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Abstract—An information-theoretic upper bound on the gener-
alization error of supervised learning algorithms is derived. The
bound is constructed in terms of the mutual information between
each individual training sample and the output of the learning
algorithm. The bound is derived under more general conditions
on the loss function than in existing studies; nevertheless, it
provides a tighter characterization of the generalization error.
Examples of learning algorithms are provided to demonstrate the
the tightness of the bound, and to show that it has a broad range
of applicability. Application to noisy and iterative algorithms, e.g.,
stochastic gradient Langevin dynamics (SGLD), is also studied,
where the constructed bound provides a tighter characterization
of the generalization error than existing results. Finally, it is
demonstrated that, unlike existing bounds, which are difficult to
compute and evaluate empirically, the proposed bound can be
estimated easily in practice.

Index Terms—Cumulant generating function, generalization
error, information-theoretic bounds, stochastic gradient Langevin
dynamics

I. INTRODUCTION

Recent success of deep learning algorithms [2] has dra-
matically boosted their applications in various engineering
and science domains, e.g., computer vision [3], natural lan-
guage processing [4], autonomous driving [5], and health
care [6]. A deep neural network trained using a sufficiently
large amount of training data can achieve a small training
error, while simultaneously performing well on unseen data,
i.e., it generalizes well. However, we have yet to develop a
satisfactory understanding of why deep learning algorithms
generalize well.

Classical statistical learning approaches for analyzing the
generalization capability of supervised learning algorithms can
be mainly categorized into two groups. The first set of methods
are based on measures of the complexity of the output hypoth-
esis space, e.g., VC dimension and Rademacher complexity
[7], [8]. However, these complexity measures usually scale
exponentially with the depth of deep neural networks [9].
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Moreover, these approaches do not take into consideration
the regularization implicitly imposed by the algorithms used
to train the neural networks, e.g., stochastic gradient descent
[10], [11]. Thus, the generalization error bounds based on
these complexity measures tend to be loose and do not explain
why deep neural networks generalize well in practice. The
second set of methods are based on exploiting properties of the
learning algorithm, e.g., PAC-Bayesian bounds [12], uniform
stability [13], [14], and compression bounds [15]. However,
as discussed in [11], [16], these approaches do not exploit
the fact that the generalization error depends strongly on
the underlying true data-generating distribution. For example,
if the labels are irrelevant to the input features, then the
generalization error will be large for a deep neural network,
since training error is usually small due to the large capacity
of the network, but test error will be large due to the fact
that there is no relationship between the input features and
the label [11].

Recently, it was proposed in [17] and further studied in
[18] and [19] that the metric of mutual information can be
used to develop upper bounds on the generalization error of
learning algorithms. Such an information-theoretic framework
can handle a broader range of problems, and it could also
address the aforementioned challenges of implicit regulariza-
tion and dependence on data generating distribution. More
importantly, it offers an information-theoretic point of view
on how to improve the generalization capability of a learning
algorithm, and this new perspective provides us with a better
understanding of the generalization behavior of deep neural
networks.

In this paper, we follow the information-theoretic framework
proposed in [17]-[19]. Our main contribution is a tighter
upper bound on the generalization error using the mutual
information between an individual training sample and the
output hypothesis of the learning algorithm. We show that
compared to existing studies, our bound has a broader range
of applicability, and can be considerably tighter.

We consider an instance space Z, a hypothesis space W,
and a nonnegative loss function £ : W x Z — R*. A training
dataset S = {Zy,---,Z,} that consists of n i.i.d samples
Z; € Z drawn from an unknown distribution p is available.
The goal of a supervised learning algorithm is to find an output
hypothesis w € W that minimizes the population risk:

Ly(w) £ Ez,lb(w, 2)]. (1)

In practice, x is unknown, and thus L, (w) cannot be computed
directly. Instead, the empirical risk of w on a training dataset



S is studied, which is defined as
1 n

L 2 2N Y(w, 7). 2
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A learning algorithm can be characterized by a randomized
mapping from the training dataset S to a hypothesis W
according to a conditional distribution Pyyg.

In statistical learning theory, the (mean) generalization
error' of a supervised learning algorithm is the expected
difference between the population risk of the output hypothesis

and its empirical risk on the training dataset:
gen(u, Pw|s) £ Ew,s[L, (W) — Lg(W)], 3)

where the expectation is taken over the joint distribution
Pgw = Ps @ Py s. Note that Py g will become degenerate
if W is a deterministic function of S. The generalization error
is used to measure the extent to which the learning algorithm
overfits the training data.

Main Contributions and Related Works

We first review the following lemma from [18], which
provides an upper bound on the generalization error using the
mutual information I(S; W) between the training dataset S
and the output hypothesis W.

Lemma 1 ( [18, Theorem 1]). Suppose ¢(w,Z) is R-sub-
Gaussian® under Z ~ w for all w € W, then

?1(5; w). 4)

lgen(u, Pys)| <

This mutual information based bound in (4) is related to
the “on-average” stability (see, e.g., [20]), since it quantifies
the overall dependence between the output of the learning
algorithm and all the input training samples via I(.S; W). Note
that 1(S; W) depends on the main components of a supervised
learning problem, i.e., the hypothesis space W, the learning
algorithm Pyy|s, and the data generating distribution p, in
contrast to the traditional bounds based on VC dimension or
the uniform stability, which only depend on one aspect of
the learning problem. We also note that there is a connection
between the mutual information based generalization bound
and the PAC-Bayesian bound in [21], since both methods adopt
the variational representation of relative entropy to establish
the decoupling lemma. By further exploiting the structure
of the hypothesis space and the dependency between the
algorithm input and output, the authors of [19], [22] combined
the chaining and mutual information methods, and obtained a
tighter bound on the generalization error.

The term “generalization error” of a learning algorithm is usually defined
as the difference between the population risk and the training error without
taking the expectation with respect to the randomness of the data and the
learning algorithm. Here, we consider the expectation of the generalization
error over the randomness of both the data and the learning algorithm.
We will use the term “generalization error” throughout the paper, with the
understanding that it is the “mean generalization error”.

2A random variable X is R-sub-Gaussian if log E[eMX —EX)] < #
YA eR

5

However, the bound in Lemma 1 and the chaining mutual
information (CMI) bound in [19] both suffer from the follow-
ing two shortcomings. First, for empirical risk minimization
(ERM), if W is the unique minimizer of Lg(w) in W, then
W is a deterministic function of S and the mutual information
I(S; W) = oco. It can be shown that both bounds are not tight
in this case. Second, both bounds assume that ¢(w, Z) has a
bounded cumulant generating function (CGF) under Z ~ p for
all w € W, which may not hold in many cases (see Section
V).

There has been some recent work on addressing these short-
comings of mutual information based bounds on generalization
error by using other information-theoretical measures, e.g.,
Wasserstein distance [23]-[25], maximal leakage [26], [27]
and total variation [28] to bound the generalization error. But
the measures proposed in these papers are difficult to evaluate
both analytically and empirically as we discuss in Section VI,
which significantly undermines the usefulness of these results
in practice.

In this paper, we get around the aforementioned shortcom-
ings by combining the idea of point-wise stability [14], [23]
with the information-theoretic framework introduced in [18].
Specifically, an algorithm is said to be point-wise stable if the
expectation of the loss function ¢(W, Z;) does not change too
much with the replacement of any individual training sample
Z;, and if an algorithm is point-wise stable, then it generalizes
well [14], [23]. Motivated by these facts, we tighten the mutual
information based generalization error bound through a bound
based on the individual sample mutual information (ISMI)
I(W; Z;). Compared with the bound in Lemma 1, and the
CMI bound in [19], the ISMI bound is derived under a more
general condition on the CGF of the loss function, is applicable
to a broader range of problems, and can provide a tighter
characterization of the generalization error.

The rest of the paper is organized as follows. In Section II,
we provide some preliminary definitions and results for our
analysis. In Section III, we introduce the individual sample
mutual information generalization bound. In Section IV, we
apply our method to bound the generalization errors of two
learning problems with infinite I(S;1W). We show in the
second example that our ISMI bound can be tighter than the
CMI bound in [19], while the bound in Lemma 1 is infinity. In
Section V, we improve the generalization error bound in [29]
for SGLD algorithm using our method, which demonstrates
that the ISMI bound is applicable to the noisy, iterative
algorithms discussed in [29]. In Section VI, we provide an
example where the ISMI bound can be evaluated empirically
from the samples, while other existing bounds are difficult to
estimate due to prohibitive computational complexity.

II. PRELIMINARIES

We use upper letters to denote random variables, and
calligraphic upper letters to denote sets. For a random variable
X generated from a distribution y, we use Ex~,, to denote the
expectation taken over X with distribution p. We write Iy to
denote the d-dimensional identity matrix. All the logarithms
are the natural ones, and all the information measure units



are nats. We use pu®" to denote the product distribution of n
copies of L.

Definition 1. The cumulant generating function (CGF) of a
random variable X is defined as

Ax(X) £ log B[ X EX)). )

Assuming Ax () exists, it can be verified that Ax(0) =
A (0) = 0, and that it is convex.

Definition 2. For a convex function 1 defined on the interval
[0,0), where 0 < b < oo, its Legendre dual 1* is defined as

() £ sup (Az—p(N). (6)
A€[0,b)
The following lemma characterizes a useful property of the
Legendre dual and its inverse function.

Lemma 2 ( [30, Lemma 2.4]). Assume that (0) = ¢'(0) =
0. Then *(x) defined above is a non-negative convex and
non-decreasing function on [0, co) with 1*(0) = 0. Moreover,
its inverse function ¥*~1(y) = inf{z > 0 : ¢¥*(x) > y} is
concave, and can be written as

v y) = (y‘H/’(/\))

A

inf
A€(0,b)

@)
For an R-sub-Gaussian random variable X, ¢)(\) = #
is an upper bound on Ax (\). Then by Lemma 2, 1/*~1(y) =

v 2R2y.

III. BOUNDING GENERALIZATION ERROR VIA I(W; Z;)

In this section, we first generalize the decoupling lemma
in [18, Lemma 1] to a different setting, and then tighten the
bound on generalization error via the individual sample mutual
information I(W; Z;).

A. General Decoupling Estimate

Consider a pair of random variables W and Z with joint
distribution Py, 7. Let W be an independent copy of W, and
Z be an independent copy of Z, such that Pz = Pw ® Pz.
Suppose f : W x Z — R is a real-valued function. If the
CGF Af(W,Z)O‘) of f(W,Z) can be upper bounded by some
function v for A € (b_, b, ), we have the following theorem.

Theorem 1. Assume that Af(W 2)()\) < Pp(N) for X €

[0,b4), and A v 2)()\) < h_(=N) for A € (b_,0] under
distribution PWZ = Pw ® Pz, where 0 < by < oo and

—o0 < b_ < 0. Suppose that 1, (\) and p_(\) are convex,
and 14 (0) =, (0) = _(0) = ¥/_(0) = 0. Then,
Ef(W, 2)] = B[f(W, 2)] < 9371 (1(W; 2)),
Ef(W, 2)] = E[f(W, 2)] < 47} (1(W; 2)).

®)
€))
Proof. Consider the variational representation of the relative

entropy between two probability measures P and @) defined
on X:

D(P|Q) = sup {Eplg(X)] - log Eq[e* ]},
Y

(10)

where the supremum is over all measurable functions G = {g :
X = R, s.t. Eg[ed™¥)] < 0o}, and equality is achieved when
g = log %, where % is the Radon—Nikodym derivative. It
then follows that VA € [0,b,),

I(W;Z) = D(Pw z||Pw ® Pz)
> E\ (W, 2)] - log E[eM V2]
> ME[f(W, 2)] = E[f (W, 2))) = (\), (1)
where the last inequality follows from the assumption that
A (W; Z) = log B[N (WA-BIV20] < g (),
for A € [0,b4). Similarly, for A € (b_,0], it follows that
D(Pw,z||Pw @ Pz)
> MELf(W, 2)] = E[f(W, 2))) -
From (11) it follows that

(12)

Y_(=X). (13)

E[f(W,Z)] - E[f(W,Z)] <

N )\E[O,b+) )\
= (I(W:2)), (14)
and from (13) it follows that
Elf(W,2) —EfW,2)] < imf VD F0-()

T Aef0,—b_) A
=y (I(W; 2)),

where the equalities in (14) and (15) follow from Lemma 2.
O

15)

Theorem 1 provides a different characterization of the
decoupling estimate than existing results. Specifically, it is
assumed that the CGF of f(w, Z) is bounded for all w € W
and Z ~ pin [18, Lemma 1] and [31, Theorem 2], whereas in
Theorem 1, it is assumed that the CGF of f (W, Z) is bounded
in expectation under PW 7 =Pw ® Pz.

B. Individual Sample Mutual Information Bound

Motivated by the idea of algorithmic stability, which mea-
sures how much an output hypothesis changes with the
replacement of an individual training sample, we construct
the following upper bound on the generalization error via

Theorem 2. Suppose ((W,Z) satisfies Ae(ﬁ?,Z)()‘) <y (N)
for A € [0,by), and AZ(W,Z)()‘) < YP_(=A) for X € (b_,0]
under PZW = 1 ® Py, where 0 < by < 00 and —o0 <
b_ < 0. Then,

1 n
gen(p, Pvjs) < — §wi—1(I(W;Zi>), (16)

1 n
— P <= =N I(W: Z,)). 17
gen(/’(’a W\S) =n ;d@ ( ( ) )) ( )
Proof. The generalization error can be written as follows:

gen(n, Pvis) = 5 3 (Byy 5107, 2)] — Bz, [, 20)]),
- (18)



where W and Z; in the second term are dependent with
Pyz, = p® Pyz,, and W and Z in the first term are
independent with the same marginal distributions. Applying
Theorem 1 completes the proof. O

In the following proposition, we derive the ISMI bounds
under two different sub-Gaussian assumptions.

Proposition 1. 1) Suppose that {(w, Z) is R-sub-Gaussian
under Z ~ p for all w € W, then

Z\/2R21 (W3 Zy)

2) Suppose that E(W, Z ) is R-sub-Gaussian under distribu-
tion PWZ = Pw ® Pz, then

Z\/2R21 W Z)

Proof. 1) The generalization error can be written as in (18),
where W and Z; in the second term are dependent with
Pyz, = p @ Pyz,, and W and Z in the first term are
independent whose marginal distributions are the same as
those of W and Z;. The first inequality then follows from
Lemma 1 by letting S = Z; and n =1, foreachi =1,--- ,n

2) For an R-sub-Gaussian random variable, wjrl(y) =

|gen(, P)s)| (19)

|gen (s, Py|s)| (20)

¥~ (y) = \/2R2y is an upper bound on its CGE. The second
inequality then follows from Theorem 2. O

Remark 1. The condition that {(w,Z) is R-sub-Gaussian
under Z ~ y for all w € W in the first part of Proposition
1 is the same as the one in Lemma 1, which is not stronger
than the condition in the second part of Proposition 1. An
example was given in [32] for this argument. Specifically,
consider W = Z = R, with lw,z) = w+ z and
(W, Z) ~ Cauchy@N (0, 1). Then, {(w, Z) is 1-sub-Gaussian
for any w € W, whereas ((W, Z) does not even have bounded
absolute first moment.

The following proposition shows that the proposed ISMI
bound is always no worse than the bound using I(S; W) in
Lemma 1 and [31, Theorem 2].

Proposition 2. Suppose that S = {Zy,--- , Z,} consists of n
independent samples, and 1*~' is a concave function, then

1 — I(S;wW
Zw*‘l(I(W Z») < w*-l(()). 1)
n n
Proof. By the chain rule of mutual information,
L(W:8) =) I(W:Z|Z"Y) (22)
i=1
where 77 {Z1,---,Z;}. Note that Z; and Z'~! are

independent, i.e., I(Z;; Z*=') = 0, it then follows that

IW;Z| 27N = I(W; Z;|1 Z27Y) + 1(Z; 271
=I(W, 2% Z;)
=I(W;Z)+ I(Z7 Y Z|W)
I(W; 7).

v

(23)

Thus,
I(W;8) =Y I(W;Zi| 271 > Y 1(Wi Z),  (24)
i=1 i=1
and applying Jensen’s inequality completes the proof. O

Remark 2. Under the sub-Gaussian condition (see sentence
following Lemma 1), we can let 1* ! (y) = \/2R?y. Then by
Proposition 2, the ISMI bound in Proposition 1 is always no
worse than the bound based on I(S; W) in Lemma 1.

Remark 3. Following arguments similar to those used in
the proof of I(W;Z;) < I(W; Z;|Z*1), we can also show
that I(W; Z;) < I(W;Z;|S™%), where S™" denotes the set
obtained by deleting Z; from S. Therefore, the ISMI bound is
always no worse than the bound based on I(W; Z;|S™%) in

[23, Theorem 2].

In the next section, we will also show via several examples
that the ISMI bound provides a more accurate characterization
of the generalization error than the bound in Lemma 1 and the
chaining bound in [19].

IV. EXAMPLES WITH INFINITE I(W;.S)

In this section, we consider two examples of learning
algorithms with infinite I(W;S). We show that for these
examples, the upper bound on generalization error in Lemma 1
blows up, whereas the ISMI bound in Theorem 2 still provides
an accurate approximation. The details of the derivations of
the bounds can be found in the Appendices.

A. Estimating the Mean

We first consider the problem of learning the mean of a
Gaussian random vector Z ~ N'(p,021;), which minimizes
the square error £(w, Z) £ |jw — Z||3. The empirical risk with
n i.i.d. samples is

Ls(w) (25)

n
2l > llw—Zil3, weR™
"=
The empirical risk minimization (ERM) solution is the sample
mean W = 13" | 7, which is deterministic given S. Its
generalization error can be computed exactly as (see Appendix

A):
202d
—

gen(u, Pys) = (26)

The bound in Lemma 1 is not applicable here due to the
following two reasons: (1) W is a deterministic function of
S, and hence I(S; W) = oo; and (2) since Z is a Gaussian
random vector, the loss function /(w, Z) = ||w — Z||3 is not
sub-Gaussian for all w € R, Specifically, the variance of the
loss function £(w, Z) diverges as ||w||2 — oo, which implies
that a uniform upper bound on Ay, 7y (), Yw € R¢ does not
exist.

We can get around both of these issues by applylng the
ISMI bound in Theorem 2. Since W ~ N (p, ”,Id), the
mutual information between each individual sample and the




output hypothesis I(W; Z;) can be computed exactly as (see
Appendix A):

I(W;Zi):glog i=1,-- n>2. (27)

n_17 )n7

In addition, since W ~ N (u, "ind), it can be shown that
(W, Z) ~ o2x2, where o2 2 %, and x2 denotes
the chi-squared distribution with d degrees of freedom. Note
that the expectation of 2 distribution is d and its moment
generating function is (1 — 2\)%/2. Therefore, the CGF of
((W,Z) is given by

—202)),

A \) = —doi) — d log( (28)

E(W,Z)(

for A € (—00, 5 515). Since W is the ERM solution, it follows

that gen(p, Pw\ss > 0, and we only need to consider the case
A < 0. It can be shown that (see Appendix A):

AN S Ao 2 £9_(=)), A<0. (29
Then, lﬁi_l y) = 2@. Combining the results in (27), we
have
2(n +1)2
gen(p, Piyjs) < ”2d\/ ( 2 Plog " (0)

As n — 0o, the above bound is O ( f)’ which is sub-optimal
compared to the true generalization error computed in (26). We
should note that techniques based on VC dimension [7] and
algorithmic stability [13] also yield bounds of O

B. Gaussian Process

In this subsection, we revisit the Gaussian process example
studied in [19]. Let W = {w € R? : |lw||x = 1}, and
Z ~ N(0, I,) be a standard normal random vector in R?. The
loss function is defined to be the following Gaussian process
indexed by w:

lw,Z) & —(w,Z), YweW. (31)

Note that the loss function® /(w, Z) is sub-Gaussian with
parameter R = 1 for all w € W. In addition, the output
hypothesis w € W can also be represented equivalently using
the phase of w. In other words, we can let ¢ be the unique
number in [0,27) such that w = (sin@,cos¢). For this
problem, the empirical risk of a hypothesis w € W is given
by

n

Ls(w) = _%Z@U, Z:).

(32)

We consider two learning algorithms which are the same as
the ones in [19]. The first is the ERM algorithm:

W = argmin Lg(w )fargmax w, fZZ (33)

¢€(0,2m) ¢€[0,2m) i—1

3The loss function can be negative here. We ignore the non-negativity
assumption of the loss function; this does not affect our analysis.

The second is the ERM algorithm with additive noise:

W' = (argmax w, fZZ (34)

) @ & (mod 27),
¢€[0,27)

where the noise ¢ is independent of S, and has an atom
with probability mass € at 0, and probability 1 — ¢ uniformly
distributed on (—m, 7). Due to the symmetry of the problem,
W and W' are uniformly distributed over [0, 27).

The generalization error of the ERM algorithm W can be
computed exactly as (see Appendix B):

s
P =4/ 35

gen(,u, W|S) m (35)

For the second algorithm TV, since the noise ¢ is independent

from S, it follows that

™

o (36)

gen(u, Py |s) = €

The bound via I(W; S) in Lemma 1 is not applicable, since

W is deterministic given S and I(WW;S) = co. Moreover, for
the second algorithm W/,

I(W';S) = h(W') — h(W'|S)

= log2m — h(§) = oo, 37)

since ¢ has a singular component at 0, and h(§) = —oo.
Applying the ISMI bound in Theorem 2 to the ERM
algorithm W, we have that

I(W;Z;) = h(W) — h(W|Z;)
= log 2w — h(W|Z;)

=log2m —Ez [h(W|Z; = z)], (38)

which we need to compute the conditional distribution
Py z,=-,- Note that given Z; = z;, the ERM solution

W= argmax(w 24 ZZ
$€l0,2m) noon

depends on the other samples Z,, j # ¢. Moreover, it can be
shown that Py z,—., is equlvalent to the phase distribution of
a Gaussian random vector N (2, 252 L1,) in polar coordinates.
Due to symmetry, we can always rotate the polar coordi-
nates, such that z; = (r,0), where r € RT is the £3 norm of
z;. Then, Py z,—., is a function of 7, and can be equivalently
characterized and computed by the distribution f(¢|||Z;| = r)
provided in Appendix B. Since the norm of Z; has a Rayleigh
distribution with unit variance, it then follows that

1(W; 2;) = log 2 — By [n(£(0]1 211 = )]

Applying Theorem 2, we obtain

Z\/HWZ

Similarly, we can compute the ISMI bound for W',
Numerical comparisons are presented in Fig. 1 and Fig. 2. In
both figures, we plot the ISMI bound, the CMI bound in [19],

(39)

(40)

lgen(p, Pyyjs)| < = \V2I(W;Z;). (41)
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Fig. 1. Comparison of generalization bounds for the ERM algorithm.
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Fig. 2. Comparison of different generalization bounds for the ERM algorithm
with additive noise ¢ = 0.05.

and the true values of the generalization error, as functions of
the number of samples n. In Fig. 1, we compare these bounds
for the ERM solution W. Note that the CMI bound reduces to
the classical chaining bound in this case. In Fig. 2, we evaluate
these bounds for the noisy algorithm W’ with € = 0.05. Both
figures demonstrate that the ISMI bound is closer to the true
values of the generalization error, and outperforms the CMI
bound significantly. More details about the computations of
both bounds can be found in Appendix B.

V. NoOISY, ITERATIVE ALGORITHMS

In this section, we apply the ISMI bound in Theorem 2 to
a class of noisy, iterative algorithms, specifically, stochastic
gradient Langevin dynamics (SGLD).

A. SGLD Algorithm

We begin by introducing some notation to be used in this
section. Denote the parameter vector at iteration ¢ by W, €
R?, and let W) € W denote an arbitrary initialization.
At each iteration ¢ > 1, we sample a training data point
Zy,, € S, where Uy) € {1,...,n} denotes the random index
of the sample selected at iteration ¢, and compute the gradient

VIU(W(s-1), Zu,,,)- We then scale the gradient by a step size
n(+) and perturb it by isotropic Gaussian noise § ~ N(0,1y).
The overall update rule is as follows [33]:

Wiy = We—1y) =iy VEWi—1), Zu,,) +omé,  (42)

where o () controls the variance of the Gaussian noise.

For t > 0, let W® £ {W), -+, W} and U £
{Uqy, -, Uy }. We assume that the training process takes
K epochs, and the total number of iterations is 7' = nK. The
output of the algorithm is W = W 7.

In the following, we use the same assumptions as in [29].

Assumption 1. {(w, Z) is R-sub-Gaussian with respect to
Z ~ p, for every w € W.

Assumption 2. The gradients are bounded,
Sup,ew ez VLW, 2)|l2 < L, for some L > 0.

ie.,

In [29], the following bound was obtained by upper bound-
ing I(W;S) in Lemma 1.

Lemma 3 ( [29, Corollary 1]). The generalization error of
the SGLD algorithm is bounded by

lgen(u, Py s)| < (43)

B. ISMI Bound for SGLD

We have the following proposition which characterizes the
ISMI bound for the SGLD algorithm.

Proposition 3. Suppose Assumption 1 and 2 hold, then we
have the following ISMI bound on the generalization error
for SGLD algorithm,

n 2 2

R My L
et P < Epen |23 |
i=1 \re;(UD) ()

} ; (44)

where UT) denotes the random sample path, and T;(U™))
denote the set of iterations for which samples Z; is selected
for a given sample path U™,

Proof. To apply the ISMI bound for SGLD, we modify the
result in Theorem 2 by conditioning on the random sample
path U™,

lgen(p, Py s)|
= g [ 3 (B 5007, 2) U™
=1

~ Bwz[((W, Z)[U™])]|

1 1 &
< 3 (gz\/ﬂ%?](W;Zi\U(T):u(T))>, (45)

w(T) cu =1

where U denotes the set of all possible sample paths, and
I(W; ZJUT) = ™) is the mutual information * with
conditional distribution P(W, Z;|U™) = u(T)),

4Note that this mutual information is different from the conditional mutual
information I(W; Z;|JU™)) = By, [I(W; Z; |UT) = u(D)].



Let 7;(u(™)) denote the set of iterations for which sample
Z; is selected for a given sample path u(7). Using the chain
rule of mutual information, we have

I(W; Z;| U = o(1))
< I(Z; W(T)\U(T) - U(T))

T
D (s Wi | Wir 1), UT = u™)

T=1

- ¥

TETi(u(D)

I(Zz, W(T) |W(7._1), U(T) = U(T)), (46)

where the last equality is due to the fact that given u(*) and
W(T,lg, Z; is independent of W(,), if 7 ¢ T;(u()). For 7 €
ﬂ(u(T ), i.e., if Z; is selected at iteration 7, we have

I(Zi; Wiy [Wir 1), UT) = o)

= h(nr) VEW(r—1), Zi) + 01§l Wir—1)) — h(o()8).

Since we assume that sup,,cyy zez [|VEW, Z)[|2 < L, we
have

h(n(‘r)vg(W(T_l), ZZ) —+ O—(T)ng(T_l))
< h(nn VEWir—1), Zi) + 0()€)

2 2 2
77(T)L +d0(T)
M= 749\ A

7 ) 47)

Due to the fact that £ is an independent Gaussian noise,
ho )&l W(r—1)) = $log (2mec?), we have

d
< 3 log (2776

2 2

d U
(2 Wir)[Wir—1), U = u®) < Tlog (14 —75—).
2 4ot

Combining with (45), it follows that

n

R 77(27)112
lgen(1, Pjs)| < Egrer) [nZ Y. o } (48)
i=1 \ reT;(UMD) (7)

where we remove the log term by using log(1 +z) < z. O

To compare the result of the ISMI bound in Proposition
3 and the bound in Lemma 3, we specify the parameters
in the SGLD algorithms. As in [29], we set 7)) = %, and
owy = /M- We use the following “without replacement”
sampling scheme for SGLD to further simplify the compu-
tation. Specifically, for the k-th training epoch, i.e., from the
((k — 1)n + 1)-th to kn-th iterations, all training samples in
S are used exactly once.

Then, the ISMI bound can be further bounded as follows:

lgen(p, Py s)]

< T[S [ & 7]

i=1

k=1

() RL\/¢ — \/1 log(K —1) +1
< -V~ oy 7
- n z:zl i+ n

(©) RL

< = (Velog(K 1)+ c+ologlog k), (49)

B

where (a) follows from the sampling scheme that all samples
are used exactly once in each epoch; (b) is due to the fact
that fo:l + <log(K)+1; and (c) follows by computing the
L +1+1og(K —1)da.
Comparing with the bound in [29],

RL
gen(p, Pws)| < iV clog(nkK) +c,

it can be seen that our bound is tighter by a factor of /logn
with the “without replacement” sampling scheme.

integral |, 01 \/

(50)

Remark 4. We note that for the typical use of SGLD, the
standard deviation of the noise is oy = +/2n:/B:, where
B; denotes the inverse temperature at iteration t, and it is
often set to be ©(n). It is clear that § = O(n) will lead
to a generalization bound that does not decay in n. Here,
we choose By = 2 for comparison with the bound in [29],
while in practice B may be a function of n and grow with
t. An analysis of the generalization error bound of SGLD for
arbitrary choices of B¢ can be found in [32].

VI. EMPIRICAL EVALUATION OF ISMI BOUND FOR
LOGISTIC REGRESSION

For some learning algorithms applied in practice, it is diffi-
cult to analytically characterize Py |s, which makes the analyt-
ical evaluation of the ISMI bound challenging. In this section,
we provide such an example, that of logistic regression, for
which it is difficult to analytically characterize the learning
algorithm via the conditional distribution Pyy|s. We therefore
empirically evaluate the ISMI bound via a mutual information
estimator, and compare it to an empirical evaluation of the
generalization error. We further note that the ISMI bound is
much easier to estimate than the bound in Lemma 1 and the
chaining bound in [19] due to the significant reduction in
dimension that comes from estimating I(Z;; W) instead of
I(S;W).

Consider the binary classification problem, where the sam-
ples Z = (X,Y), consisting of features X € R? and labels
Y € {+1}. We assume that training samples are generated
from the following distribution,

X ~Nuy,S), Ye{£l}, puyeR™ (51
The marginal distribution of X is the mixture of two Gaussian
distributions, and we assume that P(Y = —-1) = P(Y =1) =
1/2.
A binary classifier is constructed as follows:

|

We adopt classification error £(w, Z) = 1y to compute
the generalization error, then the empirical risk with n i.i.d.
samples is

1, wl' X > 0;

—1, else. (52)

1 n
Ls(w) =~ Miyuvy (33)
i=1
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Fig. 3. Empirical evaluation of ISMI bound and generalization error in
Logistic regression.

Since the empirical risk function is not differentiable, we
learn W by minimizing the following loss function of logistic
regression:

W—argmmfZIOg 1+e Yo" X4y, (54)

weW i1
In general, it is difficult to obtain a closed form solution for
this optimization problem, and therefore, (54) is usually solved
numerically. This makes it difficult to analytically characterize
the conditional distribution PW‘ z;» which in turn makes it
challenging to compute the generalization error and the ISMI
bound analytically.

Alternatively, we can empirically estimate the generalization
error and the ISMI bound. Specifically, we train W for N
times using N sets of independent samples, and we use the
K-nearest neighbor based mutual information estimator [34],
[35] to estimate I(W; Z;) with N i.i.d. samples of W and Z;.
Note that the K-nearest neighbor based mutual information
estimator is consistent, and its mean 2squared estimation error
can be upper bounded by O(N ~ 9w+iz ), where dy = d is
the dimension of the weights W, and dz = d + 1 is the
dimension of Z [35]. Moreover, since we use classification
error to compute generalization error, (W, Z) is bounded by
1. Then, by Hoeffding’s lemma, ¢(W, Z) is %-sub-Gaussian.
Thus, the ISMI bound can be estimated by

1 Xn: [(W; ;)
(et 2

where I(W; Z;) is the estimate of I(W;Z;). If we apply an
optimization algorithm that does not depend on the order of the
samples, e.g., gradient descent and stochastic gradient descent
with random shuffling, we then only need to estimate one

1W321) instead of estimating f(W, Z;) forall 1 <i<n.

We note that the bound in Lemma 1 is difficult to estimate
due to the high dimension of S, which scales linearly with
n. Specifically, the training dataset S consists of n samples,
and therefore I(WW;.S) is the mutual information between two
random vectors with dimensions d and n(d + 1). As shown
in [35], due to the curse of dimensionality, it is impossible to

(55)

construct a consistent mutual information estimator for large
n. We also note that the exact computation of Wasserstein
distances is costly in general, as it requires the solution of
an optimal transport problem [36]. Moreover, similar high
dimensional issue makes it even more difficult to directly
estimate W(Py , Py |S) in the Wasserstein distance based
generalization bound in [24], [25].

In Fig. 3, we plot an empirical estimate of the ISMI bound
using (55), and compare it to the generalization error. In the
simulation, we chose the following model parameters: d = 2
and p; = (1,1), p—y = (—1,—1) with ¥ = 47. We used
the K-nearest neighbor based mutual information estimator
(revised KSG estimator) in [35] with N = 5000 i.i.d. samples.
It can be seen that the ISMI bound has a similar convergence
behavior as the true generalization error as number of training
samples n increases.

VII. CONCLUSIONS

In this paper, we proposed a tighter information-theoretic
upper bound on the generalization error using the mutual
information I(Z;; W) between each individual training sample
Z; and the output hypothesis W of the learning algorithm. We
showed that compared to existing studies, our bound is more
broadly applicable, and is considerably tighter. More impor-
tantly, the individual sample mutual information is between
two vectors whose dimensions do not scale with the sample
size n. Therefore, unlike the existing bounds in [18], [19], [25],
the ISMI bound can easily be evaluated empirically in practice.
As suggested by recent works, the proposed ISMI bound
could be further improved by combining with the chaining
method [22], or data-dependent estimates [32]. The proposed
information-theoretic framework can also be used to guide
model compression in deep learning [37].

APPENDIX A

SECTION IV-A DETAILS

A. Generalization Error

For this example, the generalization can be computed as

gen(u, Py |s)
= EW,S[LP«(W) -

= s [E5012 - 218 - 2212 - 23]

Ls(W)]

=Eg;(T0(Z - 2)(Z - 2Z)")]
—]ESEZTY((Z - 2)(Z-2)")
= Tr(Cov[Z]) + Tr(Cov[Z]) — _ - L (Covl2])
= ~Tx(Cov|2)) (56)

202d
-

Since Cov[Z] = 614, we have gen(u, Py|s) =



B. Individual Mutual Information

We note that both W and n i.i.d. samples Z; are Gaussian,
then the individual mutual information I(W; Z;) is a function
captured by the following covariance matrix,

Cov[W, X;] = ( g;’; Eé” ) . (57)
Then, we have
1 |Cov[W]||Cov[X,]|
IW:;X;)= -1
(W7 Z) 2 0g |COV[VI/, Xz]'
1o |E/n]|X
= —log ———
PR E=N
d n

forall:=1,...,n.

C. Upper bound for CGF
Note that the CGF of K(W, Z) is given by

d
Ay (N = —doi) — 3 log(1 — 202)\)

d 1

where u = 202 ). Further note that

u2

—u—log(l—u) < —

5 u < 0.

(60)

We therefore have the following upper bound on the CGF of
(W, 2Z):

Ay zy(A) < dogh®, A <0. (61)
APPENDIX B
SECTION IV-B DETAILS
A. Generalization Error
Note that the expectation of the population risk is
Ew,s[L,(W)] = Ew,z[-(W, Z)] =0, (62)

since W and Z are independent. Then, the generalization error
can be computed as

gen(p, Pys) = E[—Ls(W)]

n

= Ew,s[(W, % > 7))

=1
17L
asli S
w,s n;

where the last step is due to the fact that the distribution of
L3 | Zi||» is Rayleigh(2).

s
, =\ o (63)

B. Individual Sample Mutual Information Bound

To compute the ISMI bound, we need the conditional
distribution Pyy|z,—.,. Note that given Z; = z;, the ERM
solution is

i1
W = argmax(w, Gy Z Z;).
¢ef2m) T M

Also note that since ¢ € [0,27), Py|z,—., is equivalent to the
phase distribution of a Gaussian random vector N( 2, "n}l L)
in polar coordinates. Since entropy is shift-invariant, we can
always rotate the polar coordinates, such that z; = (r,0),
where » € Rt is the 5 norm of z;.

The joint distribution of radius and phase (p, ¢) in polar
coordinates can be obtained by applying the Jacobian method

to the Gaussian distribution N/ ( (TT’LO), ”n}l I,), and we have

nrpcos ¢

 n2p2442
(n—1)
b

2
n _
p 3(n-1) g

Zi = =
Floo [I1Zil =) S —1)°
for p € [0,00), ¢ € [0,27).

Then, the marginal distribution of ¢ can be computed by
integrating out p from the joint distribution f (p, ¢|||Z;|| = r):

(64)

(ol Zill =)
= [ Hoo iz =)o
1 __»2 7 COS ¢ _r2sin?¢ 7 COS ¢
= e D) f—— " T En-D) _ ,
2 21(n — 1) Q-7 =7)

where Q(x) is the complementary cumulative distribution
function of the standard normal distribution.

Thus, the ISMI bound for the ERM algorithm W can
be evaluated using the following expression via numerical
integration:

lgen(u, Pys)| < v/21(W; Z;)

= 210w 2r 285 716120 = )] (69

Similarly, the ISMI bound for algorithm W’ can be computed
via numerical integration using

20(W"; Z;)

lgen(u, Pirjs)| <
= \/2 log 27w — QEHZi” [h(f(W/’Zz = zz)):|7

where the conditional distribution Py z,—., can be charac-
terized by the phase distribution

(66)

F@Zil =)
1—e€ € __r2
= — e 2(n—D)
2 2
/ 2 . ’ /
€T COS ¢ E*T;(Sﬁflf o rcos,cb) 67)
27r(n — 1) n—1

C. Chaining Mutual Information Bound

The CMI bound is computed based on the values provided
in Table 1 in [19]. We note that the CMI bound in [19] is
evaluated for the case n = 1, i.e., there is only one training
sample. To plot the CMI bound in [19] as a function of the



number of samples n, we normalize the CMI bound by a
v/n factor in Figures 1 and 2, since O(1/4/n) is the true
convergence rate for the generalization error as shown in (63).
For instance, Table 1 in [19] shows that the CMI bound for the
ERM solution W is 19.0352 when n = 1, which is equivalent
to the classical chaining bound. We therefore plot the curve
19.0352 55 the CMI bound for comparison with the proposed

23
ISMI bound in Figure 1.
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