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ABSTRACT

The following detection problem is studied, in which there are
M sequences of samples out of which one outlier sequence
needs to be detected. Each typical sequence contains n inde-
pendent and identically distributed (i.i.d.) continuous obser-
vations from a known distribution 7, and the outlier sequence
contains n i.i.d. observations from an outlier distribution g,
which is distinct from 7, but otherwise unknown. A univer-
sal test based on Kullback-Leibler (KL) divergence is built
to approximate the maximum likelihood test, with known 7
and unknown p. A KL divergence estimator based on data-
dependent partitions is employed, and is shown to converge to
its true value exponentially fast when the density ratio satis-
fies0 < K; < 3—5 < Koy, where K1 and K, are positive con-
stants. The performance of such a KL divergence estimator
further implies that the outlier detection test is exponentially
consistent. The detection performance of the KL divergence
based test is compared with that of a recently introduced test
for this problem based on the machine learning approach of
maximum mean discrepancy (MMD). Regimes in which the
KL divergence based test is better than the MMD based test
are identified.

Index Terms— Kullback-Leibler divergence, maximum
mean discrepancy, outlier hypothesis testing, universal expo-
nential consistency

1. INTRODUCTION

In this paper, we study an outlying sequence detection prob-
lem, in which there are M sequences of samples out of which
one outlier sequence needs to be detected. Each typical se-
quence consists of n independent and identically distributed
(i.i.d.) continuous observations drawn from a known distribu-
tion 7, whereas the outlier sequence consists of n i.i.d. sam-
ples drawn from a distribution y, which is distinct from 7, but
otherwise unknown. The goal is to design a test to detect the
outlier sequence.
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The study of such a model is useful in many application-
s [1]. For example, in cognitive wireless networks, signals
follow different distributions depending on whether the chan-
nel is busy or vacant. The goal in such a network is to i-
dentify vacant channels out of busy channels based on their
corresponding signals in order to utilize the vacant channels
for improving spectral efficiency. Such a problem was stud-
ied in [2] and [3] under the assumption that both p and 7 are
known. Other applications include anomaly detection in large
data sets [4,5], event detection and environment monitoring in
sensor networks [6], understanding of visual search in human-
s and animals [7], and optimal search and target tracking [8].

The outlying sequence detection problem with discrete p
and 7 was studied in [9] in which both distributions were as-
sumed to be unknown. A universal test based on generalized
likelihood ratio test was proposed, and was shown to be expo-
nentially consistent. The error exponent was further shown to
be optimal as the number of sequences goes to infinity. The
test utilizes empirical distributions to estimate x4 and 7, and
is therefore applicable only for the case where ;1 and 7 are
discrete.

In this paper, we study the case where distributions p and
m are continuous and p is unknown. We construct a Kullback-
Leibler (KL) divergence based test, and further show that this
test is exponentially consistent.

Our exploration of the problem is inspired by the case in
which both p and 7 are known, and the maximum likelihood
test is optimal. An interesting observation is that the test s-
tatistic of the optimal test converges to D(u||7) as the sample
size goes to infinity if the sequence is the outlier. This mo-
tivates the use of a KL divergence estimator to approximate
the test statistic for the case when p is unknown. We apply
a divergence estimator based on the idea of data-dependent
partitions [10], which was shown to be consistent. Our first
contribution here is to show that such an estimator converges
exponentially fast to its true value when the density ratio sat-
isfies the boundedness condition: 0 < K; < g—‘; < Ko,
where K7 and K are positive constants. We then design an
outlying sequence detection test using such an estimator of
the KL divergence, and further show that the resulting test is
exponentially consistent.

The rest of the paper is organized as follows. In Section
2, we describe the problem formulation. In Section 3, we



present the KL divergence based test and establish its expo-
nential consistency. In Section 4, we review the maximum
mean discrepancy (MMD) based test. In Section 5, we pro-
vide a numerical comparison of our KL divergence based test
and the MMD based test. We omit detailed proofs in this pa-
per due to space limitations. The full proofs can be found
in [11].

2. PROBLEM MODEL

Throughout the paper, random variables are denoted by cap-
ital letters, and their realizations are denoted by the corre-
sponding lower-case letters. All logarithms are with respect
to the natural base.

We study an outlier detection problem, in which there are
in total M data sequences denoted by YO for1 < i <
M. Each data sequence Y(*) consists of n ii.d. samples
Yl(i), ceey Yn(i) drawn from either a typical distribution 7 or
an outlier distribution y, where 7 and p are continuous, i.e.,
defined on (R, Bg), and p # 7. We use the notation y(*) =

(ygl), - ,yff )), where y,(:) € R denotes the k-th observation
of the i-th sequence. We assume that there is exactly one out-
lier among M sequences. If the i-th sequence is the outlier,

the joint distribution of all observations is given by

piy™™) = pily ™,y = TT {u) T~}
k=1

j#i

We are interested in the scenario in which the outlier dis-
tributions g is unknown a priori, but the typical distribution 7
is known exactly. This is reasonable because in many practi-
cal scenarios, systems typically start without outliers and it is
not difficult to collect sufficient information about 7.

Our goal is to build a distribution-free test to detect the
outlier sequence generated by . The the test can be captured
by a universal rule § : 7 x RM™ — 1 ... M, which must
not depend on p.

The maximum error probability, which is a function of the
detector and (i, ), is defined as

e(,m,p) £ max / pi(y™™)dy™",
=1, M JyMn s (g oy Mn)£i
and the corresponding error exponent is defined as

a6, m, 1) £ lim f%loge(é,w,u).

n— oo

A test is said to be universally consistent if
lim e(6,m, p) =0,
n—oo

for any p # 7. It is said to be universally exponentially con-
sistent if
lim «(d, 7, 1) > 0,

n— oo

for any u # 7.

3. KL DIVERGENCE BASED TEST

We first introduce the optimal test when both p and 7 are
known, which is the maximum likelihood test. We then con-
struct a KL divergence estimator, and prove its exponential
consistency. Next, we employ the KL divergence estimator
to approximate the test statistics of the optimal test for the
outlying sequence detection problem, and construct the KL
divergence based test.

3.1. Optimal test with 7= and ;2 known

If both p and 7 are known, the optimal test for the outlying
sequence detection problem is the maximum likelihood test:

M o) = argmax pi(yM™). ()
1<i<M

omr(y

By normalizing p; (y™™) with 7(y*™), (1) is equivalent to:

Mn
pi(y™™")
1) Mn & 1)) = argmax —>——2
MLy 2 1§i§M m(yMn)
= argmax { — Z log M(y’(?))
i< (T w(y,”)
= argmax Lj;.
1<i<M
where

n (@)
1 Py
Liébeg ( '&)>- )
o mu)
The following theorem characterizes the error exponent of
test (1).

Theorem 1. [9, Theorem 1] Consider the outlying sequence
detection problem with both p and ™ known. The error expo-
nent for the maximum likelihood test (1) is given by

a(éMh T, /1') = 23(71—7 :u)’

where B(w, 1) is the Bhattacharyya distance between y and
7w which is defined as

B(r, ) £ —log ( / u(y)éﬂy)%dy) .

Consider L; defined in (2). If y(*) is generated from i, L;
is an empirical estimate of the KL divergence between p and
7, then L; — D(u||7) almost surely as n — oo, by the law
of large numbers. Here,

d
Diullm) 2 [ dulog -

is the KL divergence between p and 7. Similarly, if y(® is
generated from w, L; — —D(w||u) almost surely as n —
0o. These observations motivate us to construct a generalized
likelihood test based on an estimator of the KL divergence
between p and 7, if p is unknown.



3.2. KL divergence estimator

We propose to use a KL divergence estimator based on data-
dependent partitions [10].

Assume that the distribution p is unknown and the distri-
bution ¢ is known, and both p and ¢ are continuous. A se-
quence of i.i.d. samples Y € R"™ is generated from p. We
wish to estimate the KL divergence between p and ¢q. We de-
note the order statistics of Y by {Y(1,Y(2),...,Y(y)} where
Y(l) < Y(Q) << Y(n). We further partition the real line
into empirically equiprobable segments as follows:

Ui b=, = (=00, Yo (Yo Yeaen)):
- (Yeu(r,-1)),20)},

where /,, € N < n is the number of points in each interval
except possibly the last one, and T,, = |n /¢, | is the number
of intervals. A divergence estimator between the sequence
Y € R" and the distribution 7 was proposed in [10], which is
given by
. O
D, (Y = —lo
V) = 3 2 1og 2

(T, —

€n €n/M
+ — log ,
n " q(If)

3

where ¢,, = (n —
last segment.

The consistency of such an estimator was shown in [10].
Here, we further characterize the convergence rate by intro-
ducing the following boundedness condition on the density
ratio between p and ¢, i.e.,

1)) is the number of points in the

d
0< Ky <L <K, )
dq

where K7 and K are positive constants. In practice, such
a boundedness condition is often satisfied, for example, for
truncated Gaussian distributions.

The following theorem characterizes a lower bound on the
convergence rate of estimator (3).

Theorem 2. [f the density ratio between p and q satisfies (4),
and estimator (3) is applied with T,,,{,, — 00, as n — 00,
then for Ve > 0,

i ! ) 1 K2
= Liog (P{|D,(Vll0) - Dl > ¢}) > g fbe
Proof. See [11]. 0

Remark 1. The convergence rate of estimator (3) in Theorem
2 is equivalent to

1Dy (Ylla) = Dpllg)| = Op(n~1/?),"!

where O, denotes “bounded in probability ” [12].

'Xpn = Op(an): Ve > 0,3M > 0, P(|Z2| > M) < ¢,Vn.

3.3. Test and performance

In this subsection, we utilize the estimator based on data-
dependent partitions to construct our test.

It is clear that if Y(?) is the outlier, then D,, (Y ||7) is
a good estimator of D(u||7), which is a positive constant.
On the other hand, if V() is a typical sequence, D,, (Y ?)||7)
should be close to D(r||w) = 0. Based on this understand-
ing and the convergence guarantee in Theorem 2, we use
D, (Y ®||7) in place of L; in (2), and construct the following
test for the outlying sequence detection problem:

dku(y™") = arg max Dy, (Y||m). )

The following theorem provides a lower bound on the er-
ror exponent of dkp,, which further implies that dky, is univer-
sally exponentially consistent.

Theorem 3. If the density ratio between p and T satisfies (4),
then 0k, defined in (5) is exponentially consistent, and the
error exponent is lower bounded as follows,

2
B S 2 6
m+&)Dwm» ©)

Proof. See [11]. O

1 K
Oé((SK[”ﬂ',,LL) Z 5 < !

4. MMD-BASED TEST

In this section, we introduce the MMD based test, which we
previously studied in [13]. We will compare dkp, to the MMD
based test.

4.1. Introduction to MMD

In this subsection, we briefly introduce the idea of mean em-
bedding of distributions into RKHS [14] and the metric of
MMD. Suppose P is a set of probability distributions, and
suppose # is the RKHS with an associated kernel k(-, -). We
define a mapping from P to H such that each distribution
p € P is mapped to an element in H as follows

pl) = Byl 2)) = [ KC,x)dn(o).

Here, p,(-) is referred to as the mean embedding of the dis-
tribution p into the Hilbert space H. Due to the reproducing
property of #, it is clear that E, [ f] = (uy, f) forall f € H.

In order to distinguish between two distributions p and g,
Gretton et al. [15] introduced the following quantity of max-
imum mean discrepancy (MMD) based on the mean embed-
dings 1, and p, of p and ¢ in RKHS:

MMDIp, q] := ||/~Lp - /~Lq||7-t~

It can be shown that

MMD[p,q] = sup E,[f] — Eq[f].

I fll=<1



Due to the reproducing property of kernel, we have

where X and X’ are independent but have the same distri-
bution p, and Y and Y’ are independent but have the same
distribution ¢. An unbiased estimator of MMD?[p, ¢ based
on ¢ and n samples of X = {x1, z2,...,z,} generated from
p is given as follows,

MMD?2[X, q] -t S k(wi,z))

n(n —1) i=1 j£i

FERY,Y)) - = YO Bl V)]

where Y and Y’ are independent but have the same distribu-
tion q.

4.2. Test and performance

For each sequence Y (¥), we compute MMDZ[Y () 7] for 1 <
i < M. tis clear that if Y is the outlier, MMD?[Y (), 7]
is a good estimator of MMD? [y, 7], which is a positive
constant. On the other hand, if Y(¥) is a typical sequence,
MMD? Y ) 7] should be a good estimator of MMD? |, ],
which is zero. Based on the above understanding, we con-
struct the following test:

OMMD = arg maXMMDZ [Y(i), 7. 7
1<i<M

The following theorem provides a lower bound on the er-
ror exponent of dyvp, and further demonstrates that the test
dmmp 1S universally exponentially consistent.

Theorem 4. Consider the universal outlying sequence detec-
tion problem. Suppose dyyp defined in (7) applies a bounded
kernel with 0 < k(x,y) < K for any (x,y). Then, the error
exponent is lower bounded as follows,

MMD* [, 7]
9K?2
Proof. See [11]. O

V

®)

a(éMMD; H, 7T) =

5. NUMERICAL RESULTS AND DISCUSSION

In this section, we compare the performance of dky and
ommp. We set the number of sequences M = 5. We choose
the typical distribution 7 = N(0, 1), and choose the outlier
distribution 1 = N(0,0.2), MV (0, 1.2), N'(0,1.8), N(0,2.0),
respectively. In Fig. 1, Fig. 2, Fig. 3 and Fig. 4, we plot the
logarithm log P, of the probability of error as a function of
the sample size n.

It can be seen that for both tests as the number of samples
increases, the probability of error converges to zero as the
sample size increases. Furthermore, log P, decreases with n
linearly, which demonstrates the exponential consistency of

both k1, and dymp. Note that the pair of distributions in
Fig. 2 are the closest to each other, which results in a larger
probability of error than in the other three cases.

By comparing the four figures, it can be seen that as the
variance of p deviates from the variance of 7, Jky, outper-
forms dvmp. The numerical results and theoretical lower
bounds on error exponents give us some intuitions to identify
regimes in which one test outperforms the other. As shown
above, when the distribution p and m become more differ-
ent from each other, k1, outperforms dyyp. The reason is
that for any pair of distributions, MMD is bounded between
[0,2K], while the KL divergence is not bounded. As the
distributions become more different from each other, the KL
divergence increases, and the KL divergence based test thus
has a larger error exponent than the MMD based test.

0 10 20 30 40
sample size n

Fig. 1. Comparison of the performance between KL divergence
and MMD based tests with 7 = A(0,1) and p = N(0,0.2)

-0.2

0 20 40 60 80 100
sample size n

Fig. 2. Comparison of the performance between KL divergence
and MMD based tests with 7 = A/(0,1) and p = N(0,1.2)
0 . . . .

-10 : : : :
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Fig. 3. Comparison of the performance between KL divergence

and MMD based tests with 7 = A(0, 1) and u = N(0,1.8)
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Fig. 4. Comparison of the performance between KL divergence
and MMD based tests with 7 = A/(0, 1) and 1 = N(0, 2)
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