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Abstract: It has been reported in many recent works on deep model compression that the popula-
tion risk of a compressed model can be even better than that of the original model. In this paper,
an information-theoretic explanation for this population risk improvement phenomenon is pro-
vided by jointly studying the decrease in the generalization error and the increase in the empirical
risk that results from model compression. It is first shown that model compression reduces an
information-theoretic bound on the generalization error, which suggests that model compression can
be interpreted as a regularization technique to avoid overfitting. The increase in empirical risk caused
by model compression is then characterized using rate distortion theory. These results imply that the
overall population risk could be improved by model compression if the decrease in generalization
error exceeds the increase in empirical risk. A linear regression example is presented to demonstrate
that such a decrease in population risk due to model compression is indeed possible. Our theo-
retical results further suggest a way to improve a widely used model compression algorithm, i.e.,
Hessian-weighted K-means clustering, by regularizing the distance between the clustering centers.
Experiments with neural networks are provided to validate our theoretical assertions.

Keywords: empirical risk; generalization error; K-means clustering; model compression; population
risk; rate distortion theory; vector quantization

1. Introduction

Although deep neural networks have achieved remarkable success in various do-
mains [1], e.g., computer vision [2], playing games like Go [3], and autonomous driving [4],
the improvement of the performance of deep models often comes with deeper layers
and more complex network structures, which usually have a large number of parameters.
For example, in the application of image classification, it takes over 200 MB to save the
parameters of AlexNet [2] and more than 500 MB for VGG-16 net [5]. Hence, it is difficult to
port such large models to resource-limited devices such as mobile devices and embedded
systems, due to their limited storage, bandwidth, energy, and computational resources.

Due to this reason there has been a flurry of work on compressing deep neural
networks (see [6–8] for recent surveys). Existing studies mainly focus on designing com-
pression algorithms to reduce the memory and computational cost, while keeping the
same level of population risk. In some recent papers [9–12], aggressive model compression
algorithms have been proposed, which require 10% or fewer bits to store the compressed
model compared to the storage required by the original model. Surprisingly, it has been
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observed empirically in these works that the population risk of the compressed model can
often be even better than that of the original model. This phenomenon is counter-intuitive
at first glance, since more compression generally leads to more information loss.

Indeed, a compressed model would usually have a larger empirical risk than the origi-
nal one, since machine learning methods are usually trained by minimizing the empirical
risk. On the other hand, model compression could possibly decrease the generalization
error, since it can be interpreted as a regularization technique to avoid overfitting. As the
population risk is the sum of the empirical risk and the generalization error, it is possible
for the population risk to be reduced by model compression.

1.1. Contributions

In this paper, we provide an information-theoretic explanation for the population risk
improvement with model compression by jointly characterizing the decrease in generaliza-
tion error and the increase in empirical risk. Specifically, we focus on the case where the
model is compressed based on a pre-trained model.

We first prove that model compression leads to a tightening of the information-
theoretic generalization error bound in [13], and it can therefore be interpreted as a reg-
ularization method to reduce overfitting. Furthermore, by defining a distortion metric
based on the difference in the empirical risk between the original model obtained by em-
pirical risk minimization (ERM) and compressed models, we use rate distortion theory to
characterize the increase in empirical risk as a function of the number of bits R used to
describe the model. If the decrease in generalization error exceeds the increase in empirical
risk, the population risk can be improved. An empirical illustration of this result for the
MNIST dataset is provided in Figure 1, where model compression can lead to population
risk improvement (details are given in Section 7). To better demonstrate our theoretical
results, we investigate the example of linear regression comprehensively, where we develop
explicit bounds on the generalization error and the increase in empirical risk.
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Figure 1. Population risk of the compressed model Ŵ and the original model W vs. compression ratio
(ratio of the number of bits used for compressed model to the number of bits used for original model).
The generalization error of Ŵ decreases and the empirical risk of Ŵ increases with more compression
(smaller compression ratio). The population risk of Ŵ is less than that of W for compression ratios
larger than 6% in this figure. As the compression ratio goes to 100% (no compression), the population
risk of Ŵ will converge to that of the original model W.

Our results also suggest a way to improve a method for compression based on Hessian-
weighted K-means clustering [11] in both scalar and vector case, by regularizing the
distance between the clustering centers. Our experiments with neural networks validate
our theoretical assertions and demonstrate the effectiveness of the proposed regularizer.

1.2. Related Works

There have been many studies on model compression for deep neural networks. The
compression could be achieved by varying the training process, e.g., network structure
optimization [14], low precision neural networks [15], and neural networks with binary

Figure 1. Population risk of the compressed model Ŵ and the original model W vs. compression ratio
(ratio of the number of bits used for compressed model to the number of bits used for original model).
The generalization error of Ŵ decreases and the empirical risk of Ŵ increases with more compression
(smaller compression ratio). The population risk of Ŵ is less than that of W for compression ratios
larger than 6% in this figure. As the compression ratio goes to 100% (no compression), the population
risk of Ŵ will converge to that of the original model W.
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Our results also suggest a way to improve a method for compression based on Hessian-
weighted K-means clustering [11] in both scalar and vector case, by regularizing the
distance between the clustering centers. Our experiments with neural networks validate
our theoretical assertions and demonstrate the effectiveness of the proposed regularizer.

1.2. Related Works

There have been many studies on model compression for deep neural networks.
The compression could be achieved by varying the training process, e.g., network structure
optimization [14], low precision neural networks [15], and neural networks with binary
weights [16,17]. Here we mainly discuss compression approaches that are applied on a
pre-trained model.

Pruning, quantization, and matrix factorization are the most popular approaches
to compressing pre-trained deep neural networks. The study of pruning algorithms for
model compression which remove redundant parameters from neural networks dates
back to the 1980s and 1990s [18–20]. More recently, an iterative pruning and retraining
algorithm to further reduce the size of deep models was proposed in [9,21]. The method of
network quantization or weight sharing, i.e., employing a clustering algorithm to group
the weights in a neural network, and its variants, including vector quantization [22], soft
quantization [23,24], fixed point quantization [25], transform quantization [26], and Hessian
weighted quantization [11], have been extensively investigated. Matrix factorization, where
low-rank approximation of the weights in neural networks is used instead of the original
weight matrix, has also been widely studied in [27–29].

All of the aforementioned works demonstrate the effectiveness of their compres-
sion methods via comprehensive numerical experiments. Little research has been done
to develop a theoretical understanding of how model compression affects performance.
In work [30], an information-theoretic view of model compression via rate-distortion theory
is provided, with the focus on characterizing the tradeoff between model compression
and only the empirical risk of the compressed model. In [31–33], using a PAC-Bayesian
framework, a non-vacuous generalization error bound for compressed model is derived
based on its smaller model complexity.

In contrast to these works, instead of focusing on minimizing only the empirical risk as
in [30], or minimizing only the generalization error as in [33], we use the mutual information
based generalization error bound developed in [13,34] jointly with rate distortion theory
to connect analyses of generalization error and empirical risk. This way, we are able to
characterize the tradeoff between decrease in generalization error and the increase in
empirical risk that results from model compression, and thus provide an understanding
as to why model compression can improve the population risk. More importantly, our
theoretical studies offer insights on designing practical model compression algorithms.

The rest of the paper is organized as follows. In Section 2, we provide relevant
definitions and review relevant results from rate distortion theory. In Section 3, we prove
that model compression results in the tightening of an information-theoretic generalization
error upper bound. In Section 4, we use rate distortion theory to characterize the tradeoff
between the increase in empirical risk and the decrease in generalization error that results
from model compression. In Section 5, we quantify this tradeoff for a linear regression
model. In Section 6, we discuss how the Hessian-weighted K-means clustering compression
approach can be improved by using a regularizer motivated by our theoretical results.
In Section 7, we provide some experiments with neural network models to validate our
theoretical results and demonstrate the effectiveness of the proposed regularizer.

Notation 1. For a random variable X generated from a distribution µ, we use EX∼µ to denote the
expectation taken over X with distribution µ. We use Id to denote the d-dimensional identity matrix
and ‖A‖ to denote the spectral norm of a matrix A. The cumulant generating function (CGF) of a
random variable X is defined as ΛX(λ) , lnE[eλ(X−EX)]. All logarithms are the natural ones.
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2. Preliminaries
2.1. Review of Rate Distortion Theory

Rate distortion theory, introduced by Shannon [35], is a major branch of information
theory that studies the fundamental limits of lossy data compression. It addresses the
minimal number of bits per symbol, as measured by the rate R, to transmit a random
variable W such that the receiver can reconstruct W without exceeding distortion D.

Specifically, let Wm = {W1, W2, · · · , Wm} denote a sequence of m i.i.d. random
variables Wi ∈ W generated from a source distribution PW . An encoder fm : Wm →
{1, 2, · · · , M}maps the message Wm into a codeword, and a decoder gm : {1, 2, · · · , M} →
Ŵm reconstructs the message by an estimate Ŵm from the codeword, where Ŵ ⊆ W
denotes the range of Ŵ. A distortion metric d : W ×W → R+ quantifies the difference
between the original and reconstructed messages. The distortion between sequences wm

and ŵm is defined to be

d(wm, ŵm) ,
1
m

m

∑
i=1

d(wi, ŵi). (1)

A commonly used distortion metric is the square distortion: d(w, ŵ) = (w− ŵ)2.

Definition 1. An (m, M, D)-triple is achievable, if there exists a (probabilistic) encoder-decoder pair
( fm, gm) such that the alphabet of codeword has size M and the expected distortion
E[d(Wm; gm( fm(Wm)))] ≤ D.

Now we define the following rate-distortion and distortion-rate function for lossy
data compression.

Definition 2. The rate-distortion function and the distortion-rate function are defined as

R(D) , lim
m→∞

1
m

log2 M∗(m, D), (2)

D(R) , lim
m→∞

D∗(m, R), (3)

where M∗(m, D) , min{M : (m, M, D) is achievable} and D∗(m, R) , min{D : (m, 2mR, D)
is achievable}.

The main theorem of rate distortion theory is as follows.

Lemma 1 ([36]). For an i.i.d. source W with distribution PW and distortion function d(w, ŵ):

R(D) = min
PŴ|W :E[d(W,Ŵ)]≤D

I(W; Ŵ), (4)

D(R) = min
PŴ|W :I(W;Ŵ)≤R

E[d(W, Ŵ)], (5)

where I(W; Ŵ) , EW,Ŵ [ln
PW,Ŵ
PW PŴ

] denotes the mutual information between W and Ŵ.

The rate-distortion function quantifies the smallest number of bits required to com-
press the data given the distortion, and the distortion-rate function quantifies the minimal
distortion that can be achieved under the rate constraint.

2.2. Generalization Error

Consider an instance space Z , a hypothesis spaceW , and a non-negative loss function
` :W ×Z → R+. A training dataset S = {Z1, · · · , Zn} consists of n i.i.d samples Zi ∈ Z
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drawn from an unknown distribution µ. The goal of a supervised learning algorithm is to
find an output hypothesis w ∈ W that minimizes the population risk:

Lµ(w) , EZ∼µ[`(w, Z)]. (6)

In practice, µ is unknown, and therefore Lµ(w) cannot be computed directly. Instead,
the empirical risk of w on the training dataset S is studied, which is defined as

LS(w) ,
1
n

n

∑
i=1

`(w, Zi). (7)

A learning algorithm can be characterized by a randomized mapping from the training
dataset S to a hypothesis W according to a conditional distribution PW|S. The (expected)
generalization error of a supervised learning algorithm is the expected difference between
the population risk of the output hypothesis and its empirical risk on the training dataset:

gen(µ, PW|S) , EW,S[Lµ(W)− LS(W)], (8)

where the expectation is taken over the joint distribution PS,W = PS ⊗ PW|S. The general-
ization error is used to measure the extent to which the learning algorithm overfits the
training data.

3. Compression Can Improve Generalization

In this section, we show that lossy compression can lead to a tighter mutual informa-
tion based generalization error upper bound, which potentially reduces the generalization
error of a supervised learning algorithm.

We start from the following lemma which provides an upper bound on the generaliza-
tion error using the mutual information I(S; W) between training dataset S and the output
of the learning algorithm W.

Lemma 2 ([13]). Suppose `(w, Z) is σ-sub-Gaussian (A random variable X is σ-sub-Gaussian if
ΛX(λ) ≤ σ2λ2

2 , ∀λ ∈ R.) under Z ∼ µ for all w ∈ W , then

|gen(µ, PW|S)| ≤
√

2σ2

n
I(S; W). (9)

Compression can be viewed as a post-processing of the output of a learning algorithm.
The output model W generated by a learning algorithm can be quantized, pruned, fac-
torized, or even perturbed by noise, which results in a compressed model Ŵ. Assume
that the compression algorithm is only based on W and can be described by a conditional
distribution PŴ|W . Then the following Markov chain holds: S → W → Ŵ. By the data
processing inequality,

I(S; Ŵ) ≤ min{I(W; Ŵ), I(S, W)}.
Thus, we have the following theorem characterizing the generalization error of the

compressed model.

Theorem 1. Consider a learning algorithm PW|S, a compression algorithm PŴ|W , and suppose
`(ŵ, Z) is σ-sub-Gaussian under Z ∼ µ for all ŵ ∈ Ŵ . Then

|gen(µ, PŴ|S)| ≤
√

2σ2

n
min{I(W; Ŵ), I(S, W)}. (10)

Note that the generalization error upper bound in Theorem 1 for the compressed
model is always no greater than the one in Lemma 2. This allows for the interpretation of
compression as a regularization technique to reduce the generalization error.
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4. Generalization Error and Model Distortion

In this section, we define a distortion metric in model compression that allows us to
relate the distortion (the increase in empirical risk) due to compression with the reduction
in the generalization error bound discussed in Section 3.

4.1. Distortion Metric in Model Compression

The expected population risk of a model W can be written as

EW [Lµ(W)] = E[LS(W)] + gen(µ, PW|S), (11)

where the first term, which is the expected empirical risk, reflects how well the model W
fits the training data, while the second term demonstrates how well the model generalizes.
In the empirical risk minimization framework, we control both terms by (1) minimizing the
empirical risk of W directly or using other stochastic optimization algorithms, and (2) us-
ing regularization methods to control the generalization error, e.g., early stopping and
dropout [1].

Now, consider the expected population risk of the compressed model Ŵ:

EŴ [Lµ(Ŵ)] = E[Lµ(Ŵ)− LS(Ŵ) + LS(Ŵ)− LS(W) + LS(W)]

= E[LS(W)] + gen(µ, PŴ|S) +E[LS(Ŵ)− LS(W)]. (12)

Compared with (11), we note that the first empirical risk term is independent of the
compression algorithm, the second generalization error term can be upper bounded by
Theorem 1, and the third term E[LS(Ŵ)− LS(W)] quantifies the increase in the empirical
risk if we use the compressed model Ŵ instead of the original model W. We then define
the following distortion metric for model compression:

dS(w, ŵ) , LS(ŵ)− LS(w), (13)

which is the difference in the empirical risk between the compressed model Ŵ and the orig-
inal model W. In general, function dS(w, ŵ) is not always non-negative. However, for ERM
solution W, which is obtained by minimizing the empirical risk LS(W), dS(w, ŵ) ≥ 0,
which ensures that dS(w, ŵ) is a valid distortion metric. By Theorem 1, it follows that

ES,W,Ŵ [Lµ(Ŵ)− LS(W)] ≤
√

2σ2

n
I(W; Ŵ) +ES,W,Ŵ [dS(Ŵ, W)] , LS,W(PŴ|W), (14)

where LS,W(PŴ|W) is an upper bound on the expected difference between the population

risk of Ŵ and the empirical risk of the original model W on training dataset S. Note that
LS(W) is independent of the compression algorithm. Therefore, the bound in (14) can be
viewed as an upper bound of the population risk of the compressed model Ŵ.

4.2. Population Risk Improvement

By Lemma 1, the smallest distortion that can be achieved at rate R is D(R) =
minI(W;Ŵ)≤R ES,W,Ŵ [dS(Ŵ, W)]. Thus, the tightest bound in (14) that can be achieved
at rate R is given in the following theorem.

Theorem 2. Suppose the assumptions in Theorem 1 hold, PW|S minimizes the empirical risk
LS(W), and I(W; Ŵ) = R, then

min
PŴ|W :I(W;Ŵ)=R

ES,W,Ŵ [Lµ(Ŵ)− LS(W)] ≤
√

2σ2

n
R + D(R). (15)
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From the properties of the distortion-rate function [36], we know that D(R) is a de-
creasing function of R. Thus, we see that as R decreases the first term in (15), which
corresponds to the generalization error, decreases, while the second term, which corre-
sponds to the empirical risk, increases. Due to this tradeoff, it may be possible for the
bound in (15) to be smaller due to compression, i.e., using a smaller rate R. This indicates
that the population risk could improve with compression algorithm, which minimizes the
upper bound LS,W(PŴ|W).

Remark 1. In order to conclude definitively that the population risk can be improved with compres-
sion, we need to find a lower bound (as a function of R) to match (at least in the order sense) the upper
bound in Theorem 2. This appears to be difficult to construct in general. One approach might be to
use the same decomposition as in (12) and develop lower bounds for minI(W;Ŵ)=R gen(µ, PŴ|S)

and minI(W;Ŵ)=R ES,W,Ŵ [dS(Ŵ, W)] independently. However, such an approach runs into the
following issues: (1) such a lower bound would be loose since the compression algorithm PŴ|W that
minimizes generalization error, the one that minimizes the distortion, and the one that minimizes
the sum of the two can be quite different; and (2) a lower bound for generalization error needs to be
developed, which appears to be difficult, with existing literature mainly focusing on lower bounding
the excess risk, e.g., [37].

As will be shown in Section 7, we can actually improve the population risk with a
well designed compression algorithm in practical applications.

5. Example: Linear Regression

In this section, we comprehensively explore the example of linear regression to get
a better understanding of the results in Section 4. To this end, we develop explicit upper
bounds for generalization error and distortion-rate function D(R). All the proofs of the
lemmas and theorems are provided in the Appendixes A–D.

Suppose that the dataset S = {Z1, · · · , Zn} = {(X1, Y1), · · · , (Xn, Yn)} is generated
from the following linear model with weight vector w∗ = (w∗(1), · · · , w∗(d)) ∈ Rd,

Yi = X>i w∗ + εi, i = 1, · · · , n, (16)

where Xi’s are i.i.d. d-dimensional random vectors with distribution N (0, ΣX), and εi ∼
N (0, σ′2) denotes i.i.d. Gaussian noise. We adopt the mean squared error as the loss
function, and the corresponding empirical risk on S is

LS(w) =
1
n

n

∑
i=1

(Yi − X>i w)2 =
1
n
‖Y− X>w‖2

2, (17)

for w ∈ W = Rd, where X ∈ Rd×n denotes all the input samples, and Y ∈ Rn denotes the
responses. If n > d, the ERM solution is

W = (XX>)−1XY, (18)

which is deterministic given S. Its generalization error can be computed exactly as in the
following lemma (see Appendix A for detailed proof).

Lemma 3. If n > d + 1, then

gen(µ, PW|S) =
σ′2d

n
(2 +

d + 1
n− d− 1

). (19)

5.1. Information-Theoretic Generalization Bounds for Compressed Linear Model

We note that the mutual information based bound in Lemma 2 is not applicable for this
linear regression model, since W is a deterministic function of S, and I(S; W) = ∞. However,
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this issue can be resolved if we post-process the ERM solution W by a compression algorithm
and upper bound the generalization error by I(Ŵ; W) as shown in Theorem 1.

Consider a compression algorithm, which maps the original weights W ∈ Rd to the
compressed model Ŵ ∈ Ŵ ⊆ Rd. For a fixed and compact Ŵ , we define

C(w∗) , sup
ŵ∈Ŵ

‖ŵ− w∗‖2
2, (20)

which measures the largest distance between the reconstruction ŵ and the optimal weights
w∗. The following proposition provides an upper bound on the generalization error of the
compressed model Ŵ, and the detailed proof is provided in Appendix B.

Proposition 1. Consider the ERM solution W = (XX>)−1XY, and suppose Ŵ is compact, then

gen(µ, PŴ|S) ≤ 2σ∗2`

√
I(W; Ŵ)

n
, (21)

where σ∗2` , C(w∗)‖ΣX‖+ σ′2.

5.2. Distortion-Rate Function for Linear Model

We now provide an upper bound on the distortion-rate function D(R) for the linear re-
gression model. Note that∇LS(W) = 0, since W minimizes the empirical risk. The Hessian
matrix of the loss function is

HS(W) =
1
n

XX>, (22)

which is not a function of W. Then, the distortion function can be written as:

ES,W,Ŵ [dS(Ŵ, W)] = ES,W,Ŵ [LS(Ŵ)− LS(W)]

= ES,W,Ŵ [(Ŵ −W)>
1
n

XX>(Ŵ −W)]. (23)

The following theorem characterizes upper bounds for R(D) and D(R) for
linear regression.

Proposition 2. For the ERM solution W = (XX>)−1XY, we have

R(D) ≤ d
2

(
ln

dσ′2

(n− d− 1)D

)+
, D ≥ 0, (24)

D(R) ≤ dσ′2

n− d− 1
e−

2R
d , R ≥ 0, (25)

where (x)+ = max{0, x}.

Proof sketch. The proof of the upper bound for R(D) is based on considering a Gaussian
random vector which has the same mean and covariance matrix as W. In addition, the up-
per bound is achieved when W − Ŵ is independent of the dataset S with the following
conditional distribution,

PŴ|W = N
(
(1− α)W + αw∗, (1− α)

D
d

Σ−1
X
)
, (26)

where α , nD
dσ′2 ≤ 1. Note that this “compression algorithm” requires the knowledge of

optimal weights w∗, which is unknown in practice.
The details can be found in Appendix C.
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Remark 2. As shown in [38], if n > d/ε2, ‖ 1
n XX> − ΣX‖ ≤ ε holds with high probability.

Then, the following lower bound on R(D) holds if we can approximate 1
n XX> in (23) using ΣX ,

R(D) &
d
2

(
ln

dσ′2

(n− d− 1)D

)+
− D(PW‖PWG ), (27)

where WG denotes a Gaussian random vector with the same mean and variance as W. The details
can be found in Appendix D.

Combing Propositions 1 and 2, we have the following result.

Corollary 1. Under the same assumptions as in Propositions 1, we have

min
PŴ|W :I(W;Ŵ)=R

ES,W,Ŵ [Lµ(Ŵ)− LS(W)] ≤ 2σ∗2`

√
R
n
+

dσ′2

n− d− 1
e−

2R
d , R ≥ 0. (28)

In (28) the first term corresponds to the generalization error, which decreases with
compression, and the second term corresponds to the empirical risk, which increases
with compression.

5.3. Evaluation and Visualization

In the following plots, we generate the training dataset S using the linear model
in (16) by letting d = 50, n = 80, ΣX = Id and σ′2 = 1. We consider the following two
compression algorithms. The first one is the conditional distribution PŴ|W in the proof
of achievability (26), which requires the knowledge of w∗ and is denoted as “Oracle”.
The second one is the well-known K-means clustering algorithm, where the weights in W
are grouped into K clusters and represented by the cluster centers in the reconstruction Ŵ.
By changing the number of clusters K, we can control the rate R, i.e., I(W; Ŵ). We average
the performance and estimate I(W; Ŵ) of these algorithms with 10,000 Monte-Carlo trials
in the simulation.

We note that I(W; Ŵ) is equal to the number of bits used in compression only in the
asymptotic regime of large number of samples. In practice, we may have only one sample
of the weights W, and therefore I(W; Ŵ) simply measures the extent to which compression
is performed by the compression algorithm.

In Figure 2a, we plot the generalization error bound in Proposition 1 as a function of
the rate R and compare the generalization errors of the Oracle and K-means algorithms. It
can be seen that Proposition 1 provides a valid upper bound for the generalization error,
but this bound is tight only when R is small. Moreover, both compression algorithms
can achieve smaller generalization errors compared to that of the ERM solution W, which
validates the result in Theorem 1.

Figure 2b plots the upper bound on the distortion-rate function in Theorem 2 and
the distortions achieved by the Oracle and K-means algorithms. The distortion of the
Oracle decreases as we increase the rate R and matches the D(R) function well. However,
there is a large gap between the distortion achieved by K-means algorithms and D(R).
One possible explanation is that since w∗ is unknown, it is impossible for the K-means
algorithm to learn the optimal cluster center with only one sample of W. Even if we view
W(j), j = 1, · · · , d as i.i.d. samples from the same distribution, there is still a gap between
the distortion achieved by the K-means algorithm and the optimal quantization as studied
in [39].

We plot the population risks of the ERM solution W, the Oracle, and K-means al-
gorithms in Figure 2c. It is not surprising that the Oracle algorithm achieves a small
population risk, since Ŵ is a function of w∗ and Ŵ = w∗ when R = 0. However, it can
be seen that the K-means algorithm achieves a smaller population risk than the original
model W, since the decrease in generalization error exceeds the increase in empirical risk,
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when we use fewer clusters in the K-means algorithm, i.e., a smaller rate R. We note that
the minimal population risk is achieved when K = 2, since we initialize w∗ so that w∗(i),
1 ≤ i ≤ d, can be well approximated by two cluster centers.

(a) (b) (c)

Figure 2. Comparison of three different quantities for linear regression as a function of rate R in bits. (a) Generalization
error. (b) Distortion. (c) Population risk.

6. Clustering Algorithm Minimizing LS,W

In this section, we propose an improvement of the Hessian-weighted (HW) K-means
clustering algorithm [11] for model compression by regularizing the distance between
the cluster centers, which minimizes the upper bound LS,W(PŴ|W), as suggested by our
theoretical results in Section 4.

6.1. Hessian-Weighted K-Means Clustering

The goal of HW K-means is to minimize the distortion on the empirical risk dS(Ŵ, W),
which has the following Taylor series approximation:

dS(Ŵ, W) ≈ (Ŵ −W)T∇LS(W) +
1
2
(Ŵ −W)T HS(W)(Ŵ −W), (29)

where HS(W) is the Hessian matrix. Assuming that W is a local minimum of LS(W)
(ERM solution) and ∇LS(W) ≈ 0, the first term can be ignored. Furthermore, the Hessian
matrix HS(W) can be approximated by a diagonal matrix, which further simplifies the
objective to dS(Ŵ, W) ≈ ∑d

j=1 h(j)(W(j) − Ŵ(j))2, where h(j) is the j-th diagonal element of
the Hessian matrix.

Given network parameters w = {w(1), · · · , w(d)}, the HW K-means clustering al-
gorithm [11] partitions them into K disjoint clusters, using a set of cluster centers c =

{c(1), · · · , c(K)}, and a cluster assignment C =
{

C(1), · · · , C(K)
}

, while solving the follow-
ing optimization problem:

min
K

∑
k=1

∑
w(j)∈C(k)

h(j)|w(j) − c(k)|2. (30)

6.2. Diameter Regularization

In contrast to HW K-means which only cares about empirical risk, our goal is to obtain
as small a population risk as possible by minimizing the upper bound

LS,W(PŴ|W) =

√
2σ2

n
I(W; Ŵ) +E[dS(Ŵ, W)]. (31)

Here, we let the number of clusters K to be an input argument of the algorithm, so
that I(W; Ŵ) ≤ log2 K, and we want to minimize LS,W(PŴ|W) by carefully designing

the reconstructed weights given K, i.e., by choosing cluster centers{c(1), · · · , c(K)}. Then,
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minimizing the sub-Gaussian parameter σ is one way to control the generalization error of
the compression algorithm. Recall that in Proposition 1, we have

gen(µ, PŴ|S) ≤ 2
(
C(w∗)‖ΣX‖+ σ′2

)
√

I(W; Ŵ)

n
, (32)

where the sub-Gaussian parameter is related to C(w∗) = supŵ∈Ŵ ‖ŵ − w∗‖2
2 in linear

regression. Note that this quantity can be interpreted as the diameter of the setW . Since
the ground truth w∗ is unknown in practice, we then propose the following diameter
regularization by approximating C(w∗) in (32) by

β max
k1,k2
|c(k1) − c(k2)|2, β ≥ 0, (33)

where β is a parameter controls the penalty term and can be selected by cross validation in
practice. Our diameter-regularized Hessian-weighted (DRHW) K-means algorithm solves
the following optimization problem:

min
K

∑
k=1

∑
w(j)∈C(k)

h(j)|w(j) − c(k)|2 + β max
k1,k2
|c(k1) − c(k2)|2. (34)

Such an optimization problem can be easily extended to the vector case which leads
to a vector quantization algorithm. Suppose that we group the d-dimensional weights w =

{w(1), · · · , w(d)} into d′ = d/m vectors with length m, i.e., {w(1), · · · , w(d′)}, w(j) ∈ Rm,
then our goal is to find cluster centers ck ∈ Rm and assignments minimizing the following
cost function:

min
K

∑
k=1

∑
w(j)∈C(k)

(w(j) − c(k))>H(j)(w(j) − c(k)) + β max
k1,k2
‖c(k1) − c(k2)‖2

2, (35)

where H(j) is the diagonal Hessian matrix corresponding to the vector w(j). An iterative
algorithm to solve the above optimization problem for vector quantization is provided in
Algorithm 1.

The algorithm alternates between minimizing the objective function over the cluster
centers and the assignments. In the Assignment step, we first fix centers and assign each
w(j) to its nearest neighbor. We then fix assignments and update the centers by the weighted
mean of each cluster in the Update step. For the farthest pair of centers, the diameter
regularizer pushes them toward each other, so that the output centers have potentially
smaller diameters than those of regular K-means. We note that the time complexity of the
proposed diameter-regularized Hessian weighted K-means algorithm is the same as that of
the original K-means algorithm.

Algorithm 1 Diameter-regularized Hessian weighted K-means in vector case

Input: Weights vector {w(1), . . . , w(d′)}, Hessian matrices {H(1), . . . , H(d′)}, diameter reg-
ularizer β > 0, number of clusters K, iterations T
Initialize the K cluster centers {c(1)0 , . . . , c(K)0 } randomly
for t = 1 to T do

Assignment step:
Initialize C(k)

t = ∅ for all k ∈ [K].
for j = 1 to d′ do

Assign w(j) to the nearest cluster center, i.e., find k(j)
t = arg mink∈[K] ‖w(j) − c(k)t−1‖2

2
and let

C(k(j)
t )

t ← C(k(j)
t )

t ∪ {w(j)} (36)
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end for
Update step:
Find current farthest pair of centers (k1, k2) = arg maxk1,k2 ‖c

(k1)
t−1 − c(k2)

t−1‖2
2.

Update c(k1)
t and c(k2)

t by

c(k1)
t =

(
∑

w(j)∈C
(k1)
t

H(j) + βIm

)−1(
∑

w(j)∈C
(k1)
t

H(j)w(j) + βc(k2)
t

)

c(k2)
t =

(
∑

w(j)∈C(k2)
t

H(j) + βIm

)−1(
∑

w(j)∈C(k2)
t

H(j)w(j) + βc(k1)
t

)
(37)

for k = 1 to K, k 6∈ {k1, k2} do
Update the cluster centers by

c(k)t =
(

∑
w(j)∈C(k)

t

H(j)
)−1(

∑
w(j)∈C(k)

t

H(j)w(j)
)

(38)

end for
end for

Output: centers {c(1)T , . . . , c(K)T } and assignments {C(1)
T , . . . , C(K)

T }.

7. Experiments

In this section, we provide some real-world experiments to validate our theoretical
assertions and the DRHW K-means algorithm. (The code for our experiments is available
at the following link https://github.com/wgao9/weight-quant (accessed on 13 August
2021)) Our experiments include compression of: (i) a three-layer fully connected network
on the MNIST dataset [40]; and (ii) a convolutional neural network with five convolutional
layers and three linear layers on the CIFAR10 dataset [41] (We downloaded the pre-trained
model in PyTorch from https://github.com/aaron-xichen/pytorch-playground (accessed
on 13 August 2021)).

In Theorem 1, an upper bound on the expected generalization error is provided,
and therefore we independently train 50 different models (with the same structure but
different parameter initializations) using different subset of training samples, and average
the results. We use 10% of the training data to train the model for MNIST and use 20% of
the training data to train the model for CIFAR10. For each experiment, we use the same
number of clusters for each convolutional layer and fully connected layer.

In the following experiments, we plot the cross entropy loss as a function of com-
pression ratio. Note that compression ratio can be controlled by changing the number of
clusters K in the quantization algorithm. To see this, suppose that the neural networks
have total of d parameters that need to be compressed, and each parameter is of b bits.
Let C(k) be the set of weights in cluster k and let bk be the number of bits of the codeword
assigned to the network parameters in cluster k for 1 ≤ k ≤ K. For a lookup table to decode
quantized values, we need Kb bits to store all the reconstructed weights, i.e., cluster centers
c = {c(1), · · · , c(K)}. Then, the compression ratio is given by

Compression Ratio =
∑K

k=1 |C(k)|bk + Kb
db

, (39)

where | · | denotes the number of elements in the set. In our experiments, we use a variable-
length code such as the Huffman code to compute the compression ratio under different
numbers of clusters K.

In Figures 3 and 4, we compare the scalar DRHW K-means algorithm with the scalar
HW K-means algorithm for different compression ratios on the MNIST and CIFAR10

https://github.com/wgao9/weight-quant
https://github.com/aaron-xichen/pytorch-playground
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datasets. Both figures demonstrate that the compression algorithm increases the empirical
risk but decreases the generalization error, and the net effect is that the both compressed
models have smaller population risks than those of the original models. More importantly,
the DRHW K-means algorithm produces a compressed model that has a better population
risk than that of the HW K-means algorithm.
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Figure 3. Comparison between DRHW K-means (β = 50) and HW K-means (β = 0) on MNIST.
Top: empirical risks. Bottom: population risks and generalization errors.

In Figure 5, we compare the population risk of scalar DRHW K-means algorithm and
that of the vector DRHW K-means algorithm with block length m = 2 for different com-
pression ratios on the MNIST dataset. It can be seen from the figure that the improvement
by using vector quantization (m = 2) is quite modest, which implies that the dependence
between the weights W(j) is weak. However, we can still observe the improvement of
adding the diameter regularizer in vector DRHW K-means algorithm by comparing the
curves with β = 50 and β = 0.

In Figure 6, we demonstrate how β affects the performance of our diameter-regularized
Hessian-weighted K-means algorithm in scalar case. It can be seen that as β increases,
the generalization error decreases and the distortion in empirical risk increases, which
validates the idea that this proposed diameter regularizer can be used to reduce the
generalization error. The value of β that results in the best population risk therefore can be
chosen via cross-validation in practice.
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8. Conclusion

In this paper, we have provided an information-theoretical understanding of how
model compression affects the population risk of a compressed model. In particular, our
results indicate that model compression may increase the empirical risk but decrease the
generalization error. Therefore, it might be possible to achieve a smaller population risk
via model compression. Our experiments validate these theoretical findings. Furthermore,
we showed how our information-theoretic bound on the population risk can be used to
optimize practical compression algorithms.

We note that our results could be applied to improve other compression algorithms,
such as pruning and matrix factorization. Moreover, we believe that the information-
theoretic analysis adopted here could be generalized to characterize a similar tradeoff
between the generalization error and empirical risk in other applications beyond com-
pressing pre-trained models, e.g., distributed optimization [42] and low precision training
[15].
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8. Conclusion

In this paper, we have provided an information-theoretical understanding of how
model compression affects the population risk of a compressed model. In particular, our
results indicate that model compression may increase the empirical risk but decrease the
generalization error. Therefore, it might be possible to achieve a smaller population risk
via model compression. Our experiments validate these theoretical findings. Furthermore,
we showed how our information-theoretic bound on the population risk can be used to
optimize practical compression algorithms.

We note that our results could be applied to improve other compression algorithms,
such as pruning and matrix factorization. Moreover, we believe that the information-
theoretic analysis adopted here could be generalized to characterize a similar tradeoff
between the generalization error and empirical risk in other applications beyond com-
pressing pre-trained models, e.g., distributed optimization [42] and low precision training
[15].
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8. Conclusions

In this paper, we have provided an information-theoretical understanding of how
model compression affects the population risk of a compressed model. In particular, our
results indicate that model compression may increase the empirical risk but decrease the
generalization error. Therefore, it might be possible to achieve a smaller population risk
via model compression. Our experiments validate these theoretical findings. Furthermore,
we showed how our information-theoretic bound on the population risk can be used to
optimize practical compression algorithms.

We note that our results could be applied to improve other compression algorithms,
such as pruning and matrix factorization. Moreover, we believe that the information-theoretic
analysis adopted here could be generalized to characterize a similar tradeoff between the
generalization error and empirical risk in other applications beyond compressing pre-trained
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Appendix A. Proof of Lemma 3

Let Z̃ = (X̃, Ỹ), X̃ ∈ Rd and Ỹ ∈ R denote an independent copy of the training sample
Zi. Then, it can be shown that

gen(µ, PW|S) = EW,S[Lµ(W)− LS(W)]

= EW,S

[
EZ̃[(Ỹ− X̃>W)2]− 1

n
‖Y− X>W‖2

2

]

= ES

[
EZ̃[(Ỹ− X̃>(XX>)−1XY)2]− 1

n
‖Y− X>(XX>)−1XY‖2

2

]
, (A1)
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where Ỹ = X̃>w∗ + ε̃ and Y = X>w∗ + ε. Then, we have

gen(µ, PW|S) = Eε,ε̃,X,X̃

[
(ε̃− X̃>(XX>)−1Xε)2]− 1

n
Eε,X

[
‖ε− X>(XX>)−1Xε‖2

2
]

= Eε,X,X̃

[
ε>X>(XX>)−1X̃X̃>(XX>)−1Xε +

1
n

ε>X>(XX>)−1Xε
]

= Eε,X
[
Tr(X>(XX>)−1ΣX(XX>)−1Xεε>)

]
+

σ′2d
n

= σ′2EX
[
Tr((XX>)−1ΣX)

]
+

σ′2d
n

. (A2)

Note that Xi’s are i.i.d. samples from N (0, ΣX), then we have (XX>)−1 distributed
according to Wishart−1(Σ−1

X , n), where Wishart−1 denotes the inverse Wishart distribution

with n degrees of freedom, and E[(XX>)−1] =
Σ−1

X
n−d−1 . It then follows that

gen(µ, PW|S) =
σ′2

n− d− 1
[
Tr(Σ−1

X ΣX)
]
+

σ′2d
n

=
σ′2d

n
(2 +

d + 1
n− d− 1

). (A3)

Appendix B. Proof of Proposition 1

For all ŵ ∈ Ŵ , it can be shown that

`(ŵ, Z̃) = (Ỹ− X̃>ŵ)2 = (X̃>(w∗ − ŵ) + ε̃)2. (A4)

Since X̃ ∼ N (0, ΣX) and ε̃ ∼ N (0, σ′2), then `(ŵ, Z̃) ∼ σ2
` χ2

1, where

σ2
` , (ŵ− w∗)>ΣX(ŵ− w∗) + σ′2,

and χ2
1 denotes the chi-squared distribution with one degree of freedom. Then, the CGF of

`(ŵ, Z̃) is

Λ`(ŵ,Z̃)(λ) = −σ2
` λ− 1

2
ln(1− 2σ2

` λ), λ ∈ (−∞,
1

2σ2
`

). (A5)

Thus, `(ŵ, Z̃) is not sub-Gaussian for all λ ∈ R. However, it can be shown that

Λ`(ŵ,Z̃)(λ) ≤ σ4
` λ2, λ < 0. (A6)

We need the following lemma from the Theorem 1 of [43] to proceed our analysis.

Lemma A1 ([43]). Assume that for all ŵ ∈ Ŵ , Λ`(ŵ,Z̃)(λ) ≤ σ2λ2

2 for λ ≤ 0. Then,

gen(µ, PŴ|S) ≤
√

2σ2

n
I(Ŵ; S). (A7)

Recall that C(w∗) = supŵ∈Ŵ ‖ŵ− w∗‖2
2. We then have the following bound on the

CGF of `(ŵ, Z̃),

Λ`(ŵ,Z̃)(λ) ≤ λ2 max
ŵ∈Ŵ

σ4
` ≤ λ2(C(w∗)‖ΣX‖+ σ′2

)2, λ < 0. (A8)

Applying Lemma A1 and data processing inequality, we have

gen(µ, PŴ|S) ≤ 2
(
C(w∗)‖ΣX‖+ σ′2

)
√

I(Ŵ; W)

n
. (A9)
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Appendix C. Proof of Proposition 2

The constraint on the distortion function can be written as follows:

D ≥ ES,W,Ŵ [dS(Ŵ, W)] =
1
n
ES,W,Ŵ [(Ŵ −W)>XX>(Ŵ −W)]. (A10)

It follows from Lemma 1 that

R(D) = min
PŴ|W

I(Ŵ; W), s.t. ES,W,Ŵ [(Ŵ −W)>
1
n

XX>(Ŵ −W)] ≤ D. (A11)

Note that E[W] = w∗ and Cov[W] = σ′2
n−d−1 Σ−1

X since W is the ERM solution. In the
following proof, we consider a Gaussian random vector with the same mean and covariance
matrix WG ∼ N (w∗, σ′2

n−d−1 Σ−1
X ) as W.

For the upper bound of R(D), consider the channel P∗
Ŵ|W = N

(
(1− α)W + αw∗, (1−

α)D
d Σ−1

X
)
, where α = nD

dσ′2 ≤ 1. It can be verified that this channel satisfies the constraint on
the distortion:

ES,W,Ŵ [dS(Ŵ, W)]

= α2E[(W − w∗)>
1
n

XX>(W − w∗)] + (1− α)
D
d

Tr
(
E[ 1

n
XX>]Σ−1

X

)

= α2E[
(
(XX>)−1Xε

)> 1
n

XX>
(
(XX>)−1Xε

)
] + (1− α)D

= α2 1
n
E[ε>X>(XX>)−1Xε] + (1− α)D

= D. (A12)

If we let ξ ∼ N (0, (1− α)D
d Σ−1

X ), it follows that

R(D) ≤ I(W; (1− α)W + αw∗ + ξ)

(a)
≤ I(WG; (1− α)WG + ξ)

=
d
2

ln
( dσ′2

(n− d− 1)D
− n

n− d− 1
+ 1
)

≤ d
2

(
ln

dσ′2

(n− d− 1)D

)+
, (A13)

where (a) is due to the fact that Gaussian distribution maximizes the mutual information in
an additive white Gaussian noise channels.

The upper bound on D(R) follows immediately from the upper bound on R(D).

Appendix D. Discussion of Remark 2

Suppose that 1
n XX> can be approximated by ΣX for large n in (A10). It then fol-

lows that

R(D) = min
PŴ|W

I(Ŵ; W), s.t. ES,W,Ŵ [(Ŵ −W)>ΣX(Ŵ −W)] ≤ D. (A14)

It can be easily verified that the channel P∗
W|Ŵ = N (Ŵ, D

d Σ−1
X ) satisfies the distortion

constraint. For any PW|Ŵ such that ES,W,Ŵ [dS(Ŵ, W)] ≤ D, it follows that
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I(W; Ŵ) = EW,Ŵ

[
ln

PW|Ŵ
PW

]

= EW,Ŵ

[
ln

PW|Ŵ
P∗

W|Ŵ

]
+EW,Ŵ

[
ln

P∗
W|Ŵ
PWG

]
−KL(PW‖PWG )

≥ EW,Ŵ

[
ln

P∗
W|Ŵ
PWG

]
−KL(PW‖PWG ), (A15)

where KL(PW‖PWG ) is the Kullback–Leibler divergence between the two distributions,
and the last step follows from the fact that KL(PW,Ŵ‖P∗W,Ŵ

) ≥ 0. Note that

EW,Ŵ

[
ln

P∗
W|Ŵ
PWG

]

= EW,Ŵ
[ (n− d− 1)(W − w∗)>ΣX(W − w∗)

2σ′2
− d(Ŵ −W)>ΣX(Ŵ −W)

2D
]

+
d
2

ln
dσ′2

(n− d− 1)D

(a)
=

d
2

ln
dσ′2

(n− d− 1)D
+EW,Ŵ

[d
2
− d(Ŵ −W)>ΣX(Ŵ −W)

2D
]

(b)
≥ d

2
ln

dσ′2

(n− d− 1)D
, (A16)

where (a) follows from the fact that E[W] = w∗ and Cov[W] = σ′2
n−d−1 Σ−1

X , and (b) is due to
the fact that PŴ|W satisfies the distortion constraint. Thus,

R(D) ≥ d
2

ln
dσ′2

(n− d− 1)D
−KL(PW‖PWG ). (A17)
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