes slowly
∗ Due to Lipschitz property of πθ(a|x), the two Markov

chain should not deviate from each other too much
∗ E[Λt(θt−τ , Ot)]− E[Λt(θt−τ , Õt)] ≤ C|A|G3τ

w log t
t−τ

Step 4. Putting the first three steps together and recursively
applying Step 1 complete the proof.


