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Nonparametric Detection of Geometric
Structures Over Networks

Shaofeng Zou, Member, IEEE, Yingbin Liang, Senior Member, IEEE, and H. Vincent Poor, Fellow, IEEE

Abstract—Nonparametric detection of the possible existence of
an anomalous structure over a network is investigated. Nodes cor-
responding to the anomalous structure (if one exists) receive sam-
ples generated by a distribution q, which is different from a dis-
tribution p generating samples for other nodes. If an anomalous
structure does not exist, all nodes receive samples generated by
p. It is assumed that the distributions p and q are arbitrary and
unknown. The goal is to design statistically consistent tests with
probability of errors converging to zero as the network size be-
comes asymptotically large. Kernel-based tests are proposed based
on maximum mean discrepancy, which measures the distance be-
tween mean embeddings of distributions into a reproducing ker-
nel Hilbert space. Detection of an anomalous interval over a line
network is first studied. Sufficient conditions on minimum and
maximum sizes of candidate anomalous intervals are character-
ized in order to guarantee that the proposed test is consistent. It
is also shown that certain necessary conditions must hold in order
to guarantee that any test is universally consistent. Comparison
of sufficient and necessary conditions yields that the proposed test
is order-level optimal and nearly optimal respectively in terms of
minimum and maximum sizes of candidate anomalous intervals.
Generalization of the results to other networks is further developed.
Numerical results are provided to demonstrate the performance of
the proposed tests.

Index Terms—Anomalous structure detection, consistency, max-
imum mean discrepancy, nonparametric test.

I. INTRODUCTION

W E ARE interested in a type of problem, the goal of
which is to detect the possible existence of an anomalous
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structure over a network. Each node in the network observes a
random sample. An anomalous structure, if it exists, corresponds
to a cluster of nodes in the network that take samples generated
by a distribution q. All other nodes in the network take samples
generated by a distribution p that is different from q. If there
does not exist an anomalous structure, then all nodes receive
samples generated by p. The distributions p and q are arbitrary
and unknown a priori. Designed tests are required to distinguish
between the null hypothesis (i.e., no anomalous structure exists)
and the alternative hypothesis (i.e., there exists an anomalous
structure). Due to the fact that the anomalous structure may be
one of a number of candidate structures in the network, this
is a composite hypothesis testing problem. In this paper, we
first study the problem of detecting the possible existence of an
anomalous interval over a line network, and then generalize our
approach to higher dimensional networks.

This problem models many applications. For example, con-
sider sensor networks in which sensors are deployed over a large
area. These sensors take measurements from the environment
in order to determine whether or not there is an intrusion of an
anomalous object. Such intrusion typically enlarges the magni-
tude of the signal measured by a few sensors that are located
close to the area where the intrusion occurs, whereas other sen-
sors’ measurements are still at the noise level. An alarm is then
triggered if the network detects an occurrence of an intrusion
based on the sensors’ measurements [3]. Other applications arise
in target recognition [4], detecting structural defects of bridges
[5], detecting anomalous segments of DNA sequences, detecting
virus infection of computer networks, and detecting anomalous
spots in images [6].

As an interesting topic, detecting the possible existence of
anomalous geometric structures in networks has been inten-
sively studied in the literature as we review in Subsection I-B.
However, previous studies focused on parametric or semipara-
metric models, which assume that samples are generated by
known distributions such as Gaussian or Bernoulli distributions,
or the two distributions are known to be related by a mean shift.
Such parametric models may not always hold in real applica-
tions. In many cases, distributions can be arbitrary, and their
difference may not be described by a simple parameter shift.
The distributions may not even be known in advance. Hence, it
is desirable to develop nonparametric tests that are universally
applicable to arbitrary distributions.

In contrast to previous studies, we study the nonparametric
problem of detecting an anomalous structure, in which distri-
butions can be arbitrary and unknown a priori. In order to deal
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with nonparametric models, we apply mean embedding of dis-
tributions into a reproducing kernel Hilbert space (RKHS) [7],
[8] (see [9] for an introduction to RKHSs). The idea is to map
probability distributions into an RKHS associated with an appro-
priate kernel such that distinguishing between two probability
distributions can be carried out by evaluating the distance be-
tween the corresponding mean embeddings in the RKHS. This
is valid because the mapping is shown to be injective for various
kernels [10] such as Gaussian and Laplacian kernels. The main
advantage of such an approach is that the mean embedding of
a distribution can be easily estimated based on samples. This
approach has been applied to solving the two sample problem
in [11], in which the quantity of maximum mean discrepancy
(MMD) was used as a metric of distance between mean em-
beddings of two distributions. In this paper, we apply MMD
as a metric to construct tests for the nonparametric detection
problem of interest.

We are interested in the asymptotic scenario in which the net-
work size goes to infinity and the number of candidate anoma-
lous structures scales with the network size. Thus, the number of
sub-hypotheses under the alternative hypothesis also increases,
which makes the composite hypothesis testing problem diffi-
cult. On the other hand, since the distributions are arbitrary, it
is in general difficult to exploit properties of the distributions
such as mean shift to detect the possible existence of an anoma-
lous structure. Furthermore, as the network size becomes large,
in contrast to parametric models in which the parameter shift
can scale with the network size, the distributions here do not
change with network size. Hence, it is necessary that the num-
bers of samples within and outside of each anomalous structure
should scale with the network size fast enough in order to pro-
vide more accurate information about both distributions p and q
and guarantee asymptotically small probability of error. Thus,
the problem amounts to that of characterizing how the mini-
mum and maximum sizes of all candidate anomalous structures
should scale with the network size in order to consistently detect
the existence of an anomalous structure.

In this paper, we adopt the following notation to express
asymptotic scaling of quantities with the network size n:

� f(n) = O(g(n)): there exist k, n0 > 0 s.t. for all n > n0 ,
|f(n)| ≤ k|g(n)|;

� f(n) = Ω(g(n)): there exist k, n0 > 0 s.t. for all n > n0 ,
f(n) ≥ kg(n);

� f(n) = Θ(g(n)): there exist k1 , k2 , n0 > 0 s.t. for all n >
n0 , k1g(n) ≤ f(n) ≤ k2g(n);

� f(n) = o(g(n)): for all k > 0, there exists n0 > 0 s.t. for
all n > n0 , |f(n)| ≤ kg(n);

� f(n) = ω(g(n)): for all k > 0, there exists n0 > 0 s.t. for
all n > n0 , |f(n)| ≥ k|g(n)|.

A. Main Contributions

We adopt the MMD to construct nonparametric tests for
various networks, which are based on kernel embeddings of
distributions into an RKHS. Our main contribution lies in
comprehensive analysis of the performance guarantee for the
proposed tests. For the problem of detecting an anomalous
interval over a line network, we show that as the network

size n goes to infinity, if the minimum size Imin of candidate
anomalous intervals satisfies Imin = Ω(log n), and the
maximum size Imax of candidate anomalous intervals satisfies

n − Imax = Ω( log · · · · · · log
︸ ︷︷ ︸

n

arbitrary m number of logs

),

then the proposed test is consistent, i.e., the probability of error
is asymptotically zero. We further derive necessary conditions
on Imin and Imax that any test must satisfy in order to be
universally consistent for arbitrary p and q. Comparison of
sufficient and necessary conditions yields that the MMD-based
test is order-level optimal in terms of Imin and nearly order-level
optimal in terms of Imax . We further generalize such analysis
to other networks and obtain similar results. Our results also
demonstrate the impact of geometric structures on performance
guarantees for the tests.

We note that the nonparametric nature here affects the asymp-
totic formulation of the problem. The lower and upper bounds
(such as Imin and Imax in line networks) on the sizes of all can-
didate anomalous structures must scale with the network size in
order to guarantee enough samples in and outside the anomalous
structure if it exists. This is different from parametric models
in which problems can still be well posed even with a single
node or the entire network being anomalous, as long as a certain
distribution parameter (such as a mean shift between the two
distributions) scales with the network size.

The kernel-based approach has been used to solve various
machine learning problems. In recent years, Gretton and others
have demonstrated the superiority of MMD as a competitive
option to address the two-sample problem [11], [12], the prob-
lem of goodness of fit [13] and many other problems. In this
paper, since the nature of our problem necessarily involves ge-
ometric structures in networks, the technical analysis requires
an exploration of MMD for scenarios involving scaling of geo-
metric structures and an analysis of the impact of geometry on
the consistency of tests.

B. Related Work

Detecting the possible existence of an anomalous geomet-
ric structure in large networks has been extensively studied in
the literature. A number of studies have focused on networks
with nodes embedded in a lattice such as a one dimensional
line or a square. In [14], the network is assumed to be embed-
ded in a d-dimensional cube, and geometric structures such as
line segments, disks, rectangles and ellipsoids associated with
nonzero-mean Gaussian random variables need to be detected
against other nodes associated with zero-mean Gaussian noise
variables. A multi-scale approach was proposed and its optimal-
ity was analyzed. In [15], the detection of spatial clusters under
a Bernoulli model over a two-dimensional space was studied,
and a new calibration of the scan statistic was proposed, which
results in optimal inference for spatial clusters. In [16], the prob-
lem of identifying a cluster of nodes with nonzero-mean values
from zero-mean noise variables over a random field was studied.

Further generalization of the problem has also been studied,
when network nodes are associated with a graph structure, and
existence of an anomalous cluster or an anomalous subgraph
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of nodes needs to be detected. In [17], an unknown path cor-
responding to nonzero-mean variables needs to be detected out
of zero-mean variables in a network with nodes connected in a
graph. In [18], for various combinatorial and geometric struc-
tures of anomalous objects, conditions were established under
which testing is possible or hopeless with a small risk. In [19],
the cluster of anomalous nodes can either take certain geometric
shapes or be connected as subgraphs. Such structures associated
with nonzero-mean Gaussian variables need to be detected out
of zero-mean variables. In [20] and [21], network properties of
anomalous structures such as small cut size were incorporated
in order to assist successful detection. More recently, in [22], the
problem of detecting a connected sub-graph with elevated mean
out of zero-mean Gaussian random variables was studied. An al-
gorithm was proposed to characterize the family of all connected
sub-graphs in terms of linear matrix inequalities. The minimax
optimality of such an approach was further established in [23]
for exponential families on one- and two-dimensional lattices.

Our problem differs from all of the above studies due to its
nonparametric nature, i.e., the distributions are assumed to be
unknown and arbitrary. We also note that for the problem of
nonparametric detection of an anomalous interval within a line
network, two nonparametric approaches based on calibration by
permutation and rank-based scanning are studied in [24].

II. PRELIMINARIES AND PROBLEM STATEMENT

A. MMD

We provide a brief introduction to the idea of mean embedding
of distributions into an RKHS [7], [8] and the metric of MMD.
Suppose P includes a class of probability distributions, and
suppose H is the RKHS associated with a kernel k(·, ·). We
define a mapping from P to H such that each distribution p ∈ P
is mapped into an element μp(·) in H as follows

μp(·) = Ep [k(·, x)].

Here, μp(·) (which maps a real variable to a real value) is referred
to as the mean embedding of the distribution p into the Hilbert
space H. Due to the reproducing property of H, it is clear that
Ep [f ] = 〈μp, f〉H, where f is any element in H.

It is desirable that the embedding is injective such that each
p ∈ P is mapped to a unique element μp ∈ H. It has been shown
in [8], [10], [25], and [26] that for many RKHSs such as those as-
sociated with Gaussian and Laplacian kernels, the mean embed-
ding is injective. In this way, many machine learning problems
with unknown distributions can be solved by studying mean
embeddings of probability distributions without actually esti-
mating the distributions, e.g., [27]–[30]. In order to distinguish
between two distributions p and q, [11] introduced the following
quantity of maximum mean discrepancy (MMD) based on the
mean embeddings μp and μq of p and q, respectively:

MMD[p, q] := ‖μp − μq‖H. (1)

It is shown in [11] that, due to the reproducing property of
the kernel,

MMD2 [p, q] = Ex,x ′ [k(x, x′)] − 2Ex,y [k(x, y)]

+ Ey ,y ′ [k(y, y′)], (2)

where MMD2 [p, q] denotes the square of MMD[p, q], x and x′

are independent and have the same distribution p, and y and y′

are independent and have the same distribution q. An unbiased
estimator of MMD2 [p, q] based on n samples of x and m samples
of y is given in [11] by

MMD2
u [X,Y ]

=
1

n(n − 1)

n
∑

i=1

n
∑

j 	=i

k(xi, xj ) +
1

m(m − 1)

m
∑

i=1

m
∑

j 	=i

k(yi, yj )

− 2
nm

n
∑

i=1

m
∑

j=1

k(xi, yj ), (3)

where X = [x1 , . . . , xn ], and Y = [y1 , . . . , ym ].

B. Problem Statement

We consider a network consisting of n nodes deployed fol-
lowing a certain geometric structure. We use A to denote a
subset of nodes that form a certain geometric structure (e.g., an
interval in a line network, or a disk in a two-dimensional lat-
tice network). Here the cardinality of A refers to the number of
nodes in A, and is denoted by |A|. We assume that any subset A
with a certain geometric structure and with cardinality between
Amin and Amax can be a candidate anomalous structure, and
collect all candidate anomalous structures into the following set
A(a)

n :

A(a)
n = {A : Amin ≤ |A| ≤ Amax}. (4)

As we show later, the two problem parameters Amin and Amax
play an important role in determining whether the problem is
well posed.

We assume that each node, say node i, is associated with a
random variable, denoted by Yi , for 1 ≤ i ≤ n. Typically, Yi

can represent an observation received by node i. We consider
the following two hypotheses. Under the null hypothesis H0 ,
Yi for i = 1, . . . , n are independent and identically distributed
(i.i.d.) random variables, and are generated from a distribution
p. Under the alternative hypothesis H1 , there exists a geometric
structure A over which Yi (with i ∈ A) are i.i.d. generated from
a distribution q 	= p, and otherwise, Yi are i.i.d. generated from
the distribution p. Thus, the alternative hypothesis is composite
due to the fact that A(a)

n contains multiple candidate anomalous
structures. And these candidate anomalous structures differ from
each other by their size or location in the network. We further
assume that under both hypotheses, each node generates only
one sample. Putting the problem into a context, H0 models the
scenario when the observations Yi are background noise, and H1
models the scenario when some Yi (for i ∈ A) are observations
activated by an anomalous event.

Again, in contrast with previous work, we assume that the
distributions p and q are arbitrary and unknown a priori. For
this problem, we are interested in the asymptotic scenario in
which the number of nodes goes to infinity, i.e., n → ∞. The
performance of a test for such a system is captured by two types
of errors. The type I error refers to the event that samples are
generated from the null hypothesis, but the detector determines
that an anomalous event occurs. We denote the probability of
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Fig. 1. A line network with an anomalous interval.

such an event as P (H1 |H0). The type II error refers to the case
in which an anomalous event occurs but the detector claims that
samples are generated from the null hypothesis. We denote the
probability of such an event as P (H0 |H1). We define the fol-
lowing risk to measure the performance of a test for a particular
pair of distributions (p, q):

R(n) = P (H1 |H0) + max
A :A∈A(a )

n

P (H0 |H1,A ). (5)

We note that the results in this paper can also be generalized
to the minimax setting in which we further take the maximum
of R(n) over all pairs of distributions with MMD[p, q] > Δ.
For such a minimax setting, the threshold in our tests can be
chosen to be (1 − δ)Δ2 due to the condition MMD[p, q] > Δ
satisfied by (p, q), and then all sufficient conditions shown in
this paper hold by replacing MMD[p, q] with Δ. Furthermore,
a lower bound can also be shown by choosing (p, q) satisfying
MMD[p, q] = Δ.

Definition 1: A test is said to be consistent if the risk R(n) →
0, as n → ∞.

It can be seen from the definition of A(a)
n that Amin and

Amax determine the number of candidate anomalous intervals.
Furthermore, if there exists an anomalous geometric structure,
Amin determines the least number of samples generated by q and
n − Amax determines the least number of samples generated by
p. As n → ∞, to guarantee asymptotically small probability
of error, both Amin and Amax must scale with n to provide
sufficient information about p and q in order to yield accurate
distinction between the two hypotheses. This suggests that as
the network becomes larger, only a large enough but not too
large anomalous object can be detected. Therefore, our goal
in this problem is to characterize how Amin and Amax should
scale with the network size in order for a test to successfully
distinguish between the two hypotheses. Such conditions on
Amin and Amax can thus be interpreted as the resolution of the
corresponding test.

III. LINE NETWORKS

In this section, we consider a line network consisting of nodes
1, . . . , n, as shown in Fig. 1. The set A in Section II-B is spe-
cialized to an interval I , which is a subset of consecutive indices
of nodes. We consider the following set of candidate anomalous
intervals:

I(a)
n = {I : Imin ≤ |I| ≤ Imax}. (6)

A. Test and Performance

We construct a nonparametric test using the unbiased esti-
mator in (3) and the scan statistics. For each interval I , let

YI denote the samples in the interval I , and YĪ denote the
samples outside the interval I . We compute MMD2

u,I (YI , YĪ )

for all intervals I ∈ I(a)
n . Under the null hypothesis H0 , all

samples are generated from the distribution p. Hence, for each
I ∈ I(a)

n , MMD2
u,I (YI , YĪ ) yields an estimate of MMD2 [p, p],

which is zero. Under the alternative hypothesis H1 , there exists
an anomalous interval I∗ in which the samples are generated
from distribution q. Hence, MMD2

u,I ∗(YI ∗ , YĪ ∗) yields an esti-
mate of MMD2 [p, q], which is bounded away from zero due to
the fact that p 	= q. Based on the above understanding, we build
the following test:

max
I :I∈I(a )

n

MMD2
u,I (YI , YĪ )

{

≥ t, reject H0

< t, reject H1
(7)

where t is a threshold. It is anticipated that with a sufficiently
accurate estimate of MMD and an appropriate choice of the
threshold t, the test in (7) should provide the desired perfor-
mance.

The computational complexity of this algorithm can be sub-
stantially improved by the fast multiscale method proposed in
[14]. The basic idea of the algorithm is to use dyadic intervals
(see [14] and Algorithm 1 in [1] for more details) and their ex-
tensions to approximate the candidate anomalous intervals. By
this approach, the number of MMDs that need to be computed
can be reduced from O(n2) to O(n1+ρ), where ρ > 0 is any
constant.

The following theorem characterizes the performance of the
proposed test.

Theorem 1: Suppose the test in (7) is applied to the nonpara-
metric problem described in Section III. Further assume that
the kernel in the test satisfies 0 ≤ k(x, y) ≤ K for all (x, y),
where K is a positive finite constant. Consider a pair of distri-
butions (p, q), and assume that the threshold of the test satisfies
t < MMD2 [p, q]. Then the type I and type II errors are upper
bounded respectively as follows:

P (H1 |H0) ≤
∑

I :Im in ≤|I |≤Im a x

exp
(

− t2 |I|(n − |I|)
8K2n

)

=
∑

Im in ≤i≤Im a x

(n − i + 1) exp
(

− t2i(n − i)
8K2n

)

,

(8)

P (H0 |H1,I ) ≤ exp
(

− (MMD2 [p, q] − t)2 |I|(n − |I|)
8nK2

)

,

for I ∈ I(a)
n . (9)

Furthermore, the test (7) is consistent if

Imin ≥ 16K2(1 + η)
t2

log n, (10)

Imax ≤ n − 16K2(1 + η)
t2

log · · · · · · log
︸ ︷︷ ︸

n

arbitrary m number of logs

, (11)

where η is any positive constant.
Proof: See Appendix A. �
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We note that many kernels satisfy the boundedness condition
required in Theorem 1, such as the Gaussian and Laplacian
kernels.

The above theorem implies that to guarantee consistency of
the proposed test, the minimum length Imin should scale with or-
der Imin = Ω(log n). Furthermore, n − Imax should scale with
order

Ω( log · · · · · · log
︸ ︷︷ ︸

n

arbitrary m number of logs

)

which can be arbitrarily slow. Hence, the number of candidate
anomalous intervals in the set I(a)

n is Θ(n2), which is of the
same order as the total number of intervals. Hence, in the sense
of order, not many intervals are excluded from being anomalous.

It can be seen that the conditions (10) and (11) on Imin and
Imax are asymmetric. This can be understood by the upper
bound (8) on the type I error, which is a sum over all candidate
anomalous intervals with lengths between Imin and Imax . Due to
the specific geometric structure of the line network, as the length
|I| increases, the number of candidate anomalous intervals with
length |I| equals n − |I| + 1 and decreases as |I| increases.

Although the term exp(− t2 i(n−i)
8K 2 n ) in (8) is symmetric over i

with respect to n
2 , the entire term (n − i + 1) exp(− t2 i(n−i)

8K 2 n ) is
not symmetric, which yields the asymmetric conditions on Imin
and Imax .

Theorem 1 requires that the threshold t in the test (7) to be
less than MMD2 [p, q]. In practice, MMD2 [p, q] may or may not
be known depending on the application. If it is known, then the
threshold t can be set as a constant smaller than MMD2 [p, q].
If it is unknown, then the threshold t needs to scale to zero
as n increases without bound in order to be asymptotically
smaller than MMD2 [p, q]. We summarize these two cases in the
following two corollaries.

Corollary 1: If the value MMD2 [p, q] is known a priori, we
set the threshold t = (1 − δ)MMD2 [p, q] for any 0 < δ < 1.
The test in (7) is consistent if Imin and Imax satisfy the following
conditions:

Imin ≥ 16K2(1 + η′)
MMD4 [p, q]

log n

Imax ≤ n − 16K2(1 + η′)
MMD4 [p, q]

log · · · · · · log
︸ ︷︷ ︸

n

arbitrary m number of logs

, (12)

where η′ is any positive constant.
Corollary 1 follows directly from Theorem 1 by setting η′ =

1+η
(1−δ)2 − 1.

Corollary 2: If the value MMD2 [p, q] is unknown, we set
the threshold t to scale with n, such that limn→∞ tn = 0. The
test in (7) is consistent if Imin and Imax satisfy the following
conditions:

Imin ≥ 16K2(1 + η)
t2n

log n

Imax ≤ n − 16K2(1 + η)
t2n

log · · · · · · log
︸ ︷︷ ︸

n

arbitrary m number of logs

, (13)

where η is any positive constant.

Corollary 2 follows directly from Theorem 1 by noting that
tn < MMD2 [p, q] for n large enough.

We note that Corollary 2 holds for any tn that satisfies
limn→∞ tn = 0. It is clear from Corollary 2 that for the case
when MMD2 [p, q] is unknown, Imin should scale with order
ω(log n), and n − Imax should scale with order

ω( log · · · · · · log
︸ ︷︷ ︸

n

arbitrary m number of logs

).

Hence, comparison of the above two corollaries implies that
prior knowledge of MMD2 [p, q] is very important for the ability
to identify anomalous events. If MMD2 [p, q] is known, then the
network can resolve an anomalous object of size Ω(log n). How-
ever, if such knowledge is unknown, the network can resolve
only larger anomalous objects of size ω(log n).

We note that Theorem 1 and Corollaries 1 and 2 characterize
conditions to guarantee test consistency for a pair of fixed but
unknown distributions p and q. Hence, the conditions (10), (11),
(12) and (13) depend on the underlying distributions p and q. In
fact, these conditions further yield the following condition that
guarantees that the proposed test will be universally consistent
for any arbitrary p and q.

Proposition 1 (Universal Consistency): Consider the non-
parametric problem given in Section III. Further assume the
test in (7) applies a bounded kernel with 0 ≤ k(x, y) ≤ K
for any (x, y), where K is finite. If we set the threshold
t = (1 − δ)MMD2 [p, q] when MMD[p, q] is known, and set
tn → 0 as n → ∞ when MMD[p, q] is unknown, then the test
(7) is universally consistent for any arbitrary pair of p, q, if

Imin = ω(log n)

Imax = n − Ω( log · · · · · · log
︸ ︷︷ ︸

n

arbitrary m number of logs

). (14)

Proof: This result follows from (10), (11), (12) and (13) and
the fact that MMD[p, q] is a constant for any given p and q. �

B. Necessary Conditions

In Section III, Proposition 1 suggests sufficient conditions on
Imin and Imax to guarantee that the proposed nonparametric test
will be universally consistent for arbitrary p and q. In the fol-
lowing theorem, we characterize necessary conditions on Imin
and Imax that any test must satisfy in order to be universally
consistent for arbitrary p and q.

Theorem 2: For the nonparametric detection problem over a
line network, any test must satisfy the following conditions on
Imin and Imax in order to be universally consistent for arbitrary
p and q:

Imin = ω(log n)

and n − Imax → ∞, as n → ∞. (15)

Proof: See Appendix B. The idea of the proof is to first
lower bound the risk by the Bayes risk of a simpler problem.
Then for such a problem, we show that there exist p and q (in
fact Gaussian p and q) such that even the optimal parametric
test is not consistent under the conditions given in the theorem.
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Fig. 2. A ring network with an anomalous interval.

This thus implies that under the same condition, no nonpara-
metric test is universally consistent for arbitrary p and q. �

Theorem 3 (Optimality): Consider the nonparametric detec-
tion problem described in Section III. If we set the threshold
t = (1 − δ)MMD2 [p, q] when MMD[p, q] is known, and set
tn → 0 as n → ∞ when MMD[p, q] is unknown, the MMD-
based test (7) is order-level optimal in terms of Imin and nearly
order-level optimal in terms of Imax required to guarantee uni-
versal test consistency for arbitrary p and q.

Proof: It can be seen that the necessary condition on Imin in
(15) matches the sufficient condition in (14) at the order level.
Thus, the proposed test is order-level optimal in Imin . Further-
more, the sufficient condition on Imax can arbitrarily slowly
converge to n, which is very close to the necessary condition on
Imax . �

IV. GENERALIZATION TO OTHER NETWORKS

In this section, we generalize our study to three other net-
works in order to demonstrate more generality of our approach.
For each network, our study further demonstrates how the ge-
ometric property of the network affects the conditions required
to guarantee the test consistency.

A. Detecting Intervals in Ring Networks

In this subsection, we consider a ring network (see Fig. 2), in
which n nodes are located over a ring. We define an interval I
to be a subset of consecutive nodes over the ring. We consider
the following set of candidate anomalous intervals,

I(a)
n = {I : Imin ≤ |I| ≤ Imax}, (16)

where Imin and Imax are minimal and maximum lengths of all
candidate anomalous intervals. Despite similarities that the ring
network shares with the line network, its major difference lies
in that the number of candidate anomalous intervals with size
k is n (which remains the same as k increases) as opposed to
n − k + 1 in the line network (which decreases as k increases).
Consequently, the number of sub-hypotheses in H1 is different.
This difference is reflected in the results that we present next.

We construct the test as follows:

max
I :I∈I(a )

n

MMD2
u,I (YI , YĪ )

{

≥ t, reject H0

< t, reject H1
(17)

where YI denotes the samples in the interval I , YĪ denotes the
samples outside the interval I , and t is a threshold.

Theorem 4: Suppose the test (17) is applied to the prob-
lem described in Section IV-A with a bounded kernel, i.e.,
0 ≤ k(x, y) ≤ K for all (x, y), where K is a finite positive
constant. Consider a pair of distributions (p, q), and assume that
the threshold of the test satisfies t < MMD2 [p, q]. Then the type
I and type II errors are bounded as follows:

P (H1 |H0) ≤ e2 log n− 2 t 2 m in {I m in (n −I m in ) , I m a x (n −I m a x ) }
1 6 n K 2 , (18)

P (H0 |H1,I ) ≤ e−
( MMD2 [p , q ]−t ) 2 |I |(n −|I |)

8 n K 2 , for I ∈ I(a)
n . (19)

Furthermore, the test in (17) is consistent if

Imin ≥ 16K2(1 + η)
t2

log n, (20)

Imax ≤ n − 16K2(1 + η)
t2

log n, (21)

where η is any positive constant.
Proof: See Appendix C. �
Comparing the above conditions with Theorem 1 suggests

that although the sufficient conditions on Imin are the same, the
conditions on Imax reflect an order-level difference in line and
ring networks. For line networks, an anomalous interval can be
close to the entire network with only a gap of length

Ω( log · · · · · · log
︸ ︷︷ ︸

n

arbitrary m number of logs

).

However, for ring networks, the gap can be as large as Ω(log n).
This difference in the tests’ resolution of anomalous intervals is
mainly due to the difference in network geometry that further
affects the error probability of the tests. By carefully comparing
the two types of errors, in fact, the type II error converges to
zero as the network size goes to infinity as long as the number
of anomalous samples (i.e., length of anomalous intervals) and
the number of typical samples (i.e., the gap between anomalous
intervals and the entire network) both scale with n to infinity.
Thus, the conditions for the type II error to be asymptotically
zero are the same for the two types of networks. The situation
is different for the type I error. The key observation is that the
number of candidate anomalous intervals of size k is n − k + 1
in a line network (which decreases as k increases), but is n in a
ring network (which remains the same as k increases). This dif-
ference can be as significant as the order level if k is close to n,
say n − Ω(log n). Consequently, the type I error for a line net-
work can be much smaller than that for a ring network, resulting
in a more relaxed condition on Imax to guarantee consistency.

Similarly to the line network, setting the threshold t for the
test (17) can be considered in two cases with and without knowl-
edge of MMD[p, q]. If MMD[p, q] is known, we set t = (1 −
δ)MMD2 [p, q]. Otherwise, t can be chosen to scale to zero as n
goes to infinity. Similar results as in Corollary 1 and Corollary 2
can then be derived for the ring network.

Proposition 2 (Universal Consistency): For the nonpara-
metric detection problem in Section IV-A, the test (17) is uni-
versally consistent for any arbitrary p and q, if

Imin = ω(log n), and n − Imax = ω(log n). (22)
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Fig. 3. Two-dimensional lattice network with an anomalous disk.

Proof: The result follows from (20) and (21) by setting
t = (1 − δ)MMD2 [p, q] if MMD[p, q] is known, and tn → 0 as
n → ∞, if MMD[p, q] is unknown. �

Following arguments similar to those for the line network, it
can be shown that any test must satisfy the following necessary
conditions required on Imin and Imax in order to be universally
consistent for arbitrary p and q:

Imin = ω(log n), and n − Imax → ∞, as n → ∞. (23)

Theorem 5 (Optimality): Consider the problem of nonpara-
metric detection of an interval over a ring network. If we set the
threshold t = (1 − δ)MMD2 [p, q] when MMD[p, q] is known,
and set tn → 0 as n → ∞ when MMD[p, q] is unknown, then
the MMD-based test (17) is order-level optimal in terms of Imin
required to guarantee universal consistency for arbitrary p and
q.

Proof: Combining the above sufficient and necessary condi-
tions, we have the optimality property for the test (17). �

B. Detecting Disks in Two-Dimensional Lattice Networks

We consider a two-dimensional lattice network (see Fig. 3)
consisting of n2 nodes placed at the corner points of a lattice.
Consider the following set of candidate anomalous disks with
each disk centered at a certain node with integer radius:

D(a)
n = {D : Dmin ≤ |D| ≤ Dmax}, (24)

where |D| denotes the number of nodes within the disk
D, Dmin := min

D∈D(a )
n

|D| and Dmax := max
D∈D(a )

n
|D|. The

goal is to detect the possible existence of an anomalous disk
over the lattice network. Towards this end, we build the follow-
ing test:

max
D :D∈D(a )

n

MMD2
u,D (YD , YD )

{

≥ t, reject H0

< t, reject H1
(25)

where YD contains samples within the disk D, and YD contains
samples outside the disk D.

Theorem 6: Consider the problem described in Section IV-B,
where the test (25) is applied with a bounded kernel, i.e., 0 ≤
k(x, y) ≤ K, for all (x, y), where K is a finite positive constant.
Then for a pair of distributions (p, q), and with t < MMD2 [p, q],

the type I error can be bounded as follows:

P (H1 |H0) ≤ e3 log n− 2 t 2 m in {D m in (n 2 −D m in ) , D m a x (n 2 −D m a x ) }
1 6 n 2 K 2 ,

(26)
and the type II error can be bounded as follows:

P (H0 |H1,D ) ≤ e−
( MMD2 [p , q ]−t ) 2 |D |(n 2 −|D |)

8 n 2 K 2 for D ∈ D(a) . (27)

Furthermore, if Dmin satisfies the following conditions:

Dmin ≥ 24K2(1 + η)
t2

log n, (28)

where η is any positive constant, then the test (25) is consistent.
Proof: Following steps similar to those for the line and ring

networks, we can derive the bounds on the type I and type II
errors shown in (26) and (27).

Then following (26) and (27), it is clear that if Dmin and
Dmax satisfy the following conditions:

Dmin ≥ 24K2(1 + η)
t2

log n, (29)

Dmax ≤ n2 − 24K2(1 + η)
t2

log n, (30)

where η is any positive constant, then the test (25) is consistent.
It is easy to verify that the largest disk within a two-dimensional
lattice network has radius n

2 and area πn2

4 ≈ 0.79n2 . Thus, such
a disk contains at most cn2 nodes where the constant c < 1 for
large n. This implies that the bound on Dmax in (30) is satisfied
automatically when n is large. �

Proposition 3 (Universal Consistency): For the nonpara-
metric detection problem in Section IV-B, the test (25) is uni-
versally consistent for any arbitrary p and q, if

Dmin = ω(log n). (31)

Proof: The result follows from (28) by setting t = (1 −
δ)MMD2 [p, q] if MMD[p, q] is known, and setting tn → 0 as
n → ∞ if MMD[p, q] is unknown, and the fact that MMD[p, q]
can be arbitrarily close to zero. �

Following arguments similar to those for the line network, it
can be shown that any test must satisfy the following necessary
condition required on Dmin in order to be universally consistent
for arbitrary p and q:

Dmin = ω(log n). (32)

Theorem 7 (Optimality): Consider the problem of nonpara-
metric detection of a disk over a two-dimensional lattice net-
work. If we set the threshold t = (1 − δ)MMD2 [p, q] when
MMD[p, q] is known, and set tn → 0 as n → ∞ when
MMD[p, q] is unknown, the MMD-based test (25) is order-level
optimal in the size of disks required to guarantee universal con-
sistency for arbitrary p and q.

Proof: Combining the above sufficient and necessary condi-
tions, we have the optimality property for the test (25). �

C. Detecting Rectangles in Lattice Networks

We consider an r-dimensional lattice network consisting of nr

nodes placed at the corner points of a lattice network. Consider
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the following set of candidate anomalous rectangles:

[S(a)
n := {S = [I1 × I2 × . . . × Ir ] : Smin ≤ |S| ≤ Smax},

where Ii for 1 ≤ i ≤ r denotes an interval contained in
[1, n] with consecutive indices, |S| denotes the number of
nodes in the rectangle S, Smin := min

S∈S(a )
n

|S|, and Smax :=
max

S∈S(a )
n

|S|. The goal is to detect the possible existence of an
anomalous r-dimensional rectangle. Towards this end, we build
the following test:

max
S :S∈S(a )

n

MMD2
u,S (YS , YS )

{

≥ t, reject H0

< t, reject H1
(33)

where YS contains samples within the rectangle S, and YS con-
tains samples outside the rectangle S.

Theorem 8: Consider the nonparametric problem described
in Section IV-C, where the test (33) is applied with a bounded
kernel, i.e., 0 ≤ k(x, y) ≤ K for all (x, y), where K is a fi-
nite positive constant. Then for a pair of (p, q), and with
t < MMD2 [p, q], the type I error is bounded as follows:

P (H1 |H0) ≤ e2r log n− 2 t 2 m in {S m in (n r −S m in ) , S m a x (n r −S m a x ) }
1 6 n r K 2 ,

(34)
and the type II error is bounded as follows:

P (H0 |H1,S ) ≤ e−
( MMD2 [p , q ]−t ) 2 |S |(n r −|S |)

8 n r K 2 , for S ∈ S(a) . (35)

Furthermore, if Smin satisfies the following conditions:

Smin ≥ 16rK2(1 + η)
t2

log n (36)

where η is any positive constant, then the test in (33) is consis-
tent.

Proof: Following steps similar to those developed for line
and ring networks, the bounds (34) and (35) on the type I and
type II errors can be derived. It is thus clear that if

Smin ≥ 16rK2(1 + η)
t2

log n (37)

Smax ≤ nr − 16rK2(1 + η)
t2

log n, (38)

then the test is consistent. We further note the important fact
that as long as the largest anomalous rectangle does not span the
entire lattice network, it can at most contain nr − nr−1 nodes,
which satisfies the condition (38) for large n. �

Proposition 4 (Universal Consistency): For the nonpara-
metric detection problem described in Section IV-C, the test
(33) is universally consistent for any arbitrary p and q, if

Smin = ω(log n). (39)

Proof: The result follows from (36) by setting t = (1 −
δ)MMD2 [p, q] if MMD[p, q] is known, and setting tn → 0 as
n → ∞ if MMD[p, q] is unknown, and the fact that MMD[p, q]
can be arbitrarily close to zero. �

Furthermore, following arguments similar to those for the line
network, it can be shown that any test must satisfy the following
necessary conditions required on Smin and Smax in order to be

Fig. 4. Risk for a line network.

universally consistent for arbitrary p and q:

Smin = ω(log n). (40)

Theorem 9 (Optimality): Consider the problem of nonpara-
metric detection of a rectangle over a lattice network. If we
set the threshold t = (1 − δ)MMD2 [p, q] when MMD[p, q] is
known, and set tn → 0 as n → ∞ when MMD[p, q] is un-
known, then the MMD-based test (33) is order-level optimal
to guarantee universal consistency for arbitrary p and q.

Proof: Combining the above sufficient and necessary condi-
tions, we have the optimality property for the test (33). �

V. NUMERICAL RESULTS

In this section, we provide numerical results to demonstrate
the performance of our tests and compare our approach with
other competitive approaches.

We first simulate an intrusion detection system via a sensor
network. Here, suppose sensors are deployed as a line or ring
network that separates a secure area and a public area. These
sensors take measurements from the environment in order to
determine whether or not there is an intrusion. If there is no
intrusion, the sensors receive background noise, which is mod-
eled by the unknown typical distribution p, which is actually
Gaussian with mean zero and variance one. If there is an intru-
sion, it activates only a few sensors within a certain area (i.e.,
over an interval), which take measurements from an unknown
anomalous distribution q which is actually Gaussian with mean
one and variance one. We set the network size n = 200, and use
the Gaussian kernel with σ = 1. In Figs. 4 and 5, we plot the
risk (normalized by 2) for line and ring networks as functions of
Imin and Imax . For further illustration, we also list some values
of the two risk functions in Tables I and II. It can be seen from
Tables I and II, and Figs. 4 and 5 that the risk functions decrease
as Imin increases and as Imax decreases, which implies that our
MMD based approach can detect large enough intrusion objects
but not too large. This is reasonable because as Imin increases
and as Imax decreases, the number of candidate anomalous in-
tervals decreases, which reduces the difficulty of detection. The
minimum numbers of samples inside and outside the anoma-
lous interval also increase, respectively, which provides more
accurate information about the distributions.
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Fig. 5. Risk for a ring network.

TABLE I
RISK FOR A LINE NETWORK (n = 200)

TABLE II
RISK FOR A RING NETWORK (n = 200)

TABLE III
RISK FOR A LARGE LINE NETWORK (n = 5000)

In the second experiment, we study the performance of our
test for large scale networks. We consider a line network with
network size n = 5000. We choose the actual (but unknown)
distribution p to be Gaussian with mean zero and variance one,
and the actual (but unknown) anomalous distribution q to be
Gaussian with mean one and variance one. We use the Gaussian
kernel with σ = 1. In Table III, we list some values of the
risk function of our test corresponding to various values of
Imin and Imax . As one can observe, the risk decreases as Imin
increases and as Imax decreases. Compared to the performance
for n = 200, although the network size becomes much larger
here, the MMD test still detects small objects in the network
with very small risk. This is because Imin and n − Imax only
need to scale logarithmically or even slower with the network
size to guarantee consistency.

In the next experiment, we compare the performance of our
test with other competitive tests including Student’s t-test, the
Smirnov test [31], Wolf test [31], Hall test [32], kernel-based

TABLE IV
COMPARISON OF NONPARAMETRIC APPROACHES OVER A LINE NETWORK

VALUES OF THE RISK

TABLE V
COMPARISON OF RUNNING TIMES

KFDA test [33] and kernel-based KDR test [34]. We consider a
line network with network size n = 100. We set the distribution
p to be Gaussian with zero mean and variance 2, and set the
anomalous distribution q to be an equal mixture of Gaussian
distributions N (−1, 1) and N (1, 1). Hence, the distributions p
and q have the same mean and variance.

In Table IV, we list some values of the risk function of our
MMD-based test and other nonparametric tests corresponding
to various values of Imin and Imax . It can be seen that Student’s
t-test fails, because the test relies on a difference in mean to
distinguish two distributions, which is the same in our experi-
ment. We note that the t-test is still a powerful tool when p and q
have different means. The Smirnov test estimates the cumulative
distribution function (CDF) first and then takes the maximum
difference of the two cumulative distribution functions as the
test statistics. For continuous distributions, accurately estimat-
ing the CDF from samples requires a large amount of data,
which is not feasible in our experiment. For the three kernel-
based tests KFDA, KDR and MMD, the performance is very
close. In particular, for large enough Imin and small enough
Imax , the kernel-based tests yield small risk. Among these three
kernel-based tests, MMD has a slightly better performance.

We further compare the computational complexity of these
algorithms via the running times they require. We set n = 100,
Imin = 30 and Imax = 50. We then run these algorithms 100
times on an i7-4700 CPU, and list the average running times
in Table V. It can be seen that the MMD test runs much faster
than KFDA and KDR. Thus, compared to KFDA and KDR, the
MMD based approach is computationally efficient. And it is
much easier to implement and analyze. Furthermore, although
the MMD test runs slower than the t-test and similarly to the
Smirnov test, its performance (as demonstrated in Table IV) is
much better than that of these two tests.

We now compare the performance of our MMD based test
with the parametric approach [14]. We consider the line net-
work. We set the network size n = 100, the distribution p to
be Gaussian with mean zero and variance one, and the anoma-
lous distribution q to be Gaussian with mean one and variance
one. We use the Gaussian kernel with σ = 1. For the parametric
test, as suggested in [14], we set the threshold t =

√
2 log n.

In Table VI, we list some values of the risk function of our
MMD-based test and the parametric test in [14]. As we can
see, the parametric test in [14] has better performance than our
MMD based nonparametric test, which is due to the fact that
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TABLE VI
COMPARISON WITH PARAMETRIC TEST OVER A LINE NETWORK

VALUES OF THE RISK

the parametric test has more information. And as Imin increases
and Imax decreases, the gap between our MMD based test and
the parametric test becomes smaller because the MMD test in
such a situation has sufficient samples generated by both p and
q for making decisions. Furthermore, for the parametric test, as
long as Imin is large, the risk is small. This is due to the fact
that under the parametric setting, this problem is equivalent to
detecting whether there is an interval with samples generated
from distribution q. Hence, it is not necessary to extract infor-
mation about p from the samples, which implies that n − Imax
can be 0.

VI. CONCLUSION

We have studied the nonparametric problem of detecting the
possible existence of anomalous structures over networks, in
which both the typical and the anomalous distributions can be
arbitrary and unknown. We have developed nonparametric tests
using the MMD to measure the distance between the mean em-
beddings of distributions into an RKHS. We have analyzed the
performance of our tests, and characterized sufficient conditions
on the minimum and maximum sizes of candidate anomalous
structures to guarantee their consistency. We have further de-
rived necessary conditions and shown that our tests are order-
level optimal and nearly optimal respectively in terms of the
minimum and maximum sizes of candidate structures. Thus,
we have shown that the MMD-based approach can be applied
to various detection problems of potential interest in practical
applications.

APPENDIX A
PROOF OF THEOREM 1

We first introduce McDiarmid’s inequality which is useful in
bounding the probability of error in our proof.

Lemma 1 (McDiarmid’s Inequality): Let f : Xm → R be a
function such that for all i ∈ {1, . . . , m}, there exist ci < ∞ for
which

sup
X∈Xm ,x̃∈X

|f(x1 , . . . , xm )

− f(x1 , . . . xi−1 , x̃, xi+1 , . . . , xm )| ≤ ci. (41)

Then for any probability measure PX over m independent ran-
dom variables X := (X1 . . . , Xm ), and every ε > 0,

PX

(

f(X) − EX (f(X)) > ε

)

< exp
(

− 2ε2
∑m

i=1 c2
i

)

, (42)

where EX denotes the expectation over PX .

We now derive bounds on P (H1 |H0) and P (H0 |H1,I ) for
the test (7). We first have

MMD2
u,I (YI , YĪ ) =

1
|I|(|I| − 1)

∑

i∈I

∑

j 	=i
j∈I

k(yi, yj )

+
1

(n − |I|)(n − |I| − 1)

∑

i /∈I

∑

j 	=i
j /∈I

k(yi, yj )

− 2
|I|(n − |I|)

∑

i∈I

∑

j /∈I

k(yi, yj ). (43)

Under H0 , all samples are generated from the distribution p.
Hence, E[MMD2

u,I (YI , YĪ )] = 0.
In order to apply McDiarmid’s inequality to bound the error

probabilities P (H1 |H0) and P (H0 |H1,I ), we evaluate the fol-
lowing quantities. There are n variables that affects the value of
MMD2

u,I (YI , YĪ ). We study the influence of these n variables
on MMD2

u,I (YI , YĪ ) in the following two cases. For i ∈ I , a
change in yi affects MMD2

u,I (YI , YĪ ) through the following
terms:

2
|I|(|I| − 1)

∑

j 	=i
j∈I

k(yi, yj ) − 2
|I|(n − |I|)

∑

j /∈I

k(yi, yj ). (44)

For i /∈ I , a change in yi affects MMD2
u,I (YI , YĪ ) through the

following terms:

2
∑

j 	=i
j /∈I

k(yi, yj )

(n − |I|)(n − |I| − 1)
− 2

∑

j∈I k(yi, yj )
|I|(n − |I|) . (45)

Since the kernel we use is bounded, i.e., 0 ≤ k(x, y) ≤ K for
any x, y, for i ∈ I ,

∣

∣

∣

∣

∣

∣

∣

∣

2
|I|(|I| − 1)

∑

j 	=i
j∈I

k(yi, yj ) − 2
|I|(n − |I|)

∑

j /∈I

k(yi, yj )

∣

∣

∣

∣

∣

∣

∣

∣

≤ 2K

|I| ,

and for i /∈ I ,

∣

∣

∣

∣

∣

∣

2
∑

j 	=i
j /∈I

k(yi, yj )

(n − |I|)(n − |I| − 1)
− 2

∑

j∈I k(yi, yj )
|I|(n − |I|)

∣

∣

∣

∣

∣

∣

≤ 2K

n − |I| .

Hence, we have that for i ∈ I , ci = 4K
|I | , and for i /∈ I , ci =

4K
n−|I | , where ci serves the role in (41).

Therefore, by applying McDiarmid’s inequality, we obtain

PH0 (MMD2
u,I (YI , YĪ ) > t) ≤ exp

(

−2t2 |I|(n − |I|)
16nK2

)

.

(46)
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Hence,

P (H1 |H0) = PH0

(

max
I :I∈I(a )

n

MMD2
u,I (YI , YĪ ) > t

)

(a)
≤

∑

I :I∈I(a )
n

PH0 (MMD2
u,I (YI , YĪ ) > t)

≤
∑

I :I∈I(a )
n

exp
(

−2t2 |I|(n − |I|)
16nK2

)

=
∑

I :Im in ≤|I |≤Im a x

exp
(

−2t2 |I|(n − |I|)
16nK2

)

(b)
=

∑

I :Im in ≤|I |≤n− 1 6 K 2 ( 1 + η )
t 2 log n

exp
(

−2t2 |I|(n − |I|)
16nK2

)

+
∑

I :n− 1 6 K 2 ( 1 + η )
t 2 log n+1≤|I |≤Im a x

exp
(

−2t2 |I|(n − |I|)
16nK2

)

(47)

where (a) is due to Boole’s inequality, η in (b) is a positive
constant, and the second term in (b) is equal to zero if n −
16K 2 (1+η )

t2 log n + 1 ≥ Imax .

It can be shown that if Imin ≥ 16K 2 (1+η )
t2 log n, then the first

term in (47) can be bounded as follows:

∑

I :Im in ≤|I |≤n− 1 6 K 2 ( 1 + η )
t 2 log n

exp
(

−2t2 |I|(n − |I|)
16nK2

)

(a)
≤ n2 exp

(

−2t2 |I|(n − |I|)
16nK2

)∣

∣

∣

∣

|I |= 1 6 K 2 ( 1 + η )
t 2 log n

= exp (−2η log n + o(n)) → 0, as n → ∞, (48)

where (a) is due to the fact that there are at most n2 candidate
anomalous intervals contributing to the sum, and |I|(n − |I|) is

minimized by the value |I| = 16K 2 (1+η )
t2 log n within the range

of |I|.
We next bound the second term in (47):

∑

n− 1 6 K 2 ( 1 + η )
t 2 log n+1≤|I |≤Im a x

e−
2 t 2 |I |(n −|I |)

1 6 n K 2 (49)

=
∑

n− 1 6 K 2 ( 1 + η )
t 2 log n+1≤|I |≤n− 1 6 K 2 ( 1 + η )

t 2 log log n

e−
2 t 2 |I |(n −|I |)

1 6 n K 2

(50)
+

∑

n− 1 6 K 2 ( 1 + η )
t 2 log log n+1≤|I |≤Im a x

e−
2 t 2 |I |(n −|I |)

1 6 n K 2

≤
(

16K2(1 + η) log n

t2

)2

e−
2 t 2 (n −Ĩ ) Ĩ

1 6 n K 2

+
∑

n− 1 6 K 2 ( 1 + η )
t 2 log log n+1≤|I |≤Im a x

e−
2 t 2 |I |(n −|I |)

1 6 n K 2 , (51)

where Ĩ = 16K 2 (1+η )
t2 log log n, and the first term in (51) con-

verges to zero as n goes to infinity. The second term in (51) can
be bounded as

∑

n− 1 6 K 2 ( 1 + η )
t 2 log log n+1≤|I |≤Im a x

exp
(

−2t2 |I|(n − |I|)
16nK2

)

≤
(

16K2(1 + η)
t2

log log n

)2

exp
(

−2t2Imax(n − Imax)
16nK2

)

(52)

which converges to zero as n → ∞ if

Imax ≤ n − 16K2(1 + η)
t2

log log log n. (53)

In fact, the condition (53) can be further relaxed by decomposing
the second term in (51) following steps similar to (50) and (51).
Such a procedure can be repeated for an arbitrary number of
times, say m − 2 times, and it can be shown that (49) converges
to zero as n → ∞ if

Imax ≤ n − 16K2(1 + η)
t2

log · · · log log
︸ ︷︷ ︸

n

arbitrary m number of logs

. (54)

Therefore, we conclude that the type I error, i.e., P (H1 |H0),
converges to zero as n → ∞ if the following conditions are
satisfied:

Imin ≥ 16K2(1 + η)
t2

log n

Imax ≤ n − 16K2(1 + η)
t2

log · · · log log
︸ ︷︷ ︸

n

arbitrary m number of logs

(55)

for any positive integer m.
We next continue to bound the type II error

max
I∈I(a )

n
P (H0 |H1,I ) as follows:

max
I∈I(a )

n

P (H0 |H1,I )

= max
I∈I(a )

n

PH1 , I

(

max
I ′∈I(a )

n

MMD2
u,I ′(YI ′ , YĪ ′) < t

)

(a)
≤ max

I∈I(a )
n

PH1 , I

(

MMD2
u,I (YI , YĪ ) < t

)

= max
I∈I(a )

n

PH1 , I

(

MMD2 [p, q] − MMD2
u,I (YI , YĪ )

> MMD2 [p, q] − t

)

(b)
≤ max

I∈I(a )
n

exp
(

− (MMD2 [p, q] − t)2 |I|(n − |I|)
8K2n

)

(56)

where (a) holds by taking I ′ = I , and (b) holds by applying
McDiarmid’s inequality. It can be easily checked that under the
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condition (55),

max
I∈I(a )

n

P (H0 |H1,I )

≤ e−
( MMD2 [p , q ]−t ) 2 |I |(n −|I |)

8 K 2 n

∣

∣

∣

|I |=n− 1 6 K 2 ( 1 + η )
t 2 log · · · log log

︸ ︷︷ ︸

n

arbitrary m number of logs

→ 0, as n → ∞. (57)

Therefore, we conclude that the condition (55) guarantees
that R(n) → 0 as n → ∞, and thus guarantees the consistency
of the test (7).

APPENDIX B
PROOF OF THEOREM 2

The idea is to consider the following problem which has
lower risk than our original problem, and show that there exist
distributions (in fact for Gaussian p and q), under which such
a risk is bounded away from zero for all tests if the necessary
conditions are not satisfied.

First consider the following problem, in which all candidate
anomalous intervals have the same length 	, and hence there are
in total n − 	 + 1 candidate anomalous intervals. Furthermore,
suppose the distribution p is Gaussian with mean zero and vari-
ance one, and the distribution q is Gaussian with mean μ > 0
and variance one. We define the risk of a test for this problem
as follows:

R(	) = P (H1 |H0) + max
|I |=	

P (H0 |H1,I ), (58)

and we denote the minimum risk as R∗(	). We further assign
a uniform prior distribution over all candidate anomalous in-
tervals under the alternative hypothesis H1 , i.e., each candidate
anomalous interval has the same probability 1

n−	+1 of occurring.
Thus the Bayes risk is given by

Rb = P (H1 |H0) +
1

n − 	 + 1

∑

|I |=	

P (H0 |H1,I ), (59)

and we use R∗
b to denote the minimum Bayes risk over all

possible tests. It is clear that

R∗(	) ≥ R∗
b .

Following the results as in [14], [17], and [18], it can be shown
that if 	 ≤ 1

2μ2 log n, R∗
b → 1 as n goes to infinity, which further

implies that R∗(	) → 1, as n → ∞, and thus any test is no better
than a random guess. Since μ can be any constant, there always
exist Gaussian p and q such that no test can be consistent as long
as 	 ≤ c log n, where c is any constant.

Now consider the original problem with the risk

R = P (H1 |H0) + max
Im in ≤|I |≤Im a x

P (H0 |H1,I ). (60)

It can be shown that

R∗ ≥ R∗(	), if 	 = Imin

where R∗ denotes the minimum risk over all possible tests.
Based on the above argument on R∗(	), it is clear that if Imin ≤

c log n, there exists no test such that R∗ converges to zero as n
goes to infinity for arbitrary distributions p and q.

Furthermore, consider the case with only one candidate
anomalous interval I with length 	. The risk in this case is

R(	) = P (H1 |H0) + P (H0 |H1,I ) (61)

where |I| = 	. It is also clear that R∗ ≥ R∗(	) where 	 = Imax .
For such a simple case, the problem reduces to the two-sample
problem, detecting whether the samples in the interval I and the
samples outside of the interval I are generated from the same
distribution. In order to guarantee R∗(k) → 0 as n → ∞, 	 and
n − 	 should both scale with n to infinity. Thus, in order to
guarantee R∗ → 0, as n → ∞, n − Imax → ∞ is necessary for
any test to be universally consistent. This concludes the proof.

APPENDIX C
PROOF OF THEOREM 4

Following steps similar to those in Appendix A, we derive
the following bound:

P (H1 |H0) ≤
∑

I∈I(a )
n

exp
(

−2t2 |I|(n − |I|)
16nK2

)

(a)
=

Im a x
∑

i=Im in

n exp
(

−2t2i(n − i)
16nK2

)

(b)
≤

Im a x
∑

i=Im in

n exp
(

−2t2 min{Imin(n − Imin), Imax(n − Imax)}
16nK2

)

(c)
≤ n2 exp

(

−2t2 min{Imin(n − Imin), Imax(n − Imax)}
16nK2

)

= exp
(

2 log n− 2t2 min{Imin(n − Imin), Imax(n−Imax)}
16nK2

)

,

where (a) is due to the fact in the ring network there are n can-
didate anomalous intervals with size i, (b) is due to the fact that
i(n − i) is lower bounded by min{Imin(n − Imin), Imax(n −
Imax)}, and (c) is due to the fact that Imax − Imin ≤ n.

It can be checked that P (H1 |H0) → 0 as n → ∞ if

16K2(1 + η)
t2

log n≤ Imin ≤ Imax ≤n − 16K2(1 + η)
t2

log n.

(62)
Furthermore, following steps similar to those in Appendix A,
we can derive an upper bound on the type II error and show that
it converges to zero as n → ∞ if

Imin → ∞, n − Imax → ∞. (63)

Combining the two conditions completes the proof.
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