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ABSTRACT
The problem of quickest change detection (QCD) in anony-
mous heterogeneous sensor networks is studied. There are n
heterogeneous sensors and a fusion center. The sensors are
clustered into K groups, and different groups follow differ-
ent data generating distributions. At some unknown time, an
event occurs in the network and changes the data generating
distribution of the sensors. The goal is to detect the change
as quickly as possible, subject to false alarm constraints. The
anonymous setting is studied in this paper, where at each time
step, the fusion center receives n unordered samples. The fu-
sion center does not know which sensor each sample comes
from, and thus does not know its exact distribution. In this
paper, a simple optimality proof is derived for the Mixture
Likelihood Ratio Test (MLRT), which was constructed and
proved to be optimal for the non-sequential anonymous set-
ting in [1]. For the QCD problem, a mixture CuSum algo-
rithm is constructed in this paper, and is further shown to be
optimal under Lorden’s criterion [2].

Index Terms— Anonymous, hypothesis testing, hetero-
geneous, mixture CuSum, sequential change detection.

1. INTRODUCTION

Suppose a network consists of n sensors and a fusion cen-
ter. At some unknown time, an event occurs in the network,
and causes a change in the data generating distribution of the
sensors. The goal is to detect the change as quickly as possi-
ble subject to false alarm constraints. We consider a general
setting with heterogeneous sensors, where the sensors can be
clustered into K groups, and different groups follow different
data generating distributions. It is assumed that the number of
sensors and the data generating distributions in each group are
known. In this paper, we investigate the scenario where the
sensors are anonymous. Specifically, the fusion center does
not know which sensor each sample comes from (see e.g.,
[3,4] for anonymous data collection approaches). The anony-
mous and heterogeneous setting finds a wide range of appli-
cations in sensor networks in social settings [5], where human
participants are involved, and thus privacy and anonymity are
required to protect the participants.

The quickest change detection (QCD) problem in sensor
networks has been widely studied in the literature [6–14]. In
these papers, one CuSum algorithm can be implemented at
each sensor, and be further combined to design algorithms
with certain optimality guarantee. In this paper, we are in-
terested in the anonymous setting, where at each time step,
the fusion center receives n arbitrarily permuted observations,
and the permutations at different time steps may be differ-
ent. Therefore, the fusion center does not know which sam-
ples over time come from one particular sensor. Existing ap-
proaches are not applicable since the fusion center is not able
to compute one CuSum statistic for each sensor.

In this paper, we first revisit the non-sequential setting
with anonymous heterogeneous sensors in [1], where one
sample is collected from each sensor. In [1], a Mixture Like-
lihood Ratio Test (MLRT) was developed for this composite
hypothesis testing problem, where the group assignment is
the unknown parameter. The MLRT was shown to be op-
timal under the Neyman-Pearson setting [1]. In this paper,
we provide a simple proof for the optimality of the MLRT.
The basic idea is to construct a composite binary hypothesis
testing problem with uniform priors on all possible group
assignments of the samples, and to show that the optimal test
for the case with Bayesian priors is also optimal under the
Neyman-Pearson setting.

We further study the QCD problem in anonymous hetero-
geneous sensor networks, and design a mixture CuSum al-
gorithm. The basic idea is design a CuSum type algorithm
using the mixture likelihood ratio. We show that the mixture
CuSum algorithm is optimal under Lorden’s criterion [2]. We
also provide numerical results to demonstrate that our mix-
ture algorithm outperforms two other algorithms using the
Bayesian approach and the generalized likelihood ratio ap-
proach for the unknown group assignments.

2. PROBLEM STATEMENT

Consider a network consisting of n sensors. The sensors are
heterogeneous and can be divided into K groups. Each group
k has nk sensors, 1 ≤ k ≤ K. The distributions of the obser-
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vations in group k are pθ,k, θ ∈ {0, 1}. The centralized set-
ting is considered, where there is a fusion center. The sensors
are anonymous, i.e., the fusion center doesn’t know which
group that each observation comes from. The fusion center
only knows the distributions pθ,k, θ ∈ {0, 1} and the number
of sensors nk in each group k.

2.1. Binary Composite Hypothesis Testing

We first revisit the binary hypothesis testing problem in [1],
where one sample is collected from each sensor. The goal is
to distinguish between the two hypotheses: H0 : θ = 0 and
H1 : θ = 1.

Denote by Xn = {X1, . . . , Xn} the n collected samples.
Denote by σ(i) ∈ {1, . . . ,K} the label of the group that Xi

comes from, i.e., Xi ∼ pθ,σ(i). Due to the anonymity, σ(i),
i = 1, . . . , n, are unknown to the fusion center. There are
( n
n1,...,nK) possible σ : {1, . . . , n} → {1, . . . ,K} satisfying
|{i : σ(i) = k}| = nk,∀k = 1, . . . ,K. We denote the collec-
tion of all such labelings by Sn,λ, where λ = {n1, . . . , nK}.

The problem is a composite hypothesis testing problem,
where σ is the unknown parameter for both θ = 0 and 1:

Hθ : Xn ∼ Pθ,σ
∆
=

n∏
i=1

pθ,σ(i), for some σ ∈ Sn,λ. (1)

The worst-case type-I and type-II error probabilities for a de-
cision rule φ are defined as

PF (φ) , max
σ∈Sn,λ

E0,σ[φ(Xn)], (2)

PM (φ) , max
σ∈Sn,λ

E1,σ[1− φ(Xn)]. (3)

The Neyman-Pearson setting is studied, where the goal is to
solve the following problem for any α ∈ [0, 1]:

inf
φ:PF (φ)≤α

PM (φ). (4)

2.2. Quickest Change Detection

In the QCD setting, unordered samples are observed se-
quentially. At some unknown time ν, an event occurs in
the network, and changes the data generating distributions
of the sensors. Specifically, denote the observed sam-
ples at time t by Xn[t]. Before the change, i.e., t < ν,
Xn[t] ∼ P0,σt

∆
=
∏n
i=1 p0,σt(i), for some unknown σt ∈

Sn,λ. After the change, i.e., t ≥ ν, Xn[t] ∼ P1,σt
∆
=∏n

i=1 p1,σt(i), for some unknown σt ∈ Sn,λ. We note that
σt may change with time, i.e., σt1 may not be the same as
σt2 , for t1 6= t2. We further assume that Xn[t1] is indepen-
dent from Xn[t2] for any t1 6= t2.

The objective is to detect the change at time ν as quickly
as possible subject to false alarm constraints. In this paper,
we consider a deterministic unknown change point ν, and we

define the worst-case average detection delay (WADD) un-
der Lorden’s criterion [2] and worst-case average run length
(WARL) for any stopping time τ as follows:

WADD(τ) , sup
ν≥1

sup
Ω

ess supEνΩ
[
(τ − ν)+|Xn[1, ν − 1]

]
,

WARL(τ) , inf
Ω

E∞Ω [τ ]. (5)

where Ω = {σ1, σ2, ..., σ∞}, EνΩ denotes the expectation
when the change is at ν, and the observations at time i are la-
beled according to σi, and Xn[1, ν−1] = {Xn[1], . . . , Xn[ν−
1]}.

Denote by Ft the σ-algebra generated by the observations
of all the nodes up to time t, for t ∈ N. The goal is to de-
sign a stopping rule that minimizes the WADD subject to a
constraint on the WARL:

inf
τ :WARL≥γ

WADD(τ). (6)

3. MIXTURE LIKELIHOOD RATIO TEST AND A
SIMPLE PROOF

For the binary composite hypothesis testing problem in Sec-
tion 2.1, Chen and Huang constructed an MLRT, and showed
that the MLRT is optimal [1]. In this section, we will first
briefly review the optimality proof in [1], and then we will
present a simple version of the proof.

3.1. Mixture Likelihood Ratio Test

Recall the mixture likelihood ratio `(xn) in [1]:

`(xn) =

∑
σ∈Sn,λ P1,σ(xn)∑
σ∈Sn,λ P0,σ(xn)

. (7)

Then the MLRT was defined in [1] as

φ∗(xn) =

 1, if `(xn) > η
β, if `(xn) = η
0, if `(xn) < η,

(8)

where β ∈ [0, 1], η is the threshold, and they are chosen to
meet the false alarm constraint.

Lemma 1. [1, Theorem 3.1] Consider the binary composite
hypothesis testing problem under the Neyman-Pearson setting
in Section 2.1. The MLRT φ∗ is optimal.

The key idea of the proof in [1] is to reduce the origi-
nal composite hypothesis testing problem in Section 2.1 into
a simple one through the ordering map Π(xn), and then ap-
ply Neyman-Pearson lemma. The ordering map Π(xn) of xn

is defined as Π(xn) = (xi1 , xi2 , . . . , xin), such that xi1 ≥
xi2 ≥ . . . ≥ xin . In the proof, due to the introduction of
the ordering map, a careful examination of the measurability
needs to be conducted. The proof in [1] can be summarized



by the following steps. 1) In the auxiliary space induced by
the ordering mapping, the induced probability measure is in-
dependent of σ, and thus the corresponding problem in the
auxiliary space is a simple hypothesis testing problem. 2) In
the auxiliary space, applying the Neyman-Pearson lemma, the
optimal test is obtained. 3) Any symmetric test in the original
sample space is equivalent to a test in the auxiliary space in
terms of type-I and type-II error probabilities, where a test φ
is symmetric if φ(xn) = φ(π(xn)) for any xn and any per-
mutation π. 4) The optimal test in the auxiliary space is the
MLRT and is symmetric, which means that among all sym-
metric tests, the MLRT is optimal. 5) For any test ψ, one can
always symmetrize it and construct a symmetric test φ, which
is as good as φ. 6) Then, the MLRT test is optimal among all
tests.

3.2. A Simpler Proof for Lemma 1

In this section, we present a simple proof for the optimality of
the MLRT. Our proof does not need to use the ordering map,
and is much simpler.

Proof. We consider a Bayesian setting with uniform priors on
all σ ∈ Sn,λ under both hypotheses, and define the average
type-I and type-II error probabilities for any test φ:

P̃F (φ) ,
1

| Sn,λ |
∑

σ∈Sn,λ

E0,σ[φ(Xn)], (9)

P̃M (φ) ,
1

| Sn,λ |
∑

σ∈Sn,λ

E1,σ[1− φ(Xn)]. (10)

Then under the Bayesian setting, this problem reduces to the
following simple binary hypothesis testing problem:

H0 :
1

| Sn,λ |
∑

σ∈Sn,λ

P0,σ, (11)

H1 :
1

| Sn,λ |
∑

σ∈Sn,λ

P1,σ, (12)

for which the optimal test (the same as the MLRT) is the like-
lihood ratio test between (11) and (12) [15].

It can be verified that for any permutation π(xn) =
(xπ(1), xπ(2), . . . , xπ(n)), φ∗(xn) = φ∗(π(xn)). For any π,
let σ′ = σ ◦ π. Then Eθ,σ[φ∗(π(xn))] = Eθ,σ◦π[φ∗(xn)] =
Eθ,σ′ [φ∗(xn)]. For any σ′ ∈ Sn,λ, a π can be found so that
σ ◦ π = σ′. Thus, for any σ, σ′ ∈ Sn,λ and θ = 0, 1,

Eθ,σ′ [φ∗(Xn)] = Eθ,σ[φ∗(Xn)]. (13)

It then follows that

PF (φ∗) = max
σ∈Sn,λ

E0,σ[φ∗(Xn)] = E0,σ[φ∗(Xn)]

=
1

| Sn,λ |
∑

σ∈Sn,λ

E0,σ[φ∗(Xn)] = P̃F (φ∗). (14)

Similarly, it can be shown that PM (φ∗) = P̃M (φ∗).
From (9) and (10), it follows that for any test φ,

P̃F (φ) ≤ PF (φ),

P̃M (φ) ≤ PM (φ). (15)

Since φ∗ is optimal for the problem of minimizing P̃M (φ)

subject to P̃F (φ) ≤ ε, then φ∗ is also optimal for problem of
minimizing PM (φ) subject to PF (φ) ≤ ε.

4. MIXTURE-CUSUM ALGORITHM FOR THE QCD
PROBLEM

Motivated by the fact that the MLRT is optimal for the bi-
nary composite hypothesis testing problem, we construct the
following mixture CuSum algorithm:

T ∗(b) = inf{t : max
1≤k≤t

t∑
i=k

log `(xn[i]) ≥ b}. (16)

We show that the mixture CuSum algorithm is exactly op-
timal under Lorden’s criterion [2].

Theorem 1. Consider the QCD problem in Section 2.2, the
mixture CuSum algorithm in (16) is exactly optimal.

Proof. We follow a similar idea to the one in Section 3.2.
Consider a simple QCD problem with samples independent
and identically distributed (i.i.d.) according to the pre-change
distribution P̃0 = 1

|Sn,λ|
∑
σ∈Sn,λ P0,σ and the post-change

distribution P̃1 = 1
|Sn,λ|

∑
σ∈Sn,λ P1,σ , respectively. For this

pair of pre- and post-change distributions, define the W̃ADD
and ÃRL for any stopping rule τ as follows:

W̃ADD(τ) = sup
ν≥1

ess sup Ẽν [(τ − ν)+|X̃n[1, ν − 1]],

ÃRL(τ) = Ẽ∞[τ ], (17)

where Ẽν denotes the expectation when the change is at ν,
the pre- and post-change distributions are P̃0 and P̃1, and
X̃n[1, ν − 1] are i.i.d. from P̃0. It was shown that the CuSum
algorithm is optimal under Lorden’s criterion [16]. There-
fore, T ∗ in (16) is optimal for the QCD problem defined by
pre- and post-change distributions P̃0 and P̃1.

Following similar ideas as in Section 3.2, we can show
that for any stopping time τ ,

W̃ADD(τ) ≤WADD(τ) and ÃRL(τ) ≥WARL(τ). (18)

We will then show that T ∗ achieves the equality in (18),
which will complete the proof. Due to the fact that T ∗ is
symmetric, i.e., it is invariant to any permutation of Xn[j],



∀j = 1, 2, . . .. For any Ω and Ω′, it follows that

ess supEνΩ[(T ∗ − ν)+|Xn[1, ν − 1]]

= ess supEνΩ′ [(T ∗ − ν)+|Xn[1, ν − 1]],

E∞Ω [T ∗] = E∞Ω′ [T ∗] (19)

We note that to establish (18) and the optimality of T ∗, the
proof is more involved than the binary hypothesis testing case
in Section 3.2 because of the esssup and the conditional ex-
pectation. The details can be found in Appendix.

5. NUMERICAL RESULTS

In this section, we provide some numerical results. We com-
pare our optimal mixture CuSum test with two other algo-
rithms based on the Bayesian approach and the generalized
likelihood ratio approach of tackling the unknown group as-
signments. For the Bayesian approach of tackling the group
assignments, we pretend that each sample comes from group
k with probability nk/n, for k = 1, . . . ,K, independently, so
that on average the k-th group has nk sensors, although we
have exact nk sensors in each group k. We then compute the
following likelihood ratio:

lb(x
n[t]) =

∏n
i=1

(∑K
k=1

nk
n P1,k(xi[t])

)
∏n
i=1

(∑K
k=1

nk
n P0,k(xi[t])

) . (20)

The generalized likelihood ratio for the sample xn[t] is

lg(x
n[t]) =

supσ∈Sn,λ P1,σ(xn[t])

supσ∈Sn,λ P0,σ(xn[t])
. (21)

We then design CuSum-type tests using (20) and (21), which
are referred to as the Bayesian and Generalized CuSums.

Fig. 1. Evolution Path of The Mixture CuSum

We set n = 2 and K = 2, i.e., one sensor in each
group. For group 1, the pre- and post-change distributions

are N (0, 1) and N (0.5, 1), respectively. For group two, the
pre- and post-change distribution are N (2, 1) and N (1.5, 1),
respectively.

In Fig. 1, we set the change point to be 500. We plot one
sample evolution path of the mixture CuSum algorithm. It can
be seen that before change point, the test statistic fluctuates
around zero, and after change point, it starts to increase with
a positive drift.

Fig. 2. Comparison of The Three Algorithms.

In Fig. 2, we plot the WADD as a function of the WARL.
We repeat the experiment for 10000 times and take the av-
erage. It can be seen from Fig. 2 that our mixture CuSum
algorithm outperforms the other two algorithms. Moreover,
the relationship between the WADD and log of the WARL is
linear. The slope of these three curves should be the recip-
rocal of the expectation of the corresponding likelihood ratio
under P0,σ for some σ ∈ Sn,λ.

6. CONCLUSION

In this paper, we studied the hypothesis testing problem in
anonymous heterogeneous sensor networks. We first revis-
ited the non-sequential setting studied in [1], and provided a
simple optimality proof for the MLRT. We then extended our
approach to the problem of QCD with anonymous heteroge-
neous sensors, and constructed a mixture CuSum algorithm.
We showed that the mixture CuSum algorithm is optimal un-
der Lorden’s criterion [2]. We note that asymptotic optimality
results can also be obtained under Pollak’s criterion [17]. Our
results demonstrated that exact knowledge of numbers of sen-
sors in each group leads to a better performance.

Although being optimal, our mixture CuSum algorithm
needs to compute the average of the likelihood over all possi-
ble group assignments, and thus is computationally expensive
when the number of sensors is large. It is of future interest
to design computationally efficient algorithms for large net-
works. Moreover, it is assumed that after the change all the



sensors change their data generating distributions. It is also of
interest to investigate the case where only an unknown subset
of sensors change their data generating distributions.
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Appendix

A. PROOF OF (18)

We construct a new sequence of random variables {X̂n[t]}∞t=1.
Before the change point, X̂n[t] are i.i.d. according to the
mixture distribution P̃0 = 1

|Sn,λ|
∑
σ∈Sn,λ P0,σ . After the

change point, X̂n[t] follows the distribution P1,σt for some
σt ∈ Sn,λ. Specifically,

X̂n[t] ∼
{

P̃0, if t < ν
P1,σt , if t ≥ ν. (22)

For any stopping time τ , define the worst-case average
detection delay for the model in (22) as follows:

ŴADD(τ)

= sup
ν≥1

sup
σν ,...,σ∞

ess sup Êνσν ,...,σ∞ [(τ − ν)+|X̂n[1, ν − 1]],

(23)

where Êνσν ,...,σ∞ denotes the expectation when the data is
distributed according to (22). To prove that WADD(τ) ≥
W̃ADD(τ), we will first show that WADD(τ) = ŴADD(τ),
and then show that ŴADD(τ) ≥ W̃ADD(τ).

Step 1. Denote byM the collection of all {σ1, ..., σν−1},
and µ is an element inM. Denote by N the collection of all
{σν , ..., σ∞}, and ω is an element in N . Thus, Ω = {µ, ω}.
Then, the WADD can be written as

WADD(τ)

= sup
ν≥1

sup
Ω

ess supEνΩ[(τ − ν)+|Xn[1, ν − 1]]

= sup
ν≥1

sup
ω∈N

sup
µ∈M

ess supEνω[(τ − ν)+|Xn[1, ν − 1]], (24)

where Eνω denotes the expectation when change point is
ν, and after the change point, the data follows distribution
∞∏
t=ν

P1,σt . We note that X̂n[t] and Xn[t], for t ≥ ν, have the

same distribution P1,σt . Therefore, the difference between
WADD and ŴADD lies in that they take esssup with respect
to different distributions, i.e., the distributions of Xn[1, ν−1]

and X̂n[1, ν − 1] are different. Let fω(Xn[1, ν − 1]) denote
Eνω[(τ − ν)+|Xn[1, ν − 1]]. Then, WADD and ŴADD can
be written as

WADD(τ) = sup
ν≥1

sup
ω∈N

sup
µ∈M

ess sup fω(Xn[1, ν − 1]),

ŴADD(τ) = sup
ν≥1

sup
ω∈N

ess sup fω(X̂n[1, ν − 1]). (25)

It then suffices to show that

sup
µ∈M

ess sup fω(Xn[1, ν − 1]) = ess sup fω(X̂n[1, ν − 1]).

(26)



For any ω ∈ N and µ ∈M, let

bω,µ = ess sup fω(Xn[1, ν − 1])

= inf{b : Pµ(fω(Xn[1, ν − 1]) > b) = 0}, (27)

where Pµ denotes the probability measure when the data is
generated according to P0,σ1

, ...,P0,σν−1
before change point

ν.
Let b∗ω = ess sup fω(X̂n[1, ν − 1]). It can be shown that

b∗ω = inf

{
b :

∫
xn[1,ν−1]

1{fω(xn[1,ν−1])>b}

× d

ν−1∏
t=1

P̃0(xn(t)) = 0

}
= inf

{
b :

∫
xn[1,ν−1]

1{fω(xn[1,ν−1])>b}

× d

ν−1∏
t=1

1

| Sn,λ |
∑

σt∈Sn,λ

P0,σt(x
n(t)) = 0

}

= inf

{
b :

∫
xn[1,ν−1]

1{fω(xn[1,ν−1])>b}

× d
1

| M |
∑
µ∈M

Pµ(xn[1, ν − 1]) = 0

}

= inf

{
b :

1

| M |
∑
µ∈M

Pµ(fω(Xn[1, ν − 1]) > b) = 0

}
.

(28)

It then follows that for any µ ∈M,

Pµ(fω(Xn[1, ν − 1]) > b∗ω) = 0. (29)

Therefore, for any µ ∈M, we have that bω,µ ≤ b∗ω . Then

sup
µ∈M

bω,µ ≤ b∗ω. (30)

Conversely, let sup
µ∈M

bω,µ = b′. For any µ ∈ M, we have

that

Pµ(fω(Xn[1, ν − 1]) > b′) = 0. (31)

Then,

1

| M |
∑
µ∈M

Pµ(fω(Xn[1, ν − 1]) > b′) = 0. (32)

This further implies that

b∗ω ≤ b′ = sup
µ∈M

bω,µ. (33)

Combining (30) and (33), we have that

sup
µ∈M

bω,µ = b∗ω, (34)

and thus

sup
µ∈M

ess sup fω(Xn[1, ν − 1]) = ess sup fω(X̂n[1, ν − 1]).

(35)

This implies that

WADD(τ) = ŴADD(τ). (36)

Step 2. The next step is to show that ŴADD(τ) ≥
W̃ADD(τ). We will first show that

sup
ω∈N

ess sup fω(X̂n[1, ν − 1])

≥ ess sup sup
ω∈N

fω(X̂n[1, ν − 1]). (37)

Denote by P̃ν the probability measure when the change is at
ν, the pre- and post-change distributions are P̃0 and P̃1, re-
spectively. Let b̂ = sup

ω∈N
ess sup fω(X̂n[1, ν − 1]). For any

ω ∈ N , we have that

P̃ν
(
fω(X̂n[1, ν − 1]) ≥ b̂

)
= 0. (38)

Since N is countable, it then follows that

P̃ν
(

sup
ω∈N

fω(X̂n[1, ν − 1]) ≥ b̂
)

≤ P̃ν
(
∪ω∈N

{
fω(X̂n[1, ν − 1]) > b̂

})
≤
∑
ω∈N

P̃ν
(
fω(X̂n[1, ν − 1]) > b̂

)
= 0. (39)

Therefore,

b̂ = sup
ω∈N

ess sup fω(X̂n[1, ν − 1])

≥ ess sup sup
ω∈N

fω(X̂n[1, ν − 1]). (40)

Before the change point ν, X̂n[t] and X̃n[t] follow the
same distribution. For any T ≥ ν + 1, we have that

sup
{σν ,...,σT }

∈Sn,λ
⊗

(T−ν+1)

T∑
t=ν+1

(t− ν)Pσν ,...,σT (τ = t|X̂n[1, ν − 1])

≥
T∑

t=ν+1

(t− ν)
1

| Sn,λ |(T−ν+1)

×
∑

{σν ,...,σT }
∈Sn,λ

⊗
(T−ν+1)

Pσν ,...,σT (τ = t|X̂n[1, ν − 1])

=

T∑
t=ν+1

(t− ν)P̃ν(τ = t|X̃n[1, ν − 1]). (41)



As T →∞, we have that

Êνω[(τ − ν)|X̂n[1, ν − 1]] ≥ Ẽν [(τ − ν)|X̃n[1, ν − 1]],
(42)

where Pσν ,...,σT denotes the probability measure when the ob-
servations from time ν to time T are generated according to
Pσν , ...,PσT .

From (40) and (42), we have that

ŴADD(τ)

= sup
ω∈N

ess sup fω(X̂n[1, ν − 1])

≥ ess sup Ẽν [(τ − ν)+|X̃n[1, ν − 1]]

= W̃ADD(τ). (43)

Combining (36) and (43), it follows that WADD(τ) =

ŴADD(τ) ≥ W̃ADD(τ). Similarly, it can be shown that
WARL(τ) ≤ ÃRL(τ). This concludes the proof.

B. T ∗ ACHIEVES EQUALITY IN (18)

We will show that the mixture CuSum algorithm achieves the
equality in (18), i.e.,

ŴADD(T ∗) = W̃ADD(T ∗). (44)

For any {σν , ..., σi, ..., σ∞}, consider another element in
N , {σν , ..., σ′i, ...σ∞}. Due to the fact that T ∗ is symmetric,
it follows that for any i ≥ ν, and any σi, σ′i ∈ Sn,λ,

ess sup Êνσν ,...,σi,...,σ∞ [(T ∗ − ν)+|X̂n[1, ν − 1]]

= ess sup Êνσν ,...,σ′i,...,σ∞ [(T ∗ − ν)+|X̂n[1, ν − 1]]. (45)

Therefore, ŴADD(T ∗) doesn’t depend on ω, which further
implies that

sup
ω∈N

ess sup Êνω[(T ∗ − ν)+|X̂n[1, ν − 1]]

= ess sup Êνω[(T ∗ − ν)+|X̂n[1, ν − 1]]. (46)

For any T ≥ ν + 1, we have that

sup
{σν ,...,σT }

∈Sn,λ
⊗

(T−ν+1)

T∑
t=ν+1

(t− ν)Pσν ,...,σT (T ∗ = t|X̂n[1, ν − 1])

=

T∑
t=ν+1

(t− ν)
1

| Sn,λ |(T−ν+1)

×
∑

{σν ,...,σT }
∈Sn,λ

⊗
(T−ν+1)

Pσν ,...,σT (T ∗ = t|X̂n[1, ν − 1])

=

T∑
t=ν+1

(t− ν)P̃ν(T ∗ = t|X̃n[1, ν − 1]). (47)

As T →∞, we have that

Êνω[(T ∗ − ν)+|X̂n[1, ν − 1]] = Ẽν [(T ∗ − ν)+|X̃n[1, ν − 1]].
(48)

From (46) and (48), it follows that

ŴADD(T ∗)

= sup
ν≥1

sup
ω∈N

ess sup Êνω[(T ∗ − ν)+|X̂n[1, ν − 1]]

= sup
ν≥1

ess sup Êνω[(T ∗ − ν)+|X̃n[1, ν − 1]]

= sup
ν≥1

ess sup Ẽν [(T ∗ − ν)+|X̃n[1, ν − 1]]

= W̃ADD(T ∗). (49)

Similarly, it can be shown that ÃRL(T ∗) = WARL(T ∗).
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