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Abstract— An anomaly detection problem is investigated,
in which s out of n sequences are anomalous and need to
be detected. Each sequence consists of m independent and
identically distributed (i.i.d.) samples drawn either from a
nominal distribution p or from an anomalous distribution q
that is distinct from p. Neither p nor q is known a priori. Two
scenarios respectively with s known and unknown are studied.
Distribution-free tests are constructed based on the metric of
the maximum mean discrepancy (MMD). It is shown that if
the value of s is known, as n goes to infinity, the number m
of samples in each sequence should be of order O(log n) or
larger to guarantee that the constructed test is exponentially
consistent. On the other hand, if the value of s is unknown, the
number m of samples in each sequence should be of the order
strictly greater than O(log n) to guarantee the constructed
test is consistent. The computational complexity of all tests
are shown to be polynomial. Numerical results are provided
to confirm the theoretic characterization of the performance.
Further numerical results on both synthetic data sets and real
data sets demonstrate that the MMD-based tests outperform
or perform as well as other approaches.

I. INTRODUCTION

An anomaly detection problem (also referred to as outlier
hypothesis testing problem) has recently attracted consider-
able research interest. In this problem, s out of n sequences
are anomalous and need to be detected. Each sequence
consists of m independent and identically distributed (i.i.d.)
samples drawn either from a nominal distribution p or from
an anomalous distribution q that is distinct from p. We note
that each data point in this problem contains multiple samples
from a distribution. This is different from the anomaly or
outlier detection problem generally considered in machine
learning [1], [2], in which each data point is only one
realization of a certain distribution.

Such a problem has significant potential for practical
application. For example, for a group of people with one
certain genetic disease, it is likely that expression levels of
a few genes responsible for the disease follow distributions
different from those of genes not related to the disease. It
is thus important to identify those genes that are responsible
for the disease out of a large number of genes based on
their expression levels. Another potential application is in
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cognitive wireless networks, in which signals follow different
distributions depending on whether the channels are busy or
not. The major task is to identify the vacant channels such
that users can transmit over those vacant channels to improve
the spectral efficiency. Other applications include detecting
virus infected computers from other virus free computers
and detecting slightly modified images from other untouched
images.

The parametric case of the problem has been well studied
previously, e.g., in [3], in which the distributions p and q
are assumed to be known a priori, and a maximum likeli-
hood ratio test can be applied. Recently, the nonparametric
model has been studied in [4] and [5], in which p and
q are assumed to be unknown, and both the distributions
are assumed to be discrete. In particular, [4] proposed a
nonparametric divergence-based generalized likelihood test,
and characterized error exponents in the asymptotic regime
as the sample size goes to infinity. In [5], tests based on l1
distance are constructed and analyzed for the non-asymptotic
regime (e.g., with finite sample size). Both studies exploit the
fact that the distributions are discrete, and hence empirical
distributions based on data samples are used for constructing
tests.

In [6], the nonparametric model with p and q being arbi-
trary was studied. In particular, p and q can be continuous.
It is assumed that a reference sequence containing samples
generated from the distribution p is available. A distance
metric referred to as the maximum mean discrepancy (MMD)
[7], [8] is adopted for constructing the nonparametric tests
and conditions for the tests to be consistent are characterized.
The MMD-based approach uses mean embedding of distri-
butions into a reproducing kernel Hilbert space (RKHS) [9],
[10], i.e., mapping probability distributions into an RKHS.
It can be shown [10]–[13] that such a mapping is injective
for characteristic kernels (such as Gaussian and Laplace
kernels). Thus the distance between two mean embeddings
of two distributions in the RKHS provides a natural distance
measure between two distributions. There are a few advan-
tages of the MMD-based metric: (1) it is computationally
efficient to estimate the MMD from samples, particularly for
vector distributions; and (2) MMD-based approaches do not
need to estimate probability density functions as intermediate
steps, and hence can avoid error propagation. Our anomaly
detection tests are constructed utilizing the MMD metric.

In this paper, we further study the nonparametric model,
in which the distributions p and q are unknown, arbitrary,
and can be continuous. In contrast to [6], we assume that
no reference sequence generated from the distribution p
is available. As in [6], we also adopt the MMD as the
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distance measure between distributions to construct our tests.
Since a reference sequence is not available, our construction
of tests cannot be based on the distance (i.e., the MMD)
between each sequence and the reference to detect anoma-
lous sequences. Instead, we exploit the fact that the MMD
between a nominal sequence and the remaining sequences
is different from the MMD between an anomalous sequence
for constructing the tests. In this paper, we focus on the
same asymptotic regime as in [6], i.e., the total number n
of data sequences goes to infinity, and possibly the number
s of anomalous sequences can also become large. It then
requires that the number m of samples in each sequence
increase to guarantee the asymptotically small detection error
probability. We are interested in characterizing the sufficient
conditions for m to scale with (n, s) in order to guarantee
that the tests are consistent.

In summary, our main contributions in this paper are
as follows. (1) We construct computationally efficient
distribution-free MMD-based tests for two scenarios: the
number s of anomalous sequences is known and unknown,
respectively. (2) We characterize how the number m of
samples in each sequence should scale with (n, s) to guar-
antee consistency of the tests. We show that m can be
much smaller than n (i.e., on the order of O(log n) if s
is known, and on the order greater than O(log n) if s is
unknown). Therefore, lack of the knowledge of s results in
an order level increase in the sample size m to guarantee
consistency of the tests. (3) We provide numerical results on
synthetic data to demonstrate our theoretical assertions. We
further demonstrate that our MMD-based approach slightly
outperforms nonparametric generalized likelihood tests in
[4] on discrete distributions. Finally, we develop/implement
traditional statistical approaches together with our tests on a
real data set to demonstrate the consistency of our tests and
its competitive performance with other approaches. We note
that in this paper, we omit the proofs. The details can be
found in [14].

II. PROBLEM STATEMENT AND APPROACH

Fig. 1. An anomaly detection model with data sequences from distribution
p and anomalous distribution q.

The problem we study in this paper is depicted in Fig. 1.
There are n data sequences in total, out of which s sequences
are anomalous. The k-th sequence is denoted by Yk :=
(yk1, . . . , ykm) for 1 ≤ k ≤ n, in which yk1, . . . , ykm are

m i.i.d. samples drawn from either a nominal distribution
p or an anomalous distribution q. We assume that p and q
are unknown a priori. We also assume that p and q can be
arbitrary, and are distinct, i.e., p 6= q. In contrast to [6],
we focus on the unsupervised case, in which no reference
sequence from p is available. Our goal here is to build
distribution-free tests to detect s data sequences generated
by the anomalous distribution q.

We study two cases with the value of s being known
and unknown a priori, respectively. Our focus is on the
asymptotic regime, in which the number n of data sequences
goes to infinity. We assume that the number s of anomalous
sequences satisfies s

n
→ α as n → ∞, where 0 ≤ α < 1

2 .
By symmetry, the case that 1

2 < α ≤ 1 is equivalent with the
roles of p and q being exchanged. The test for the unknown
s and the corresponding analysis are also applicable to the
case in which s = 0, i.e., the null hypothesis in which
there is no anomalous sequence. We will comment on this
when the corresponding results are presented. In this paper,
f(n) = O(g(n)) denotes that f(n)/g(n) converges to a
constant as n → ∞.

The problem is a multi-hypothesis testing problem. We
adopt the following risk function as the performance measure
of the tests:

P (n)
e = max

|I|=s
P{În 6= I|I}, (1)

where I denotes the index set of all anomalous data se-
quences, and In denotes a sequence of index sets of anoma-
lous sequences claimed by a corresponding sequence of tests.
Thus, our definition of a test being consistent is given as
follows.

Definition 1: A sequence of tests is said to be consistent
if

lim
n→∞

P (n)
e = 0. (2)

We note that although the limit in the above definition is
taken with respect to n, since consistency of tests requires
that m increase with n, the limit can also be equivalently
viewed to be taken as m goes to infinity. Furthermore, for a
consistent test, we are interested in whether the risk decays
exponentially fast with respect to the number m of samples.

Definition 2: A sequence of tests is said to be exponen-
tially consistent if

lim inf
m→∞

− 1

m
logP (n)

e > 0. (3)

In this paper, we adopt the following technique of mean
embedding of distributions into an RKHS [9], [10] and the
metric of MMD for constructing the tests.

As developed in [8], the MMD as the distance between
the mean embeddings µp and µq of the distributions p and
q is given by

MMD2[p, q] := ‖µp − µq‖H

=Ex,x′ [k(x, x′)]− 2Ex,y[k(x, y)] + Ey,y′ [k(y, y′)],

where x and x′ are independent but have the same dis-
tribution p, and y and y′ are independent but have the
same distribution q. Naturally, an unbiased estimator of
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MMD2[p, q] based on l1 samples of X and l2 samples of
Y is given as follows:

MMD2

u[X,Y ] =
1

l1(l1 − 1)

l1∑

i=1

l1∑

j 6=i

k(xi, xj)

+
1

l2(l2 − 1)

l2∑

i=1

l2∑

j 6=i

k(yi, yj)−
2

l1l2

l1∑

i=1

l2∑

j=1

k(xi, yj). (4)

III. MAIN RESULTS

In this section, we start with the case in which the value
of s is known, and then study the case with s unknown.

A. Known s

We first use a simple case with s = 1 to introduce the
idea of our tests, and then study the more general case for
arbitrary s, in which s

n
→ α as n → ∞, where 0 ≤ α ≤ 1

2 .
Suppose that s = 1. For each sequence Yk, we use Y k

to denote the (n− 1)m dimensional sequence that stacks all
other sequences together, as given by

Y k = {Y1, . . . , Yk−1, Yk+1, . . . , Yn}.

We then compute MMD2
u[Yk, Y k] for 1 ≤ k ≤ n. It is

clear that if Yk is an anomalous sequence, then Y k is
fully composed of sequences from p. Hence, MMD2

u[Yk, Y k]
is a good estimator of MMD2[p, q], which is a positive
constant. On the other hand, if Yk is a sequence from p,
Y k is composed of n − 2 sequences generated by p and
only one sequence generated by q. As n increases, the
impact of the anomalous sequence on Y k is negligible, and
MMD2

u[Yk, Y k] should be close to zero. Based on the above
understanding, we construct the following test when s = 1.
The sequence k∗ is the index of the anomalous data sequence
if

k∗ = arg max
1≤k≤n

MMD2
u[Yk, Y k]. (5)

The following theorem characterizes the condition under
which the above test is consistent.

Theorem 1: Consider the anomaly detection model with
one anomalous sequence. Suppose the test (5) applies a
bounded kernel with 0 ≤ k(x, y) ≤ K for any (x, y). Then,
the test (5) is consistent if

m ≥ 16K2(1 + η)

MMD4[p, q]
log n, (6)

where η is any positive constant. Furthermore, under the
above condition, the test (5) is also exponentially consistent.

We now consider the more general case in which s
n

→
α as n → ∞, where 0 ≤ α < 1

2 . Our test is a natural
generalization of the test (5) except now the test chooses
the sequences with the largest s values of MMD2

u[Yk, Y k],
which is given by

Î ={k : MMD2
u[Yk, Y k] is among the s largest

values of MMD2
u[Yi, Y i] for i = 1, . . . , n}. (7)

The following theorem characterizes the condition under
which the above test is consistent.

Theorem 2: Consider the anomaly detection model with
s anomalous sequences, where s

n
→ α as n → ∞ and 0 ≤

α < 1
2 . Assume the value of s is known. Further assume that

the test (7) applies a bounded kernel with 0 ≤ k(x, y) ≤ K
for any (x, y). Then the test (7) is consistent if

m ≥ 16K2(1 + η)

(1− 2α)2MMD4[p, q]
log(s(n− s)), (8)

where η is any positive constant. Furthermore, under the
above condition, the test (7) is also exponentially consistent.
The computational complexity of the test (7) is O(n3m2).

Since s ≤ O(n), we have log s(n−s) ∼ O(log n). Hence,
Theorem 1 and Theorem 2 imply that, our MMD based
tests (5) and (7) require only O(log n) samples in each data
sequence in order to guarantee consistency of the tests.

Remark 1: For the case with s
n
→ 0, as n → ∞, we can

build a test that has reduced computational complexity. For
each Yk, instead of using n− 1 sequences to build Y k as in
the test (7), we take any l sequences out of the remaining
n − 1 sequences to build a sequence Ỹk, such that l

n
→ 0

and s
l
→ 0 as n → ∞. Such an l exists for any s and n

satisfying s
n

→ 0 (e.g., l =
√
sn). It can be shown that

using Ỹk to replace Y k in the test (7) still leads to consistent
detection under the same condition given in Theorem 2. The
computational complexity of such a test becomes O(nl2m2),
which is substantially smaller than O(n3m2) of the test (7),
considering that l is less than n in the order sense.

B. Unknown s

In this subsection, we consider the case in which the value
of s is unknown a priori. For this case, the previous test (7) is
not applicable due to the lack of knowledge of s. We observe
that for large value of m, MMD2

u[Yk, Y k] should be close to
0 if Yk is drawn from p, and should be close to MMD2[p, q]
if Yk is drawn from q. Based on this understanding, we build
the following test:

Î = {k : MMD2
u[Yk, Y k] > δn} (9)

where δn → 0 and s2

n2δn
→ 0 as n → ∞. We note that

the above requirements on δn implies that the test (9) is
applicable only when s

n
→ 0 as n → ∞. This includes two

cases: (1) s is fixed; and (2) s → ∞ and s
n
→ 0 as n →

∞. Furthermore, the scaling behavior of s as n increases
needs to be known in order to choose δn for the test. This
is reasonable to assume because mostly in practice the scale
of anomalous data points can be estimated based on domain
knowledge.

The following theorem characterizes conditions under
which the test (9) is consistent.

Theorem 3: Consider the anomaly detection model with
s anomalous sequences, where lim

n→∞

s
n
= 0. Assume that the

value of s is unknown a priori. Further assume that the test
(9) adopts a threshold δn such that δn → 0 and s2

n2δn
→ 0,
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as n → ∞, and the test applies a bounded kernel with 0 ≤
k(x, y) ≤ K for any (x, y). Then the test (9) is consistent if

m ≥ 16(1 + η)K2 max
{ log(max{1, s})
(MMD2[p, q]− δn)2

,

log(n− s)

(δn − E
[
MMD2

u[Y, Y ]
]
)2

}
, (10)

where η is any positive constant, and E[MMD2
u[Y, Y ]] is a

constant, where Y is a sequence generated by p and Y is
a stack of (n − 1) sequences with s sequences generated
by q and the remaining sequences generated by p. The
computational complexity of the test (9) is O(n3m2).

We note that Theorem 3 is also applicable to the case
with s = 0, i.e., the null hypothesis when there is no
anomalous sequence. We further note that the test (9) is
not exponentially consistent. If there is no null hypothesis
(i.e., s > 0 and unknown), an exponentially consistent test
can be built as follows. For each subset S of {1, . . . , n} we
compute the average 1

|S|

∑
k∈S MMD2

u[Yk, Y k], and the test
finds the set of indices corresponding to the largest average
value. However, now m needs to scale linearly with n for
the test to be consistent, and the computational complexity
is exponential with n, which is not desirable.

Theorem 3 implies that the threshold on m to guaran-
tee consistent detection has an order strictly larger than
O(log n), because s

n
→ 0 and δn → 0 as n → ∞. This

is the price paid due to not knowing s.

IV. NUMERICAL RESULTS

In this section, we provide numerical results to demon-
strate our theoretical assertions, and compare our MMD-
based tests with a number of tests based on other approaches
on both synthetic and real data sets.
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Fig. 2. Performance of the test with s = 1.

A. Demonstration of Theorems

We choose the distribution p to be Gaussian with mean
zero and variance one, and choose the anomalous distribution
q to be the Laplace distribution with mean one and variance
one. We use the Gaussian kernel k(x, x′) = exp(− |x−x′|2

2σ2 )
with σ = 1. We choose s = 1. We run the test for cases
with the numbers of sequences being n = 40 and 100,
respectively. In Fig. 2, we plot the probability of error as
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Fig. 3. Comparison of the MMD-based test with divergence-based
generalized likelihood test.
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Fig. 4. Comparison of the MMD-based test with four other tests on a real
data set.

a function of m
logn

. It can be seen that, as m increases, the
probability of error converges to zero. In particular, both
curves drop to zero at almost the same threshold, which
agrees with Theorem 1.

B. Comparison with Other Tests

In this subsection, we compare our MMD-based tests
with tests based on other nonparametric approaches. We
first compare our test with the divergence-based generalized
likelihood approach developed in [4]. Since the test in [4] is
applicable only when the distributions p and q are discrete
and have finite alphabets, we set the distributions p and q
to be binary with p having probability 0.3 to take “0” (and
probability 0.7 to take “1”), and q having probability 0.7 to
take “0” (and probability 0.3 to take “1”). We let s = 1 and
assume that s is known. We let n = 50.

In Fig. 3, we plot the probability of error as a function of
m. It can be seen that the MMD-based test has a slightly
better performance than the divergence-based generalized
likelihood test in both cases. We note that it has been shown
in [4] that the divergence-based test has optimal convergence
rate in the limiting case when n is infinite, which suggests
that such a test should also perform well for the case
with finite n. Thus, the comparison demonstrates that the
MMD-based test can provide comparable or even better
performance than the well-performing divergence-based test.
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Fig. 5. Comparison of the MMD-based test with two other kernel-based
tests on a real data set.

C. Application to Real Data Set

In this subsection, we study how the MMD-based test
performs on a real data set. We choose the collection of daily
maximum temperature of Syracuse (New York, USA) in July
from 1993 to 2012 as the nominal data sequences, and the
collection of daily maximum temperature of Makapulapai
(Hawaii, USA) in May from 1993 to 2012 as anomalous
sequences. Here, each data sequence contains daily max-
imum temperatures of a certain day across twenty years
from 1993 to 2012. In our experiment, the data set contains
32 sequences in total, including one temperature sequence
of Hawaii and 31 sequences of Syracuse. The probability
of error is averaged over all cases with each using one
sequence of Hawaii as the anomalous sequence. Although
it seems easy to detect the sequence of Hawaii out of the
sequences of Syracuse, the temperatures we compare for the
two places are in May for Hawaii and July for Syracuse,
during which the two places have approximately the same
mean in temperature. In this way, it may not be easy to detect
the anomalous sequence (in fact, some tests do not perform
well as shown in Fig. 4).

We apply the MMD-based test and compare its perfor-
mance with the t-test, FR-Wolf test [15], FR-Smirnov test
[15], and Hall test [16]. For the MMD-based test, we use
the Gaussian kernel with σ = 1. In Fig. 4, we plot the
probability of error as a function of m for all tests. It can
be seen that the MMD-based test, Hall test, and FR-wolf
test have the best performance, and all of the three tests are
consistent with the probability of error converging to zero
as m increases. Furthermore, comparing to Hall and FR-
wolf tests, the MMD-based test has the lowest computational
complexity.

We also compare the performance of the MMD-based test
with the kernel-based tests KFDA [17] and KDR [18]. We
use a Gaussian kernel with σ = 1. In Fig. 5, we plot the
probability of error as a function of m. It can be seen that all
tests are consistent with the probability of error converging
to zero as m increases, and the MMD-based test has the best
performance among the three tests.

V. CONCLUSION

In this paper, we have studied a nonparametric anomaly
detection problem, in which s anomalous sequences need to
be detected out of n sequences. We have built MMD-based
distribution-free tests and characterized how the sample size
m (in each sequence) should scale with n and s to guarantee
consistency (or exponentially consistency) of tests for both
the case with known s and the case with unknown s. If
s is known, we have shown that m should scale with
an order of O(log n). If s is unknown, we have shown
that m should scale with the order greater than O(log n).
Furthermore, we have demonstrated our theoretical results by
numerical results on synthetic data and have demonstrated
the performance of our tests by comparing them to other
appealing tests on a real data set. Our study of this problem
demonstrates that the MMD metric can be used as a powerful
tool for distinguishing between distributions based on data
samples, and can thus be used for solving other nonparamet-
ric problems in the future.
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