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1. Introduction

Compression of deep models is necessary
due to limited storage and
computational resources

e Compression — worse performance

e Recent work shows population risk can
be improved after compression

Our contribution: provide information-
theoretic explanation by characterizing
tradeoff between generalization error
and empirical risk
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e Why? Model compression serves
as reqularizer to reduce generalization
error.

e How? We propose new quantization
algorithm to reduce generalization error
in model compression.

2. Compression Improves Generalizatio

Consider instance space Z, hypothesis
space W, loss function £ : W x Z — R™

e Training dataset:
S={Zy,---,Z,} from pu

Population risk:
Ly (w) & Bz p[0(w, Z)

Empirical risk:
LS(w) = % Z?zl E(U% Zi)

Learning algorithm:
conditional distribution Py|g.

Generalization error:
gen(u, Py s) = Ew,s[L,(W)—Lg(W)]

Compression algorithm:

conditional distribution PW|W

Markov chain S — W — W

Theorem. For learning algorithm
Py|s, and compression algorithm Wiw s
suppose £(w, Z) is o-sub-Gaussian under
7 ~ u for all © € W, then
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I(W;W).

I[(W:W) corresponds to rate of model
compression in rate-distortion theory
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3. Distortion on Empirical Risk

In rate-distortion framework,

e Define distortion with empirical risk
ds(w, W) = Lg() — Lg(w)
distortion decreases as rate increases.

Combine with generalization error bound

Theorem. Suppose assumptions in
previous Theorem hold, and I(W;W) =
R, then

A

Eg wi [Lu(W) = Ls(W)]

min )

< /22 R+ D(R).

Compression controls trade-off between
empirical risk and generalization error and
improves population risk

4. Example: Linear Regression

Model: Y, = X,w* +¢;, for1 =1, ..., n.
o X; cRYiid. Gaussian N(0,Xx)
e ¢; i.i.d. Gaussian N(0,0"?)
e Diameter of weights space W is C (W)
e Consider ERM: W = (XX1)"1XY.

Theorem. Upper bound on gen

o |1 W W
gen(u,PWlS) < 2052\/ ( )

n

where 02 2 COV)||Sx || + 0’2
Theorem. Upper bound population risk

A

mlnPW|W:I(W;W):R ES,W,W[LN(W) — Ls(W)]
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5. From Theory to Algorithms

Improving quantization algorithm:

Network parameters w = {wq, - ,wq}
k clusters, choose centroids
{c ..., "1} and assignments.

Approximated distortion for ERM
. d .

ds (W, w) ~ > 5 hj(w; —b;)°

I(W; W) < logk.

Diameter of compressed weights can be
approximated by:

maxy, , |cF1) — ck2)|2,

Diameter-regularized
Hessian-weighted K-means algorithm:

. K
min { Y40 ., ecm hyhw; — M3

+8 maxy, g, [cF1) — C(kQ)\Q}

e Dataset: MNIST and CIFAR10
e Model: retrained models with part of
training set
e Compare with original Hessian-
weighted K-means (8 = 0)
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6. Related work

e Minimizing empirical risk of compressed
model [Gao et.al. 2018]

e Bounding generalization error using

small complexity of compressed model
[Zhou et.al. 2018]
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