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Sequential algorithms for moving anomaly detection
in networks

Georgios Rovatsosa, Shaofeng Zoub, and Venugopal V. Veeravallia

aDepartment of Electrical and Computer Engineering and Coordinated Science Laboratory, University of
Illinois at Urbana–Champaign, Urbana, Illinois, USA; bDepartment of Electrical Engineering, University at
Buffalo, The State University of New York, Buffalo, New York, USA

ABSTRACT
The problem of quickest moving anomaly detection in networks is
studied. Initially, the observations are generated according to a pre-
change distribution. At some unknown but deterministic time, an anom-
aly emerges in the network. At each time instant, one node is affected by
the anomaly and receives data from a post-change distribution. The
anomaly moves across the network, and the node that it affects changes
with time. However, the trajectory of the moving anomaly is assumed to
be unknown. A discrete-time Markov chain is employed to model the
unknown trajectory of the moving anomaly in the network. A windowed
generalized likelihood ratio–based test is constructed and is shown to be
asymptotically optimal. Other detection algorithms including the
dynamic Shiryaev-Roberts test, a quickest change detection algorithm
with recursive change point estimation, and a mixture cumulative sum
(CUSUM) algorithm are also developed for this problem. Lower bounds
on the mean time to false alarm are developed. Numerical results are fur-
ther provided to compare their performances.
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1. Introduction

Consider a system monitored in real time by a set of interconnected sensor nodes. At
some unknown time, an anomaly appears in the network and changes the data generat-
ing distribution of some unknown node. As the anomaly moves around in the network
randomly, the node that it affects also changes with time. At each time instant, if a
node is not affected by the anomaly, then it receives independent and identically distrib-
uted (i.i.d.) samples from a prechange distribution; if a node is affected by the anomaly,
then it receives i.i.d. samples from a postchange distribution. Observations are taken
sequentially from all of the nodes. The goal here is to detect the appearance of the
anomaly as quickly as possible, subject to false alarm constraints. In this article, we
assume that the anomaly moves around in the network along the network edges (see
Figure. 1), and the trajectory of the moving anomaly is unknown. After the anomaly
emerges in the network, the data generating distribution of the network dynamically
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changes with time, as the node affected by the anomaly changes with time. In this art-
icle, we focus on the case where the anomaly only affects one node at each time.
The problem studied in this article fits into the framework of quickest change detec-

tion (QCD; for a detailed review of QCD theory, see Poor and Hadjiliadis, 2009;
Tartakovsky et al., 2014; Veeravalli and Banerjee, 2013), which models a wide range of
applications, including critical infrastructure monitoring, environmental monitoring,
fraud detection, financial surveillance, cognitive radio, detection of bioterrorist attacks,
and intrusion detection in computer networks (see Fienberg and Shmueli, 2005; Frisn,
2009; Lai et al., 2008; Mechitov et al., 2004; Rice et al., 2010; Rovatsos et al., 2016;
Rovatsos, Jiang, et al. 2017; Tartakovsky et al., 2006). In the QCD problem, observations
are sampled sequentially, and initially follow a nominal distribution. At some unknown
time (change point), an event occurs and leads to a change in the data generating distri-
bution of the observations. The goal is to detect this change as quickly as possible, sub-
ject to false alarm constraints.
In this article, we model the trajectory of the moving anomaly using a discrete-time

Markov chain (DTMC), where each state of the DTMC corresponds to a distinct node
being affected. However, the state of the DTMC is not directly observable. Instead,
noisy samples whose distribution depends on the state of the DTMC are observed.
Thus, the observed samples follow a hidden Markov model (HMM). Detecting the
emerging of a moving anomaly can be viewed as detecting a change from an i.i.d.
model to a HMM.

1.1. Related work

The problem of moving anomaly detection studied in this article is related to the multi-
channel QCD problem studied in Zou and Veeravalli (2018), Tartakovsky and
Veeravalli (2004), Mei (2010), Xie and Siegmund (2013), Fellouris and Sokolov (2016),
Raghavan and Veeravalli (2010), Ludkovski (2012), and Hadjiliadis et al. (2009), where
some event leads to a persistent change in the data generating distributions of a subset
of the nodes in the network. The difference between the multi-channel QCD problem
and our problem is that in our problem, the anomaly moves around in the network,
and thus the change is not persistent at any particular node, but it is persistent if we

Figure 1. Dynamic anomaly in a network.
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view the entire network as a whole. As a result, employing a cumulative sum (CUSUM)
test for each node and declaring a change by combining them is not applicable in
our setting.
Our work is also related to the QCD problem under transient dynamics studied in

Zou et al. (2019), Rovatsos, Zou, and Veeravalli (2017), Rovatsos, Jiang, et al. (2017),
and Moustakides and Veeravalli (2016), where the change in the probability distribution
of the observations does not happen instantaneously but through a sequence of transi-
ent phases each corresponding to a distinct data generating distribution. In contrast, in
the current article the trajectory of the moving anomaly is unknown, and the number
of possible trajectories scales exponentially with time; therefore, the algorithms and ana-
lysis developed in Zou et al. (2019), Rovatsos, Zou, and Veeravalli (2017), Rovatsos,
Jiang, et al. (2017), and Moustakides and Veeravalli (2016) cannot be directly applied.
The problem of QCD in HMMs has been studied in prior work; for example, see Fuh

(2003, 2004), Fuh and Mei (2015), Fuh and Tartakovsky (2019), and Chen and Willett
(1997). In Fuh (2003), the minimax setting was studied, where the change point is assumed
to be deterministic but unknown. For this problem, the generalized likelihood ratio (GLR)-
based test does not have a recursion and is thus not computationally efficient. In
Fuh (2003), instead of using the GLR approach, a recursive test was designed using an
approximate conditional probability distribution, and was further shown to be first-order
asymptotically optimal. This recursive test was further studied in Fuh and Mei (2015) for
two-state HMMs, and it was shown to be equivalent to a quasi-GLR scheme with respect to
a pseudo postchange measure. Recently, the Bayesian setting was investigated in Fuh and
Tartakovsky (2019), where the change point was modeled as a random variable with known
distribution. A different formulation of QCD in HMMs was proposed in Moustakides
(2019), and Shewhart-type tests (the Shewhart test was intially introduced in Shewhart,
1925) were constructed and were shown to exactly maximize the worst-case detection
probability subject to false alarm constraints.
The main differences between our work and the work in Fuh (2003) and Fuh and

Tartakovsky (2019) are as follows: (i) we focus on the application of sequential moving
anomaly detection in networks and formulate it as the problem of QCD in HMMs; (ii)
the work in Fuh (2003) and Fuh and Tartakovsky (2019) considers the setting where
the observations are generated according to a HMM, and at some unknown but deter-
ministic time, the parameters of the HMM change abruptly, whereas in our problem,
the data before the change point are i.i.d. distributed, the data after the change are gen-
erated by an HMM, and the prechange data are independent from the post-change
data; (iii) we construct a windowed GLR test and establish its first-order asymptotic
optimality using a technique introduced in Lai (1998); (iv) we also construct several
alternative algorithms, including the dynamic Shiryaev-Roberts test, the QCD test with
change point estimation, and the mixture CUSUM algorithm; and (v) we comprehen-
sively compare these algorithms numerically, and investigate the conditions under which
each of these tests should be preferred.

1.2. Main contributions

We summarize our main contributions in this article as follows:
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1. We study the problem of quickest moving anomaly detection in the networks.
We model the trajectory of the moving anomaly using a discrete-time Markov
chain, and formulate the quickest detection problem as a quickest detection
problem in HMMs.

2. We first construct the windowed GLR algorithm and show that it is first-order
asymptotically optimal. However, this approach, although it scans over only a
finite window, is not computationally efficient. We therefore develop a number
of alternative approaches to address this challenge.
For the first alternative, we use a Bayesian approach, where the change point is
modeled as a geometric random variable with parameter q. Under this setting,
we obtain a test that can be updated recursively. We then let q ! 0, so that the
test does not depend on q.
The second alternative algorithm is motivated by the idea of recursive change
point estimation used in Lau et al. (2019) and Lorden and Pollak (2008).
The third alternative algorithm, a mixture CUSUM algorithm, can be applied if
the transition probabilities are not available in practice. The algorithm tests a
change from the pre-change distribution to a mixture of postchange distribu-
tions. Such an algorithm is computationally efficient and is numerically shown
to perform as well as our windowed GLR test.
For all of the alternative algorithms, we also develop the lower bounds on the
mean times to false alarms (MTFAs) for practical false alarm control.

3. We conduct comprehensive numerical experiments to compare the pro-
posed algorithms.

1.3. Organization of the article

The rest of the article is organized as follows. In Section 2, we introduce the prob-
lem model. In Section 3 we present the universal asymptotic lower bound on the
worst-case average detection delay. In Section 4 we construct the windowed GLR
test and demonstrate its first-order asymptotic optimality. In Section 5, we present
the dynamic Shiryaev-Roberts algorithm, the QCD algorithm with recursive change
point estimation, and the mixture CUSUM algorithm and develop the lower
bounds on their MTFA. In Section 6, we review and instantiate Fuh’s test pro-
posed in Fuh (2003) for our problem. In Section 7 we numerically compare the
different detection schemes presented in this work. Finally, in Section 8, we con-
clude our article.

2. Problem model

2.1. Stochastic model

Consider a network of L nodes denoted by L ¼ f1, :::, Lg: Define by Xk ¼
½X1, k , :::,XL, k�> the vector of observations obtained by the nodes at time k, where X‘, k

denotes the measurement provided by node ‘ at time k. At some deterministic but
unknown time �, an anomaly appears in the network and affects one of the nodes. In
particular, at each time instant k where k � �, the index of the affected node is denoted

SEQUENTIAL ANALYSIS 9



by Sk 2 L, which is not directly observable. For notational convenience, if there is no
anomaly—that is, k < �—we let Sk¢0: We note that in this article we focus on the
scenario where there is one and only one affected node at each time after the anomaly
appears in the network. The results in this article can be easily generalized to the case
with multiple nodes being affected at the same time.
It is assumed that before the anomaly appears ðk < �Þ, the samples generated by

node ‘ are i.i.d. generated by a probability density function (p.d.f.) f‘, 0 for all ‘ 2 L,
and that the samples are independent across different nodes. Then, the joint distribution
of X1, :::,Xk for k < � is given by

f0ðX1, :::,XkÞ ¼
Yk
j¼1

YL
i¼1

fi, 0ðXi, jÞ, for k � �: (2.1)

If k � � and at time k the affected node is ‘—that is, Sk ¼ ‘—then X‘, k is generated
according to a post-change distribution f‘, 1, and the samples of the other nodes Xi, k’s
still follow the prechange distribution fi, 0, for i 6¼ ‘: We further assume that condi-
tioned on � and Sk, the samples across different nodes are independent. Specifically,
conditioning on Sk ¼ ‘ and k � �,Xk is generated according to the following joint prob-
ability distribution:

f‘ðXkÞ¢
 Y

i 6¼‘

fi, 0ðXi, kÞ
!
f‘, 1ðX‘, kÞ: (2.2)

We denote by P�ð�Þ ðE�½��Þ the probability measure (expectation) when the anomaly
occurs at time �. To be more specific, we denote by P1ð�Þ ðE1½��Þ the probability measure

(expectation) when � ¼ 1; that is, when there is no anomaly. We further let BðRLÞ denote
the Borel r-algebra with respect to RL, and l is a r-finite measure on R

L:

In this article, we study the case where the anomaly is dynamic; that is, Sk changes with
time k for kP�:We model the change of Sk as a DTMC. More specifically, for any k � �,

P�ðSkþ1jS1, :::, Sk,X1, :::,XkÞ ¼ P�ðSkþ1jSkÞ¢kSk, Skþ1 , (2.3)

where ki, j 2 ½0, 1� denotes the probability that the anomaly moves from node i to node j
for any i, j 2 L: Furthermore, for any k, conditioned on Sk, Xk is independent from any-

thing else. To be more explicit, for any B 2 BðRLÞ, we have that

P�ðXk 2 BjX1,X2, :::, S1, S2, :::Þ ¼ P�ðXk 2 BjSkÞ ¼
ð
B
fSkðXkÞdl: (2.4)

Before the anomaly appears in the network, the observations from the nodes are i.i.d.
according to the pre-change distribution f0 in (2.1). After the anomaly emerges in the
network, the underlying stochastic process of this problem can be viewed as an HMM,
where fSkg1k¼� is a finite state Markov chain, which is not directly observable. The tran-
sition probability matrix is given by ½ki, j�i, j2L: Then the sequence of random vectors

fXkg1k¼� is adjoint to this Markov chain according to (2.3) and (2.4). Therefore, after
the anomaly appears in the network, there is a change in the underlying stochastic pro-
cess from an i.i.d. model to an HMM.

10 G. ROVATSOS ET AL.



2.2. Performance criteria

The goal is to design stopping times that can detect the anomaly at time � as quickly as
possible while ensuring that the frequency of false alarm events is below an acceptable
level. A stopping time s with respect to the observed sequence fXkg1k¼1 is an integer-
valued random variable, such that for each k � 1, fs � kg 2 rðX1, :::,XkÞ, where
rðX1, :::,XkÞ denotes the r-algebra generated by X1, :::,Xk: In other words, the decision
to stop at time k is determined only by X1, :::,Xk:

In this article, we focus on the minimax setting, where the change point � is assumed to be
deterministic and unknown. In order to measure the frequency of false alarm events, we define
the mean time to false alarm (MTFA) as E1½s�: We further define the worst-case average
detection delay of a stopping time s under Lorden’s criterion, introduced in Lorden (1971), by

WADDðsÞ ¼ sup
��1

ess supE� ðs� � þ 1ÞþjX1, :::,X��1

� �
, (2.5)

where ðxÞþ ¼ maxfx, 0g and under Pollak’s criterion (see Pollak, 1985) by

CADDðsÞ ¼ sup
��1

E� s� �js � �½ �: (2.6)

The Worst-Case Average Detection Delay (WADD) metric is a more pessimistic metric
than the Conditional Average Detection Delay (CADD) metric (for more details, see,
e.g., Veeravalli and Banerjee, 2013); in particular,

WADDðsÞ � CADDðsÞ: (2.7)

In this article, we aim to design a stopping rule s to minimize WADD and CADD sub-
ject to a constraint on the MTFA

E1 s½ � � c,

where c > 0 is a predetermined constant. In particular, our goal is to design stopping
rules that solve the following constrained stochastic optimization problems:

inf
s:E1 s½ ��c

WADDðsÞ, (2.8)

inf
s:E1 s½ ��c

CADDðsÞ: (2.9)

2.3. Assumptions on the HMM

We assume that the DTMC defined in (2.3) has a stationary distribution denoted by a

vector a ¼ ½a1, :::, aL�> and that the DTMC is also initialized with a; that is, that for all
‘ 2 L,P�ðS� ¼ ‘Þ ¼ a‘: For t1 � � � t2, we then denote by

g�ðXt1 , :::,Xt2Þ¢f0ðXt1 , :::,X��1Þ �
X

i� , :::, it22L

(
ai� fi�ðX�Þ �

Yt2
j¼�þ1

½kij�1, ij fijðXjÞ�
)

(2.10)

the joint probability distribution of Xt1 , :::,Xt2 conditioned on a change point �. We
also define by

K�ðXt1 , :::,Xt2Þ¢
g�ðXt1 , :::,Xt2Þ
f0ðXt1 , :::,Xt2Þ

SEQUENTIAL ANALYSIS 11



the likelihood ratio of Xt1 , :::,Xt2 between the hypothesis that the anomaly appears at
time � and the hypothesis that the anomaly never appears.
For the asymptotic analysis in this article, we make the following assumptions on the

DTMC. In particular we assume the following:
(C.1) Under P1ð�Þ, the DTMC fSkg1k¼1 is ergodic (positive recurrent, irreducible, and

aperiodic). Furthermore, if we define the random matrices

M ¼
f1ðX1Þ ::: 0

..

. . .
.

0 fLðX1Þ

2
64

3
75

and

N ¼
k1, 1f1ðX2Þ ::: k1, LfLðX2Þ

..

. . .
.

kL, 1f1ðX2Þ kL, LfLðX2Þ

2
64

3
75,

then M and N are almost surely invertible under P1ð�Þ and P1ð�Þ:
(C.2) There exists r> 0 such that

Ð
R
jxjrþ1f‘, 0ðxÞdl < 1, and

Ð
R
jxjrþ1f‘, 1ðxÞdl < 1,

for all ‘ 2 L:
The above assumptions cover many interesting examples of HMMs, as noted in Fuh

and Tartakovsky (2019).
We further define the following effective Kullback-Leibler (KL) number:

I ¼ lim
n!1

1
n
g1ðX1, :::,XnÞ
f0ðX1, :::,XnÞ ¼ E1 log

g1ðX1,X2Þ
f0ðX1Þf0ðX2Þ

� �
, (2.11)

where the underlying probability measure is P1ð�Þ: Such a limit is assumed to exist
almost surely with 0 < I < 1, which is the case if the pre- and post-change data gener-
ating distributions are distinct for each node.

3. Universal lower bound on the WADD and CADD

In this section, we develop the universal lower bound on the CADD (and thus on the
WADD) for any stopping rule s that satisfies the false alarm constraint: E1½s� � c:

Theorem 3.1. Consider the statistical model defined in Section 2. If conditions C.1 and
C.2 are satisfied, then as c ! 1,

inf
s:E1 s½ ��c

WADDðsÞ � inf
s:E1 s½ ��c

CADDðsÞ � log c
I

ð1þ oð1ÞÞ: (3.1)

Proof. Let � > 0: Define Kc¢
log c
I : By Markov’s inequality, it follows that

E� s� �js � �½ � � P�ðs� � � Kcð1� �Þjs � �ÞKcð1� �Þ: (3.2)

Then to prove the theorem, it suffices to show that for any s satisfying E1½s� � c, there
exists some � � 1 such that P�ð� � s < � þ Kcð1� �Þjs � �Þ ¼ oð1Þ, as c ! 1; that
is, that

12 G. ROVATSOS ET AL.



lim
c!1 sup

s:E1 s½ ��c
inf
��1

P�ð� � s < � þ Kcð1� �Þjs � �Þ ¼ 0: (3.3)

Define a¢ð1� �2Þ log c: Then for any �, we have that

P�ð� � s < � þ Kcð1� �Þjs � �Þ
¼ P�

�
� � s < � þ Kcð1� �Þ,K�ðX� , :::,XsÞ > eajs � �

�
þ P�

�
� � s < � þ Kcð1� �Þ,K�ðX� , :::,XsÞ � eajs � �

�
:

(3.4)

The first term in (3.4) can be upper bounded as follows:

P�

�
� � s < � þ Kcð1� �Þ,K�ðX� , :::,XsÞ > eajs � �

�
�
ðaÞ

P�

�
max

��j<Kcð1��Þþ�

logK�ðX� , :::,XjÞ > ajs � �
�

¼ðbÞP�

�
max

��j<Kcð1��Þþ�

logK�ðX� , :::,XjÞ > a
�

¼ðcÞP1
max1�j<Kcð1��Þþ1 logK1ðX1, :::,XjÞ

Kcð1� �Þ > Ið1þ �Þ
 !

,

(3.5)

where (a) is due to the fact that

f� � s < � þ Kcð1� �Þ, logK�ðX� , :::,XsÞ > ag � max
��j<Kcð1��Þþ�

logK�ðX� , :::,XjÞ > a
n o

; (3.6)

(b) is due to the facts that fs � �g 2 rðX1, :::,X��1Þ and the pre- and post-change
observations are independent; and (c) follows by the definition of K� and the independ-
ence between the pre- and post-change observations.
By lemma A.1 in Fellouris and Tartakovsky (2017), if

logK1ðX1, :::,XkÞ
k

!k!1
a:s:

I (3.7)

under P1ð�Þ, then it follows that

lim
c!1P1

max1�j<Kcð1��Þþ1 logK1ðX1, :::,XjÞ
Kcð1� �Þ > Ið1þ �Þ

 !
¼ 0: (3.8)

By lemma 1.(i) in Fuh and Tartakovsky (2019), it follows that if C.1 and C.2 are satis-
fied, then (3.7) holds and consequently (3.8) holds.
We then analyze the second term in (3.4). By a change of measure argument similar

to the one in Lai (1998), we have that there exists � � 1 such that

P�

�
� � s < � þ Kcð1� �Þ,K�ðX� , :::,XsÞ � eajs � �

�
¼ðaÞP1

�
1 � s < 1þ Kcð1� �Þ,K1ðX1, :::,XsÞ � ea

�
¼ðbÞE1½1f1�s<1þKcð1��Þ,K1ðX1, :::,XsÞ�eagK1ðX1, :::,XsÞ�

� eaP1ð� � s < � þ Kcð1� �Þjs � �Þ �
ðcÞ Kcð1� �Þea

c
!c!1

0,

(3.9)
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where (a) follows similarly as steps (b) and (c) in (3.5); (b) follows by a change of meas-
ure argument; and (c) follows from the fact (see the proof of theorem 1 in Lai, 1998)
that for any positive integer m < c, if E1½s� � c, then there exists some � � 1 such
that

P1ðs � �Þ > 0, and P1ðs < � þmjs � �Þ � m=c: (3.10)

Combining (3.8), (3.9), the fact that the upper bound in (3.9) is independent of s, and
the fact that for any stopping time s, WADDðsÞ � CADDðsÞ, the theorem is estab-
lished. w

The proof of the asymptotic universal lower bound is based on a change-of-measure
argument similar to the one employed in Lai (1998) and the law of large numbers for
log-likelihood ratio statistics of HMMs proposed in Fuh and Tartakovsky (2019). In
contrast, the asymptotic lower bound analysis in Fuh (2003) follows Lorden’s technique
in Lorden (1971), which is based on interpreting the proposed test as a sequence of
sequential probability ratio tests.

4. The windowed GLR Test

In this section, we first construct the windowed GLR test and then demonstrate its
asymptotic optimality.

4.1. Algorithm Construction

The quickest moving anomaly detection problem in this article can be posed as a
dynamic composite hypothesis testing problem, where at each time k we distinguish
between the following two hypotheses:

Hk
1 : the anomaly appears at time � � k, (4.1)

Hk
0 : the anomaly appears at time � > k: (4.2)

Note that under the alternative hypothesis the change point � is unknown. We then
take a GLR approach to construct the detection statistic (see, e.g., Veeravalli and
Banerjee, 2013 for the interpretation of classic QCD tests through the GLR approach).
Specifically, the likelihood under these two hypotheses can be expressed respectively as
follows:

Hk
1 :
Y��1

i¼1

f0ðXiÞ
Yk
i¼�

g�ðXijX� , :::,Xi�1Þ, (4.3)

Hk
0 :
Yk
i¼1

f0ðXiÞ, (4.4)

where g�ðXijX� , :::,Xi�1Þ denotes the post-change conditional distribution of Xi given
the past observations (see (2.10)). Then, the GLR test statistic between the two hypothe-
ses can be written as
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W 0
k ¼ max

1���k

Xk
i¼�

log
g�ðXijX� , :::,Xi�1Þ

f0ðXiÞ , (4.5)

and the corresponding stopping rule is given by

s0W ¼ inffk � 1 : W 0
k > bg: (4.6)

Although the conditional pdf g�ðXijX� , :::,Xi�1Þ in (4.5) can be calculated recursively
(as shown below), to compute W 0

k, the number of quantities that need to be stored
scales with time k, which is not feasible for a real-time algorithm. Thus, to design an
implementable GLR test, we consider a windowed version of W0

k: Denote the windowed
version of the GLR statistic in (4.5) by

Wk ¼ max
k�m�j�k

Xk
i¼j

log
gjðXijXj, :::,Xi�1Þ

f0ðXiÞ (4.7)

and the corresponding stopping time by

sW ¼ inffk � 1 : Wk > bg: (4.8)

As will be observed later, the window length m needs to scale with the threshold b (and
as a result c), and also depends on the KL number I.
Note that for a fixed j, gjðXijXj, :::,Xi�1Þ can be calculated recursively. In particular,

by using the Bayes rule, it can be easily shown that

gjðXijXj, :::,Xi�1Þ ¼
XL
‘¼1

f‘ðXiÞPjðSi ¼ ‘jXj, :::,Xi�1Þ, (4.9)

PjðSi ¼ ‘jXj, :::,Xi�1Þ ¼
XL
‘0¼1

PjðSi�1 ¼ ‘0jXj, :::,Xi�1Þk‘0, ‘, (4.10)

PjðSi�1 ¼ ljXj, :::,Xi�1Þ ¼
PjðSi�1 ¼ ljXj, :::,Xi�2ÞflðXi�1ÞPL

‘0¼1PjðSi�1 ¼ ‘0jXj, :::,Xi�2Þf‘0 ðXi�1Þ
, (4.11)

where the recursion is initialized with the stationary probability of the DTMC:

PjðSj ¼ ‘jXj�1Þ¢a‘: (4.12)

4.2. Asymptotic optimality

In this subsection, we establish the first-order asymptotic optimality of the windowed
GLR test in (4.7) and (4.8) under both Lorden’s and Pollak’s criteria.
We start our analysis by presenting a lower bound on the MTFA.

Proposition 4.1. For the stopping rule defined in (4.7) and (4.8), the MTFA can be lower
bounded as follows:

E1 sW½ � � eb: (4.13)
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Proof. Note that W 0
k � Wk; thus, sW � s0W : Therefore,

E1 sW½ � � E1 s0W
� �

: (4.14)

Let

Vk¢
Xk
j¼1

Yk
i¼j

gjðXjjXj, :::,Xi�1Þ
f0ðXiÞ ¼

Xk
j¼1

KjðXj, :::,XkÞ, (4.15)

and

sV ¼ inffk � 1 : Vk > ebg: (4.16)

Note that

Vk ¼
Xk
j¼1

gjðXkjXj, :::,Xk�1Þ
f0ðXkÞ KjðXj, :::,Xk�1Þ

¼
Xk�1

j¼1

gjðXkjXj, :::,Xk�1Þ
f0ðXkÞ KjðXj, :::,Xk�1Þ þ KjðXkÞ:

(4.17)

Then, from (4.15) and (4.17), we have that E1½VkjXk�1, :::,X1� ¼ 1þ Vk�1, and
E1½Vk� ¼ k: This implies that fVk � kg1k¼1 is a zero-mean martingale under P1: Thus,
by the optional sampling theorem (see, e.g., Poor and Hadjiliadis, 2009) and the fact

that Vk � eW
0
k , we have that

E1 sW½ � � E1 s0W
� � � E1 sV½ � ¼ E1 VsV½ � � eb: (4.18)

Next, we establish an asymptotic upper bound on the WADD and CADD of the
windowed GLR test in (4.7) and (4.8).

Theorem 4.1. Consider the stopping rule defined in (4.7) and (4.8). Consider the window
length m ¼ mðbÞ such that

lim inf
b!1

mðbÞ
b

>
1
I
: (4.19)

Then, under conditions C.1 and C.2, we have that as b ! 1,

CADDðsWÞ � WADDðsWÞ � b
I
ð1þ oð1ÞÞ: (4.20)

Proof. Let � > 0, d > 0 and nb¢
bð1þ�Þ

I : It can be shown that for any � � 1,

ess supE�
ðsW � � þ 1Þþ

nb
jX1, :::,X��1

" #
� ess sup

X1
l¼0

P�ðsW � � þ 1 > lnbjX1, :::,X��1Þ

�
X1
l¼0

ess supP�ðsW > lnb þ � � 1jX1, :::,X��1Þ

� 1þ
X1
l¼1

ess supP�ðsW > lnb þ � � 1jX1, :::,X��1Þ:

(4.21)
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For any l � 1, it follows that

P�ðsW > lnb þ � � 1jX1, :::,X��1Þ

¼ P�

 
max

1�k�lnbþ��1

Wk < bjX1, :::,X��1

!

¼ P�

 
max

1�k�lnbþ��1

max
k�m�j�k

Xk
i¼j

log
gjðXijXj, :::,Xi�1Þ

f0ðXiÞ < bjX1, :::,X��1

!

� P�

 
\

n2f1, :::, lg
max

nnbþ��1�m�j�nnbþ��1

Xnnbþ��1

i¼j

log
gjðXijXj, :::,Xi�1Þ

f0ðXiÞ < b

8<
:

9=
;jX1, :::,X��1

!
:

(4.22)

Without loss of generality, we choose m such that m � nb for large b. This further
implies that nnb þ � �m � ðn� 1Þnb þ � for large b. As a result, for large b, (4.22) can
be further upper bounded as follows:

P�ðsW > lnb þ � � 1jX1, :::,X��1Þ � P�

 
\

n2f1, :::, lg
AnjX1, :::,X��1

!
, (4.23)

where for simplicity of notation, we denote the event by

An¢

( Xnnbþ��1

i¼ðn�1Þnbþ�

log
gðn�1Þnbþ�ðXijXðn�1Þnbþ� , :::,Xi�1Þ

f0ðXiÞ < b

)
, (4.24)

for all n � 1: It is clear that An 2 rðXðn�1Þnbþ� , :::,Xnnbþ��1Þ: Then, it follows that

P� \
n2f1, :::, lg

An

�����X1, :::,X��1

0
@

1
A ¼

Yl
n¼1

P� AnjX1, :::,X��1,A1, :::,An�1
	 


: (4.25)

This further implies that

ess supP�

 
\

n2f1, :::, lg
An

�����X1, :::,X��1

!
�
Yl
n¼1

ess supP�

 
AnjX1, :::,X��1, A1, :::, An�1

!
:

(4.26)

If the following holds that for any n � 1,

ess supP�ðAnjX1, :::,X��1, A1, :::, An�1Þ � d, (4.27)

where d is independent of �, and can be arbitrarily small for large b, then

ess supP�

�
\

n2f1, :::, lg
AnjX1, :::,X��1

�
� dl (4.28)

and, further,

sup
�

ess supE�
ðsW � � þ 1Þþ

nb

����X1, :::,X��1

" #
� 1þ

X1
‘¼1

dl ¼ 1
1� d

: (4.29)
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This implies that

sup
�

ess supE�
ðsW � � þ 1Þþ

nb
jX1, :::,X��1

" #
� bð1þ �0Þ

I
, (4.30)

where �0 ¼ ð1þ �Þ=ð1� dÞ: Because � is arbitrary and d can be arbitrarily small for
large b, the proof is complete if we can show that (4.27) is true.
In the following, we prove that (4.27) is true. We first note that by our notation,

logKðn�1Þnþ�ðXðn�1Þnþ� , :::,Xnnþ��1Þ ¼
Xnnþ��1

i¼ðn�1Þnþ�

log
gðn�1Þnþ�ðXijXðn�1Þnþ� , :::,Xi�1Þ

f0ðXiÞ :

(4.31)

By the Markov property of the problem model as in (2.3) and (2.4), it follows that

P�

�
1
n
logKðn�1Þnþ�ðXðn�1Þnþ� , :::,Xnnþ��1Þ < I

1þ �

����X1, :::,X��1,A1, :::,An�1

�

¼
X
s2S

P�

 
1
n
logKðn�1Þnþ�ðXðn�1Þnþ� , :::,Xnnþ��1Þ < I

1þ �
,

Sðn�1Þnþ� ¼ sjX1, :::,X��1,A1, :::,An�1

!

¼
X
s2S

P�

 
1
n
logKðn�1Þnþ�ðXðn�1Þnþ� , :::,Xnnþ��1Þ < I

1þ �

����Sðn�1Þnþ� ¼ s

!

� P�ðSðn�1Þnþ� ¼ sjX1, :::,X��1,A1, :::,An�1Þ:

(4.32)

From lemma A.1. in Fuh and Tartakovsky (2019), it follows that for any s 2 S and any
n � 1,

lim
n!1P�

1
n
logKðn�1Þnþ�ðXðn�1Þnþ� , :::,Xnnþ��1Þ < I

1þ �

����Sðn�1Þnþ� ¼ s

 !
¼ 0: (4.33)

It then follows that for any n � 1,

lim
n!1 ess supP�

� Xnnþ��1

i¼ðn�1Þnþ�

1
n
log

gðn�1Þnþ�ðXijXðn�1Þnþ� , :::,Xi�1Þ
f0ðXiÞ

<
I

1þ �

����X1, :::,X��1,A1, :::,An�1

�

¼ lim
n!1 ess supP�

�
1
n
logKðn�1Þnþ�ðXðn�1Þnþ� , :::,Xnnþ��1Þ

<
I

1þ �

����X1, :::,X��1,A1, :::,An�1

�
¼ 0,

(4.34)

which further implies that (4.27) is true. This concludes the proof. w

The following theorem demonstrates the asymptotic optimality of the windowed GLR
test, which follows directly from Proposition 4.1 and Theorems 3.1 and 4.1.
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Theorem 4.2. Consider the stopping rule defined in (4.7) and (4.8) with b ¼ log c and m
chosen to satisfy

lim inf
b!1

mðbÞ
b

>
1
I
: (4.35)

Then under conditions C.1 and C.2, the windowed GLR test is asymptotically optimal
under both Lorden’s and Pollak’s criteria; that is, as c ! 1,

WADDðsWÞ 	 CADDðsWÞ 	 log c
I

: (4.36)

Proof. The result follows directly from Proposition 4.1 and Theorems 3.1 and 4.1. w

5. Alternative detection schemes

In this section, we develop several alternative algorithms for the problem of moving
anomaly detection in networks and derive lower bounds on their MTFAs. We first
design a dynamic Shiryaev-Roberts (D-S-R) algorithm by modeling the change point as
a geometric random variable with parameter q and then letting q ! 0: The advantage
of the D-S-R algorithm is that it can be updated recursively. We then develop a QCD
algorithm with recursive change point estimation. This test recursively estimates the
unknown change point and then constructs a CUSUM-type algorithm using the esti-
mated change point. Finally, we design a mixture CUSUM algorithm, which is applic-
able for the case where the Markov transition probabilities are unknown.

5.1. Dynamic Shiryaev-Roberts algorithm

We first assume that the change point is a geometric random variable with parameter q.
We denote the change point by C. Specifically,

PðC ¼ mÞ ¼ qð1� qÞm�1, m 2 N: (5.1)

In the following, we will show how we design a recursive test under such a Bayesian
framework. We will further let q ! 0 so that the designed algorithm does not depend
on q and can be applied to the minimax setting described in Section 2, where the
change point is deterministic and unknown.
Under the Bayesian assumption of the change point, we introduce one additional

state 0 to denote the state where there is no anomaly in the network. Then the transi-
tion from the pre-change mode to the post-change mode can be represented by the
transition from state 0 to any state ‘ 2 L: Specifically, for all ‘ 2 f1, :::, Lg, we denote
by k0, ‘ the probability that the anomaly first emerges at node ‘; that is,

PðSk ¼ ‘jSk�1 ¼ 0Þ ¼ k0, ‘: (5.2)

It is clear that q ¼PL
‘¼1 k0, ‘: We further note that k‘, 0 ¼ 0, for any ‘ 2 L, and ‘0, 0 ¼

1� q: For any ‘ 2 f0, 1, :::, Lg, and k � 1, define by

p‘, k¢PðSk ¼ ‘jX1, :::,XkÞ (5.3)
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the posterior probability that the network is at state ‘ at time k. A natural way to con-
struct a test is to compare with a threshold the posterior probability that the network is
in the pre-change state.
In particular, p‘, k can be updated recursively. For any ‘ 2 f0g [ L, by the Bayes rule

we have that

p‘, k ¼ PðSk ¼ ‘jX1, :::,Xk�1,XkÞf ðXkjX1, :::,Xk�1Þ
f ðXkjX1, :::,Xk�1Þ

¼ PðSk ¼ ‘jX1, :::,Xk�1Þf ðXkjSk ¼ ‘,X1, :::,Xk�1ÞXL

i¼0
f ðXk, Sk ¼ ijX1, :::,Xk�1Þ

¼ PðSk ¼ ‘jX1, :::,Xk�1Þf ðXkjSk ¼ ‘,X1, :::,Xk�1ÞXL

i¼0
PðSk ¼ ijX1, :::,Xk�1Þf ðXkjSk ¼ i,X1, :::,Xk�1Þ

¼ A‘, kXL

i¼0
Ai, k

,

(5.4)

where f ð�j�Þ denotes the conditional probability density function of Xk and

Ai, k¢PðSk ¼ ijX1, :::,Xk�1Þf ðXkjSk ¼ i,X1, :::,Xk�1Þ
¼ PðSk ¼ ijX1, :::,Xk�1ÞfiðXkÞ:

(5.5)

We then compute Ai, k as follows:

Ai, k ¼ PðSk ¼ ijX1, :::,Xk�1Þf ðXkjSk ¼ iÞ

¼
XL
j¼0

PðSk ¼ i, Sk�1 ¼ jjX1, :::,Xk�1ÞfiðXkÞ

¼
XL
j¼0

PðSk�1 ¼ jjX1, :::,Xk�1ÞPðSk ¼ ijSk�1 ¼ j,X1, :::,Xk�1ÞfiðXkÞ

¼
XL
j¼0

PðSk�1 ¼ jjX1, :::,Xk�1ÞPðSk ¼ ijSk�1 ¼ jÞfiðXkÞ

¼
XL
j¼0

pj, k�1kj, i

2
4

3
5fiðXkÞ:

(5.6)

Combining (5.4) and (5.6) implies that p‘, k can be updated recursively.
We note that for 1 � i � L,

Ai, k ¼
XL
j¼0

PðSk�1 ¼ jjX1, :::,Xk�1ÞPðSk ¼ ijSk�1 ¼ jÞfiðXkÞ

¼
XL
j¼0

pj, k�1kj, i

2
4

3
5fiðXkÞ ¼ p0, k�1k0, i þ

XL
j¼1

pj, k�1kj, i

2
4

3
5fiðXkÞ:

(5.7)
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Furthermore, for i¼ 0 we have that

A0, k ¼ PðSk ¼ 0jX1, :::,Xk�1Þf ðXkjSk ¼ 0Þ ¼ p0, k�1k0, 0f0ðXkÞ: (5.8)

The recursion is initialized with p0, 0 ¼ 1 and p‘, 0 ¼ 1 for ‘ 2 L:
We further define the following invertible mapping:

q‘, k ¼ p‘, k
qp0, k

() p‘, k ¼ q‘, kPL
j¼0qj, k

: (5.9)

It then follows that

p0, k ¼ 1

1þ q
PL

j¼1qj, k
h i , (5.10)

where q‘, k can be computed recursively by

q‘, k ¼
k0, ‘
q þPL

j¼1qj, k�1kj, ‘
h i

f‘ðXkÞ
k0, 0f0ðXkÞ , (5.11)

with the following priors: q0, k ¼ 1=q and q‘, 0 ¼ 0, ‘ 2 f1, :::, Lg: From (5.10), it

follows that comparing p0, k to a threshold B is equivalent to comparing
PL

j¼1 qj, k to a

threshold ð1=B� 1Þ=q:
To obtain a test that does not depend on q and can be applied to the non-Bayesian

setting, we take the limit q ! 0: In particular, we assume that as q ! 0,

k0, ‘
q

! a‘ (5.12)

for all ‘ 2 L: Practically, this means that the change point is treated as an unknown but
deterministic variable and that after the change occurs, the initial location of the anom-
aly is distributed according to a: As a result, if we define

r‘, k ¼ lim
q!0

q‘, k,

for ‘ 2 f1, :::, Lg, then the recursion of r‘, k is

r‘, k ¼ a‘ þ
XL
j¼1

rj, k�1kj, ‘

2
4

3
5 f‘, 1ðX‘, kÞ
f‘, 0ðX‘, kÞ (5.13)

with r‘, 0¢0: Define the test statistic

Rk ¼
XL
‘¼1

r‘, k: (5.14)

The corresponding stopping rule is then given by

sR ¼ inffk � 1 : logRk � bg: (5.15)

This test involves calculating a test statistic for each node in the network. At each time
k, the test statistic for one node is calculated by first weighing the test statistics of all of
the nodes at the previous time instant according to the corresponding transition

SEQUENTIAL ANALYSIS 21



probabilities and then multiplying the likelihood ratio of the sample taken by that node.
Thus, knowledge of the transition probabilities is needed in order to implement this test.
We note that the D-S-R algorithm is developed by letting q ! 0: Such a change point

can be intuitively interpreted as a “uniformly” distributed random variable on the entire
timescale. Therefore, this algorithm may not perform as well as the windowed GLR test
under both Lorden’s and Pollak’s criteria, because both criteria are defined for the
worst-case scenario over all possible change points. An experimental study will be pro-
vided in Section 7.
Next, we derive a lower bound on the MTFA for the D-S-R algorithm.

Lemma 5.1. For the stopping rule defined in (5.14) and (5.15), its MTFA is lower
bounded as follows:

E1 sR½ � � eb: (5.16)

Proof. Note that

E1 RkjXk�1, :::,X1½ � ¼ E1
XL
j¼1

rj, k

����X1, :::,Xk�1

2
4

3
5

¼ E1
XL
j¼1

a‘ þ
XL
q¼1

rq, k�1kj, q

8<
:

9=
; fj, 1ðXj, kÞ

fj, 0ðXj, kÞ

0
B@

1
CAjX1, :::,Xk�1

2
64

3
75

¼ 1þ
XL
j¼1

XL
q¼1

kj, qrj, k�1

¼ 1þ
XL
j¼1

rj, k�1

¼ 1þ Rk�1,

(5.17)

which implies that fRk � kg1k¼1 is a martingale under P1ð�Þ: It can also be shown that
E1½Rk � k� ¼ 0: As a result, by the optimal stopping theorem (see, e.g., Poor and
Hadjiliadis, 2009), it follows that E1½WsR � sR� ¼ 0: This further implies that

E1 sR½ � ¼ E1 RsR½ � � eb: (5.18)

w

5.2. QCD Algorithm with Recursive Change Point Estimation

In the windowed GLR test, the change point is implicitly estimated by the maximum
likelihood approach over a finite window. The estimation does not have a recursive
form and thus is not as computationally efficient, which is why a windowed approach is
used. An interesting question is whether we can design a test that can recursively and
inherently estimate the change point and then construct a CUSUM-type algorithm using
the estimated change point.
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QCD algorithms based on recursive change point estimation were proposed in Lau
et al. (2019) to solve the semiparametric QCD problem and in Lorden and Pollak
(2008) to solve the composite QCD problem (for prior work in composite QCD, see
Lai, 1998 and Lorden, 1971). The main idea is motivated by the CUSUM algorithm, for
which, before the changepoint, the test statistic takes values around zero and therefore
an estimate of the change point is the last time that the test statistic became zero.
Following a similar idea, we design a QCD algorithm with recursive change point esti-
mation. In particular, define the following test statistic:

Uk ¼ max
fk�1�j�kþ1

Xk
i¼j

log
gfk�1

ðXijXfk�1
, :::,Xi�1Þ

f0ðXjÞ , (5.19)

where fk denotes the estimate of the change point at time k and gjðXijXj, :::,Xi�1Þ¢0
for j > i. The estimate of the change point is defined by

fk ¼ argmax
fk�1�j�kþ1

Xk
i¼j

log
gfk�1

ðXijXfk�1
, :::,Xi�1Þ

f0ðXjÞ : (5.20)

Following steps similar to those in Lau et al. (2019), it can be shown that the detection
statistics in (5.19) and (5.20) can be updated recursively as follows:

Ukþ1 ¼ Uk þ log
gfkðXkþ1jXfk , :::,XkÞ

f0ðXkþ1Þ
� �þ

, (5.21)

and

fkþ1 ¼ fk, Uk > 0 or fk ¼ kþ 1,
kþ 2, else,



(5.22)

where U0¢0 and f0¢1: The corresponding stopping rule is

sU ¼ inffk � 1 : Uk � bg: (5.23)

The advantage of such a test is that it is an approximation to the GLR test, which can
be implemented recursively. We now present a lower bound for the MTFA for the algo-
rithm defined in (5.19)–(5.23).

Lemma 5.2. For the stopping rule defined in (5.19)–(5.23), the MTFA can be lower
bounded as follows:

E1 sU½ � � eb: (5.24)

Proof. Let

ŝ ¼ inf k � 1 : Ŝk¢
Xk
i¼1

log
g1ðXijX1, :::,Xi�1Þ

f0ðXjÞ � b

( )
: (5.25)

By expressing the algorithm in (5.19)–(5.23) as a sequence of i.i.d. circles of (5.25), it
can be easily shown that by using Wald’s identity (see, e.g., Veeravalli and Banerjee,
2013)
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E1 sU½ � � E1 ŝ½ �
P1ðŜ ŝ � bÞ �

1

P1ðŜ ŝ � bÞ : (5.26)

Consider the event

Et ¼
Yt
i¼1

g1ðXijX1, :::,Xi�1Þ
f0ðXjÞ � eb, ŝ ¼ t

( )
:

It then follows that

P1ðŜŝ � bÞ

¼
X1
t¼1

P1ðEtÞ ¼
X1
t¼1

E1 1Et

� �

¼
X1
t¼1

E1
Yt
i¼1

g1ðXijX1, :::,Xi�1Þ
f0ðXjÞ

Yt
i¼1

f0ðXjÞ
g1ðXijX1, :::,Xi�1Þ1Et

" #

� e�b
X1
t¼1

E1
Yt
i¼1

g1ðXijX1, :::,Xi�1Þ
f0ðXjÞ 1Et

" #

� e�b
X1
t¼1

P1ðEtÞ

� e�b:

(5.27)

The result then follows by combining (5.26) and (5.27). w

Due to the use of the recursive change point estimate fk, the analysis of the detection
delay for this algorithm is challenging, and we leave this as an open problem for
future research.

5.3. Mixture CUSUM algorithm

In practice, it might be hard to acquire complete knowledge of the transition probabil-
ities of the DTMC in (2.3). However, it might be possible to have a good estimate of
the stationary distribution of the DTMC; for example, based on symmetries in the net-
work, we may be able to approximate the stationary distribution by a uniform distribu-
tion. In this case, we approximate the postchange data generating distribution by a
mixture of f‘, 1, where the weights are the stationary distribution a, and construct a
CUSUM algorithm that tests the change from the pre-change distribution to the mix-
ture distribution.
In particular, the mixture CUSUM test statistic is defined as follows:

Ck ¼ max
1�j�kþ1

Xk
i¼j

log
XL
‘¼1

a‘
f‘, 1ðX‘, iÞ
f‘, 0ðX‘, iÞ

 !
: (5.28)
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Note that this statistic can be updated recursively:

Ckþ1 ¼ Ck þ log
XL
‘¼1

a‘
f‘, 1ðX‘, kþ1Þ
f‘, 0ðX‘, kþ1Þ

 ! !þ
(5.29)

with C0¢0: The mixture CUSUM stopping rule is

sC ¼ inffk � 1 : Ck � bg: (5.30)

Because this test is essentially a CUSUM algorithm that tests a change from the pre-
change distribution to a mixture post-change distribution, its MTFA can be lower
bounded similar to the CUSUM algorithm.

Lemma 5.3. For the mixture CUSUM algorithm defined in (5.28)–(5.30), the MTFA can
be lower bounded as follows:

E1 sC½ � � eb: (5.31)

Proof. The result follows directly from the lower bound on the MTFA for the CUSUM
algorithm (see Lai, 1998; Lorden, 1971; Pollak, 1985). w

Because the mixture CUSUM algorithm only employs the stationary distribution of
the DTMC, we might expect a loss in performance compared to the other algorithms
that make use of the entire transition matrix. However, as will be seen in Section 7, the
mixture CUSUM performs competitively with the asymptotically optimal algorithms.

6. Fuh’s recursive approximation test

In this section, we review Fuh’s recursive approximation algorithm, and instantiate it
for our moving anomaly detection problem.
As discussed in Section 4, the GLR-based test does not admit a recursion. To address

this problem, Fuh (2003) approximates the conditional p.d.f. g�ðXijX� , :::,Xi�1Þ in (4.5)
using g1ðXijX1, :::,Xi�1Þ: Such an approximation inherently uses the likelihood when the
change point is at time 1 to approximate the likelihood when the change point is at �.
In this way, the log-likelihood ratio does not depend on the change point � and thus
the test statistic can be updated recursively. Specifically, the detection statistic of Fuh’s
recursive approximation test is

Fk ¼ max
1�j�kþ1

Xk
i¼j

log
g1ðXijX1, :::,Xi�1Þ

f0ðXiÞ : (6.1)

Then, Fk can be written recursively as follows:

Fkþ1 ¼ Fk þ log
g1ðXkþ1jX1, :::,XkÞ

f0ðXkþ1Þ
� �þ

, (6.2)

where F0¢0: The corresponding stopping rule is defined as

sF ¼ inffk � 1 : Fk > bg: (6.3)
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In Fuh (2003), Fuh used the stationarity properties of Markov chains to prove the first-
order asymptotic optimality of sF. For completeness, we include his result in the
next theorem.

Theorem 6.1. (Fuh, 2003) Consider the stopping rule defined in (6.1)–(6.3) with
b ¼ log c. Then we have that E1½sF� � c and that

WADDðsFÞ 	 CADDðsFÞ 	 log c
I

, (6.4)

as c ! 1:

7. Numerical results

In this section, we conduct a numerical study for the moving anomaly detection prob-
lem. We set f‘, 0 ¼ Nð0, 1Þ and f‘, 0 ¼ Nð2, 1Þ for all ‘ 2 L: We consider different values
of network size L and compare all of the algorithms discussed in this article.
For the windowed GLR test, the QCD algorithm with recursive change point estima-

tion, and Fuh’s recursive approximation test, the worst-case detection delay is not
necessarily attained at �¼ 1 for the WADD or CADD (also see Fuh and Mei, 2015). As
a result, it is difficult to analytically or numerically calculate the worst-case detection
delay for these algorithms. For the D-S-R and mixture CUSUM tests, the WADD and
CADD are attained at �¼ 1. For the purpose of illustration, we simulate the average
detection delay E�½s� �js � �� for different values of the change point �, which serves
as an approximation for the WADD and CADD.
In Figure. 2, we evaluate the value of I as a function of the network size L. The KL

number I was calculated by the Monte Carlo method according to (2.11). Note that I
decreases with network size. This implies that for a large network, the windowed GLR
test requires a large window size. In Figure. 3 we plot the evolution of statistics for
�¼ 100. It can be seen that the statistics for all of the algorithms grow after the change
point. In Figure. 4 we plot the average detection delay vs. MTFA for the algorithms dis-
cussed in this article for �¼ 1, L¼ 10, and m¼ 30. Among all of the tests, the win-
dowed GLR test, Fuh’s recursive approximation algorithm, and the mixture CUSUM
test perform the best. In the remainder of this section, we mainly compare these
three algorithms.

Figure 2. I versus L.

26 G. ROVATSOS ET AL.



In Figure. 5 we first compare Fuh’s test with the mixture CUSUM test for L¼ 100
and �¼ 1. We note that although the mixture CUSUM algorithm only employs the sta-
tionary distribution of the DTMC and does not use the transition probabilities, it pro-
vides very good performance compared to Fuh’s recursive approximation test, which is
provably first-order asymptotically optimal. Furthermore, Fuh’s test can be computa-
tionally expensive for a large L, because it requires OðL2Þ computations per time step,
whereas the computational complexity for the mixture CUSUM algorithm is only O(L).
Thus, for large networks, the mixture CUSUM test might be a better choice if the com-
putational resource is limited. In Figure. 6, we repeat the comparison for L¼ 10,

Figure 4. E1½s� 1js � 1� versus MTFA for L¼ 10.

Figure 3. Evolution of the test statistics for L¼ 100 and �¼ 120.

Figure 5. E1½s� 1js � 1� versus MTFA for L¼ 100.
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m¼ 30, and �¼ 1 by adding the windowed GLR test, and similar observations are
obtained. Note that in this case Fuh’s recursive test offers performance identical to that
of the windowed GLR, because the former inherently assumes that the change occurs
at �¼ 1.
In Figure. 7, we further compare Fuh’s test and the mixture CUSUM test with the

windowed GLR test for L¼ 10, m¼ 30, and �¼ 50. Note that although for the case of
�¼ 1 the windowed GLR test has performance similar to that of Fuh’s algorithm, the
windowed GLR test performs better for � 6¼ 1: This phenomenon is expected because

Figure 6. E1½s� 1js � 1� versus MTFA for L¼ 10.

Figure 7. E50½s� 50js � 50� versus MTFA for L¼ 10.

Figure 8. E1½s� 1js � 1� versus MTFA for L¼ 20.
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Fuh’s test uses the likelihood when �¼ 1 as an approximation. Finally, in Figures. 8
and 9 we compare the three tests for the case of L¼ 20 with m¼ 50, �¼ 1, and �¼ 30.

8. Conclusions

In this article, we studied the problem of moving anomaly detection in networks. The
trajectory of the moving anomaly after it emerges in the network is modeled as a
DTMC, which results in the observation model being an HMM. We constructed the
windowed GLR test for the detection problem and established its first-order asymptotic
optimality. We also constructed three alternative tests, including the D-S-R test, the
QCD test with recursive change point estimation, and the mixture CUSUM test. For
each of the three alternative tests, we derived lower bounds on the MTFA, which can
be used for false alarm control in practice.
We have conducted comprehensive numerical studies for the proposed algorithms in

this article. Our windowed GLR test provides the best performance in terms of the
trade-off between the MTFA and the WADD (CADD) among all of the tests consid-
ered. However, it may suffer from high computational complexity, especially for large
networks. Fuh’s approximation test does not perform as well when the change point is
a time different than 1, which may limit its use in practice. Our mixture CUSUM test
has a computational complexity of OðLÞ, which is the most efficient among all of the
tests. Moreover, it does not require knowledge of the transition probabilities, which
might be hard to estimate in practice.
Future work includes developing low-complexity solutions for detecting multiple

anomalies, as well as developing methods for implementing the detection algorithms in
a distributed manner across the network.
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