

Finite-Sample Analysis for SARSA with Linear Function Approximation

The State University of New York

RL algorithms and underlying MDP?

Shaofeng Zou[†] Tengyu Xu* Yingbin Liang* [†]University at Buffalo, the State University of New York *The Ohio State University

is given by $g_t(\theta_t) = \phi(x_t, a_t)(r(x_t, a_t) + \gamma \phi^T(x_{t+1}, a_{t+1})\theta_t - \theta_t)$

$$|\pi_{\theta_1}(a|x) - \pi_{\theta_2}(a|x)| \le C ||\theta_1 - \theta_2||_2, \forall (x,a) \in \mathcal{X} \times \mathcal{A}$$

 $\{X_t\}_{t>0}$ induced by π_{θ} and P is uniformly ergodic with invariant measure P_{θ} , and there are constants m > 0 and $\rho \in (0, 1)$

• Limit point θ^* of SARSA satisfies [Melo et al. 2008]: $A_{\theta^*}\theta^* + b_{\theta^*} = 0$

Challenge in Technical Analysis

•	Non-	Ι.
	—	(
		a
	_	2 6
		q
	Conv	
•	For the	n ac
•	Dyna	an An
	_	⊢ f
		p
	—	E
		e r
	_	N
(7010	\ 7
		V
Т	-heor	e
Т и	heor	e
Т И	Theor with d	e
Т И	Theor	e
Т И	heor	e
Т И Т	heor vith d	e ir e
Т И И	heor vith d	e ir o
Т И И	heor vith d	e ir o
Т И И	heor vith d	
T M	heor vith d	
T M M	heor vith d heor vith c With neigh	
T M M	heor vith d heor vith c With neigh	
T M T M	heor vith d heor vith c heor vith c With neigh	
T M T M	heor vith d heor vith c With neigh Otoc Cey ic pprox	e ir o h b ir
T M T M	heor vith d heor vith c heor vith c Vith neigh	e in o h b in in in in in in in in in in in in in

n-i.i.d. samples

Complicated coupling between sample path $\{X_t, A_t\}_{t>0}$ and $\{\theta_t\}_{t>0}$, which introduces bias in g_t

Samples are used to compute gradient g_t and θ_{t+1} θ_t is further used (as in policy π_{θ_t})) to generate subse-

quent actions

ergence can be established using O.D.E approach

nite time bound, stochastic bias in g_t needs to be explicitly cterized

mically changing learning policy

Analysis in [Bhandari et al. 2018] for TD relies on the fact that the learning policy is fixed so that the Markov process reaches its stationary distribution quickly Episodic SARSA in [Perkins & Precup 2003], within each episode, learning policy is fixed, and the Markov process reach its stationary distribution within each episode No such nice properties for SARSA!

vergence Results

m 1 Finite-sample bound on convergence of SARSA minishing step-size:

$$\mathbb{E}\|\theta_T - \theta^*\|_2^2 \le c_1 \frac{\log T + 1}{T} + \frac{c_2}{T}$$

m 2 Finite-sample bound on convergence of SARSA onstant step-size:

 $\mathbb{E} \|\theta_T - \theta^*\|_2^2 \le c_3 e^{-c_4 T} + c_5 \times \text{stepsize.}$

constant step-size, SARSA converges faster to a small borhood of θ^* .

f Sketch

ea: design auxiliary uniformly ergodic Markov chain to mate original Markov chain induced by SARSA

L. Error decomposition

2. Gradient descent type analysis

• Step 3. Stochastic bias analysis

• Step 4. Putting the first three steps together and recursively apply step 1 completes the proof

Notations:

• Noiseless gradient at θ : $\bar{g}(\theta) = \mathbb{E}_{\theta}[g_t(\theta)]$

• Bias by using non-i.i.d. samples to estimate the gradient:

$$\mathbf{\Lambda}_t(\theta) = \langle \theta - \theta^*, g_t(\theta) - \bar{g}(\theta) \rangle$$

Proof Sketch

$$\begin{split} & \mathbb{E}[\|\theta_{t+1} - \theta^*\|_2^2] \\ & \leq \mathbb{E}[\|\theta_t - \theta^*\|_2^2] \end{split}$$

- 2.1 $||g_t(\theta_t)||_2$ is upper bounded by G. - 2.2 E

behavior policy

Λ_t

proof

Step 4. Putting the first three steps together and recursively applying Step 1 complete the proof.

• **Step 1.** Error decomposition

$$+ 2\alpha_t \mathbb{E}[\langle \theta_t - \theta^*, \bar{g}(\theta_t) - \bar{g}(\theta^*) \rangle] + \alpha_t^2 \mathbb{E}[\|g_t(\theta_t)\|_2^2] + 2\alpha_t \mathbb{E}[\Lambda_t(\theta_t)]$$

Gradient descent type analysis

• **Step 2.** Gradient descent type analysis because the accurate gradient \overline{g}_t at θ_t is used

$$[\langle \theta_t - \theta^*, \bar{g}(\theta_t) - \bar{g}(\theta^*) \rangle] \le -w_s \mathbb{E}[\|\theta_t - \theta^*\|_2^2]$$

• Step 3. Stochastic bias analysis. $\mathbb{E}[\mathbf{\Lambda}_t(\theta_t)]$ is bias caused by using a single sample path with non-i.i.d. data and time-varying

Rewrite $\mathbf{\Lambda}_t(heta_t)$ as $\mathbf{\Lambda}_t(heta_t,O_t)$, where O_t $(X_t, A_t, X_{t+1}, A_{t+1})$

Challenge: complicated dependency between θ_t and O_t

- 3.1 Pre-decoupling dependency between θ_t and O_t by looking au steps back

$$(\theta_t, O_t) \le \mathbf{\Lambda}_t(\theta_{t-\tau}, O_t) + (6 + \lambda C)G^2 \sum_{i=t-\tau}^{t-1} \alpha_i$$

* If Markov chain induced by SARSA is uniformly ergodic, then given any $\theta_{t-\tau}$, O_t would reach its stationary distribution quickly for large τ

* This argument is **not** necessarily true since policy π_{θ_t} changes with time.

- 3.2 Decoupling by Auxiliary Markov Chain

* Key idea: design an auxiliary Markov chain to assist

* Auxiliary Markov chain design:

(i) Before time $t - \tau + 1$, everything is the same as SARSA

(ii) After time $t - \tau + 1$, fix behavior policy as $\pi_{\theta_{t-\tau}}$ to generate all subsequent actions

observations Denote new as O_t $(X_t, A_t, X_{t+1}, A_{t+1})$

Since $\pi_{\theta_{t-\tau}}$ is kept fixed, for large τ , O_t reaches stationary distribution induced by policy $\pi_{\theta_{t-\tau}}$ and P * $\mathbb{E}[\mathbf{\Lambda}_t(\theta_{t-\tau}, \tilde{O}_t)] \leq 4G^2 m \rho^{\tau-1}$

– 3.3 Stochastic Bias Analysis

* Bound difference between SARSA Markov chain and auxiliary Markov chain

* θ_t changes slowly

* Due to Lipschitz property of $\pi_{\theta}(a|x)$, the two Markov chain should not deviate from each other too much * $\mathbb{E}[\mathbf{\Lambda}_t(\theta_{t-\tau}, O_t)] - \mathbb{E}[\mathbf{\Lambda}_t(\theta_{t-\tau}, \tilde{O}_t)] \le \frac{C|\mathcal{A}|G^3\tau}{m} \log \frac{t}{t-\tau}$

Stochastic bias