SYLLABUS: EE 631 Detection & Estimation I, Fall 2019

Course Information: Times: MoWe 3:30PM - 4:50PM; Location: TBD; 3 credits **Prerequisites:** EE 531 Prob & Stoc Procs for Eng

Instructor: Prof. Shaofeng Zou, 228 Davis Hall, szou3@buffalo.edu

Office Hour: Friday 1:00PM-2:00PM, 228 Davis Hall (other times by appointment) **Textbook:**

P. Moulin and V. V. Veeravalli, *Statistical Inference for Engineers and Data Scientists*. Cambridge University Press, 2018.

General references:

S. M. Kay, *Fundamentals of Statistical Signal Processing, Volume I: Estimation Theory*. Prentice Hall PTR, 1993.

S. M. Kay, *Fundamentals of Statistical Signal Processing, Volume II: Detection Theory*. Prentice Hall PTR, 1994.

H. V. Poor, *An introduction to signal detection and estimation*. Springer Science & Business Media, 2013.

Course Description: This course focuses on statistical inference problems in engineering and data science. Two fundamental problems in statistical inference will be considered: detection and estimation. The first part of this course introduces statistical decision theory. The following topics will be covered: M-ary and binary hypothesis testing, Bayesian/minimax/Neyman-Pearson setting, composite hypotheses, signal detection, performance bounds, large deviations and error exponents. The second part of the course focuses on parameter estimation theory. The following topics will be covered: Bayesian parameter estimation, MMSE, MMAE, MAP estimation, minimum variance unbiased estimation, information inequalities, Cramer-Rao lower bound, MLE and signal estimation.

Student Learning Outcomes:

- 1) Understand basic statistical inference tools;
- 2) Be capable of designing, applying and analyzing hypothesis testing and Bayesian algorithms for signal detection from noisy data;
- 3) Be capable of using classical and Bayesian tools to solve parameter estimation problems from noisy data, and further conducting analysis theoretically;

Homework, Exams (No late submissions will be accepted):

- 1) Homework will be assigned every two weeks (approx.). Score: 40%
- 2) Mid-term. Score: 30%. Final exam. Score: 30%

Academic Integrity

Academic integrity is a fundamental university value. The students shall follow the university guidelines.

https://catalog.buffalo.edu/policies/integrity.html

https://grad.buffalo.edu/succeed/current-students/policy-library.html

Accessibility Resources

If you have any disability which requires reasonable accommodations to enable you to participate in this course, please contact the Office of Accessibility Resources, 25 Capen Hall, 645-2608, and also the instructor of this course. The office will provide you with information and review appropriate arrangements for reasonable accommodations.

https://www.buffalo.edu/studentlife/who-we-are/departments/accessibility.html