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1. Introduction
Compression of deep models is necessary
due to limited storage and
computational resources

• Compression → worse performance

• Recent work shows population risk can
be improved after compression

Our contribution: provide information-
theoretic explanation by characterizing
tradeoff between generalization error
and empirical risk
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• Why? Model compression serves
as regularizer to reduce generalization
error.

• How? We propose new quantization
algorithm to reduce generalization error
in model compression.

2. Compression Improves Generalization
Consider instance space Z, hypothesis
space W, loss function ` :W ×Z → R+

• Training dataset:
S = {Z1, · · · , Zn} from µ

• Population risk:
Lµ(w) , EZ∼µ[`(w,Z)]

• Empirical risk:
LS(w) , 1

n

∑n
i=1 `(w,Zi)

• Learning algorithm:
conditional distribution PW |S .

• Generalization error:
gen(µ, PW |S) , EW,S [Lµ(W )−LS(W )]

• Compression algorithm:
conditional distribution PŴ |W
Markov chain S →W → Ŵ

Theorem. For learning algorithm
PW |S , and compression algorithm PŴ |W ,
suppose `(ŵ, Z) is σ-sub-Gaussian under
Z ∼ µ for all ŵ ∈ Ŵ, then

|gen(µ, PŴ |S)| ≤
√

2σ2

n
I(W ; Ŵ ).

I(W ; Ŵ ) corresponds to rate of model
compression in rate-distortion theory

3. Distortion on Empirical Risk
In rate-distortion framework,
• Define distortion with empirical risk
dS(w, ŵ) , LS(ŵ)− LS(w)

D(R) = minI(W ;Ŵ )≤R ES,W,Ŵ [dS(Ŵ ,W )]
distortion decreases as rate increases.
Combine with generalization error bound
Theorem. Suppose assumptions in
previous Theorem hold, and I(W ; Ŵ ) =
R, then

min
PŴ |W :I(W ;Ŵ )=R

ES,W,Ŵ [Lµ(Ŵ )− LS(W )]

≤
√

2σ2

n R+D(R).

Compression controls trade-off between
empirical risk and generalization error and
improves population risk

4. Example: Linear Regression
Model: Yi = Xiw

∗ + εi, for i = 1, ..., n.

• Xi ∈ Rd i.i.d. Gaussian N (0,ΣX)

• εi i.i.d. Gaussian N (0, σ′2)

• Diameter of weights space Ŵ is C(Ŵ)

• Consider ERM: W = (XXT )−1XY .

Theorem. Upper bound on gen

gen(µ, PŴ |S) ≤ 2σ∗2`

√
I(W ; Ŵ )

n
.

where σ∗2` , C(Ŵ)‖ΣX‖+ σ′2.
Theorem. Upper bound population risk

minP
Ŵ |W

:I(W ;Ŵ )=R ES,W,Ŵ [Lµ(Ŵ ) − LS(W )]

≤ 2σ∗2`
√

R
n

+ dσ′2

n−d−1e
− 2R

d , R ≥ 0.
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5. From Theory to Algorithms
Improving quantization algorithm:

• Network parameters w = {w1, · · · , wd}

• k clusters, choose centroids
{c(1), . . . , c(k)} and assignments.

• Approximated distortion for ERM
dS(ŵ, w) ≈

∑d
j=1 hj(wj − ŵj)2

• I(W ; Ŵ ) ≤ log k.

• Diameter of compressed weights can be
approximated by:
maxk1,k2 |c(k1) − c(k2)|2.

Diameter-regularized
Hessian-weighted K-means algorithm:

min
{ ∑K

k=1
∑
wj∈C(k) hj |wj − c(k)|2

+βmaxk1,k2 |c(k1) − c(k2)|2
}

• Dataset: MNIST and CIFAR10

• Model: retrained models with part of
training set

• Compare with original Hessian-
weighted K-means (β = 0)
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6. Related work
• Minimizing empirical risk of compressed

model [Gao et.al. 2018]

• Bounding generalization error using
small complexity of compressed model
[Zhou et.al. 2018]
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