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Abstract

In robust Markov decision processes (MDPs), the uncertainty
in the transition kernel is addressed by finding a policy that
optimizes the worst-case performance over an uncertainty set
of MDPs. While much of the literature has focused on dis-
counted MDPs, robust average-reward MDPs remain largely
unexplored. In this paper, we focus on robust average-reward
MDPs, where the goal is to find a policy that optimizes the
worst-case average reward over an uncertainty set. We first
take an approach that approximates average-reward MDPs
using discounted MDPs. We prove that the robust discounted
value function converges to the robust average-reward as the
discount factor γ goes to 1, and moreover, when γ is large,
any optimal policy of the robust discounted MDP is also an
optimal policy of the robust average-reward. We further design
a robust dynamic programming approach, and theoretically
characterize its convergence to the optimum. Then, we in-
vestigate robust average-reward MDPs directly without using
discounted MDPs as an intermediate step. We derive the robust
Bellman equation for robust average-reward MDPs, prove that
the optimal policy can be derived from its solution, and further
design a robust relative value iteration algorithm that provably
find its solution, or equivalently, the optimal robust policy.

Introduction
A Markov decision process (MDP) is an effective mathemat-
ical tool for sequential decision-making in stochastic envi-
ronments (Derman 1970; Puterman 1994). Solving an MDP
problem entails finding an optimal policy that maximizes a
cumulative reward according to a given criterion. However,
in practice there could exist a mismatch between the assumed
MDP model and the underlying environment due to various
factors, such as non-stationarity of the environment, model-
ing error, exogenous perturbation, partial observability, and
adversarial attacks. The ensuing model mismatch could result
in solution policies with poor performance.

This challenge spurred noteworthy efforts on developing
and analyzing a framework of robust MDPs e.g., (Bagnell,
Ng, and Schneider 2001; Nilim and El Ghaoui 2004; Iyengar
2005). Rather than adopting a fixed MDP model, in the robust
MDP setting, one seeks to optimize the worst-case perfor-
mance over an uncertainty set of possible MDP models. The
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solution to the robust MDP problem provides performance
guarantee for all uncertain MDP models, and is thus robust
to the model mismatch.

Robust MDP problems falling under different reward op-
timality criteria are fundamentally different. In robust dis-
counted MDPs, the goal is to find a policy that maximizes
the discounted cumulative reward in the worst case. In this
setting, as the agent interacts with the environment, the re-
ward received diminishes exponentially over time. Much of
the prior work in the robust setting has focused on the dis-
counted reward formulation. The model-based method, e.g.,
(Iyengar 2005; Nilim and El Ghaoui 2004; Bagnell, Ng, and
Schneider 2001; Satia and Lave Jr 1973; Wiesemann, Kuhn,
and Rustem 2013; Tamar, Mannor, and Xu 2014; Lim and
Autef 2019; Xu and Mannor 2010; Yu and Xu 2015; Lim, Xu,
and Mannor 2013), where information about the uncertainty
set is assumed to be known to the learner, unveiled several
fundamental characterizations of robust discounted MDPs.
This was further extended to the more practical model-free
setting in which only samples from a simulator (the cen-
troid of the uncertainty set) are available to the learner. For
example, the value-based method (Roy, Xu, and Pokutta
2017; Badrinath and Kalathil 2021; Wang and Zou 2021;
Tessler, Efroni, and Mannor 2019; Zhou et al. 2021; Yang,
Zhang, and Zhang 2021; Panaganti and Kalathil 2021; Goyal
and Grand-Clement 2018; Kaufman and Schaefer 2013; Ho,
Petrik, and Wiesemann 2018, 2021; Si et al. 2020) optimizes
the worst-case performance using the robust value function
as an intermediate step; on the other hand, the model-free
policy-based method (Russel, Benosman, and Van Baar 2020;
Derman, Geist, and Mannor 2021; Eysenbach and Levine
2021; Wang and Zou 2022) directly optimizes the policy and
is thus scalable to large/continuous state and action spaces.

Although discounted MDPs induce an elegant Bellman op-
erator that is a contraction, and have been studied extensively,
the policy obtained usually has poor long-term performance
when a system operates for an extended period of time. When
the discount factor is very close to 1, the agent may prefer
to compare policies on the basis of their average expected
reward instead of their expected total discounted reward, e.g.,
queueing control, inventory management in supply chains,
scheduling automatic guided vehicles and applications in
communication networks (Kober, Bagnell, and Peters 2013).
Therefore, it is also important to optimize the long-term aver-



age performance of a system.
However, robust MDPs under the average-reward crite-

rion are largely understudied. Compared to the discounted
setting, the average-reward setting depends on the limiting
behavior of the underlying stochastic process, and hence is
markedly more intricate. A recognized instance of such in-
tricacy concerns the one-to-one correspondence between the
stationary policies and the limit points of state-action frequen-
cies, which while true for discounted MDPs, breaks down
under the average-reward criterion even in the non-robust
setting except in some very special cases (Puterman 1994;
Atia et al. 2021). This is largely due to dependence of the
necessary conditions for establishing a contraction in average-
reward settings on the graph structure of the MDP, versus the
discounted-reward setting where it simply suffices to have
a discount factor that is strictly less than one. Heretofore,
only a handful of studies have considered average-reward
MDPs in the robust setting. The first work by (Tewari and
Bartlett 2007) considers robust average-reward MDPs un-
der a specific finite interval uncertainty set, but their method
is not easily applicable to other uncertainty sets. More re-
cently, (Lim, Xu, and Mannor 2013) proposed an algorithm
for robust average-reward MDPs under the ℓ1 uncertainty
set. However, obtaining fundamental characterizations of the
problem and convergence guarantee remains elusive.

Challenges and Contributions
In this paper, we derive characterizations of robust average-
reward MDPs with general uncertainty sets, and develop
model-based approaches with provable theoretical guarantee.
Our approach is fundamentally different from previous work
on robust discounted MDPs, robust and non-robust average-
reward MDPs. In particular, the key challenges and the main
contributions are summarized below.

• We characterize the limiting behavior of robust dis-
counted value function as the discount factor γ → 1. For
the standard non-robust setting and for a specific transition
kernel, the discounted non-robust value function converges
to the average-reward non-robust value function as γ → 1
(Puterman 1994). However, in the robust setting, we need
to consider the worst-case limiting behavior under all pos-
sible transition kernels in the uncertainty set. Hence, the
previous point-wise convergence result (Puterman 1994)
cannot be directly applied. In (Tewari and Bartlett 2007),
a finite interval uncertainty set is studied, where due to its
special structure, the number of possible worst-case transi-
tion kernels of robust discounted MDPs is finite, and hence
the order of min (over transition kernel) and limγ→1 can be
exchanged, and therefore, the robust discounted value func-
tion converges to the robust average-reward value function.
This result, however, does not hold for general uncertainty
sets investigated in this paper. We first prove the uniform
convergence of discounted non-robust value function to
average-reward w.r.t. the transition kernels and policies.
Based on this uniform convergence, we show the conver-
gence of the robust discounted value function to the robust
average-reward. This uniform convergence result is the
first in the literature and is of key importance to motivate

our algorithm design and to guarantee convergence to the
optimal robust policy in the average-reward setting.

• We design algorithms for robust policy evaluation and
optimal control based on the limit method. Based on the
uniform convergence, we then use robust discounted MDPs
to approximate robust average-reward MDPs. We show that
when γ is large, any optimal policy of the robust discounted
MDP is also an optimal policy of the robust average-reward,
and hence solves the robust optimal control problem in the
average reward setting. This result is similar to the Black-
well optimality (Blackwell 1962; Hordijk and Yushkevich
2002) for the non-robust setting, however, our proof is fun-
damentally different. Technically, the proof in (Blackwell
1962; Hordijk and Yushkevich 2002) is based on the fact
that the difference between the discounted value functions
of two policies is a rational function of the discount factor,
which has a finite number of zeros. However, in the robust
setting with a general uncertainty set, the difference is no
longer a rational function due to the min over the transition
kernel. We construct a novel proof based on the limiting
behavior of robust discounted MDPs, and show that the
(optimal) robust discounted value function converges to the
(optimal) robust average-reward as γ → 1. Motivated by
these insights, we then design our algorithms by applying
a sequence of robust discounted Bellman operators while
increasing the discount factor at a certain rate. We prove
that our method can (i) evaluate the robust average-reward
for a given policy and; (ii) find the optimal robust value
function and, in turn, the optimal robust policy for general
uncertainty sets.

• We design a robust relative value iteration method with-
out using the discounted MDPs as an intermediate step.
We further pursue a direct approach that solves the robust
average-reward MDPs without using the limit method, i.e.,
without using discounted MDPs as an intermediate step.
We derive a robust Bellman equation for robust average-
reward MDPs, and show that the pair of robust relative
value function and robust average-reward is a solution to
the robust Bellman equation under the average-reward set-
ting. We further prove that if we can find any solution
to the robust Bellman equation, then the optimal policy
can be derived by a greedy approach. The problem hence
can be equivalently solved by solving the robust Bellman
equation. We then design a robust value iteration method
which provably converges to the solution of the robust Bell-
man equation, i.e., solve the optimal policy for the robust
average-reward MDP problem.

Related Work
Robust discounted MDPs. Model-based methods for robust
discounted MDPs were studied in (Iyengar 2005; Nilim and
El Ghaoui 2004; Bagnell, Ng, and Schneider 2001; Satia and
Lave Jr 1973; Wiesemann, Kuhn, and Rustem 2013; Lim and
Autef 2019; Xu and Mannor 2010; Yu and Xu 2015; Lim, Xu,
and Mannor 2013; Tamar, Mannor, and Xu 2014), where the
uncertainty set is assumed to be known, and the problem can
be solved using robust dynamic programming. Later, the stud-
ies were generalized to the model-free setting where stochas-



tic samples from the centroid MDP of the uncertainty set are
available in an online fashion (Roy, Xu, and Pokutta 2017;
Badrinath and Kalathil 2021; Wang and Zou 2021, 2022;
Tessler, Efroni, and Mannor 2019) and an offline fashion
(Zhou et al. 2021; Yang, Zhang, and Zhang 2021; Panaganti
and Kalathil 2021; Goyal and Grand-Clement 2018; Kaufman
and Schaefer 2013; Ho, Petrik, and Wiesemann 2018, 2021;
Si et al. 2020). There are also empirical studies on robust
RL, e.g., (Vinitsky et al. 2020; Pinto et al. 2017; Abdullah
et al. 2019; Hou et al. 2020; Rajeswaran et al. 2017; Huang
et al. 2017; Kos and Song 2017; Lin et al. 2017; Pattanaik
et al. 2018; Mandlekar et al. 2017). For discounted MDPs,
the robust Bellman operator is a contraction, based on which
robust dynamic programming and value-based methods can
be designed. In this paper, we focus on robust average-reward
MDPs. However, the robust Bellman operator for average-
reward MDPs is not a contraction, and its fixed point may
not be unique. Moreover, the average-reward setting depends
on the limiting behavior of the underlying stochastic process,
which is thus more intricate.
Robust average-reward MDPs. Studies on robust average-
reward MDPs are quite limited in the literature. Robust
average-reward MDPs under a specific finite interval uncer-
tainty set was studied in (Tewari and Bartlett 2007), where the
authors showed the existence of a Blackwell optimal policy,
i.e., there exists some δ ∈ [0, 1), such that the optimal robust
policy exists and remains unchanged for any discount factor
γ ∈ [δ, 1). However, this result depends on the structure of
the uncertainty set. For general uncertainty sets, the existence
of a Blackwell optimal policy may not be guaranteed. More
recently, (Lim, Xu, and Mannor 2013) designed a model-free
algorithm for a specific ℓ1-norm uncertainty set and charac-
terized its regret bound. However, their method also relies on
the structure of the ℓ1-norm uncertainty set, and may not be
generalizable to other types of uncertainty sets. In this paper,
our results can be applied to various types of uncertainty sets,
and thus is more general.

Preliminaries and Problem Model
In this section, we introduce some preliminaries on dis-
counted MDPs, average-reward MDPs, and robust MDPs.

Discounted MDPs. A discounted MDP (S,A,P, r, γ) is
specified by: a state space S, an action space A, a transi-
tion kernel P = {pas ∈ ∆(S), a ∈ A, s ∈ S}1, where pas is
the distribution of the next state over S upon taking action a
in state s (with pas,s′ denoting the probability of transitioning
to s′), a reward function r : S×A→ [0, 1], and a discount
factor γ ∈ [0, 1). At each time step t, the agent at state st
takes an action at, the environment then transitions to the
next state st+1 according to pat

st , and produces a reward sig-
nal r(st, at) ∈ [0, 1] to the agent. In this paper, we also write
rt = r(st, at) for convenience.

A stationary policy π : S → ∆(A) is a distribution over
A for any given state s, and the agent takes action a at state
s with probability π(a|s). The discounted value function of
a stationary policy π starting from s ∈ S is defined as the

1∆(S): the (|S| − 1)-dimensional probability simplex on S.

expected discounted cumulative reward by following policy
π: V π

P,γ(s) ≜ Eπ,P [
∑∞

t=0 γ
trt|S0 = s].

Average-Reward MDPs. Different from discounted MDPs,
average-reward MDPs do not discount the reward over time,
and consider the behavior of the underlying Markov process
under the steady-state distribution. More specifically, under a
specific transition kernel P, the average-reward of a policy π
starting from s ∈ S is defined as

gπP(s) ≜ lim
n→∞

Eπ,P

[
1

n

n−1∑
t=0

rt|S0 = s

]
, (1)

which we also refer to in this paper as the average-reward
value function for convenience.

The average-reward value function can also be equiva-
lently written as follows: gπP = limn→∞

1
n

∑n−1
t=0 (P

π)trπ ≜
Pπ
∗rπ, where (Pπ)s,s′ ≜

∑
a π(a|s)pas,s′ and rπ(s) ≜∑

a π(a|s)r(s, a) are the transition matrix and reward func-
tion induced by π, and Pπ

∗ ≜ limn→∞
1
n

∑n−1
t=0 (P

π)t is the
limit matrix of Pπ .

In the average-reward setting, we also define the following
relative value function

V π
P (s) ≜ Eπ,P

[ ∞∑
t=0

(rt − gπP)|S0 = s

]
, (2)

which is the cumulative difference over time between the
reward and the average value gπP . It has been shown that
(Puterman 1994): V π

P = Hπ
P rπ, where Hπ

P ≜ (I − Pπ +
Pπ
∗ )

−1(I − Pπ
∗ ) is defined as the deviation matrix of Pπ .

The relationship between the average-reward and the rel-
ative value functions can be characterized by the following
Bellman equation (Puterman 1994):

V π
P (s) = Eπ

[
r(s,A)− gπP(s) +

∑
s′∈S

pAs,s′V
π
P (s′)

]
. (3)

Robust discounted and average-reward MDPs. For ro-
bust MDPs, the transition kernel is not fixed but belongs to
some uncertainty set P. After the agent takes an action, the
environment transits to the next state according to an arbi-
trary transition kernel P ∈ P. In this paper, we focus on
the (s, a)-rectangular uncertainty set (Nilim and El Ghaoui
2004; Iyengar 2005), i.e., P =

⊗
s,a P

a
s , where Pa

s ⊆ ∆(S).
We note that there are also studies on relaxing the (s, a)-
rectangular uncertainty set to s-rectangular uncertainty set,
which is not the focus of this paper.

Under the robust setting, we consider the worst-case perfor-
mance over the uncertainty set of MDPs. More specifically,
the robust discounted value function of a policy π for a dis-
counted MDP is defined as

V π
P,γ(s) ≜ min

κ∈
⊗

t≥0 P
Eπ,κ

[ ∞∑
t=0

γtrt|S0 = s

]
, (4)

where κ = (P0,P1...) ∈
⊗

t≥0 P.



In this paper, we focus on the following worst-case average-
reward for a policy π:

gπP(s) ≜ min
κ∈

⊗
t≥0 P

lim
n→∞

Eπ,κ

[
1

n

n−1∑
t=0

rt|S0 = s

]
, (5)

to which, for convenience, we refer as the robust average-
reward value function.

For robust discounted MDPs, it has been shown that the
robust discounted value function is the unique fixed-point of
the robust discounted Bellman operator (Nilim and El Ghaoui
2004; Iyengar 2005; Puterman 1994):

TπV (s) ≜
∑
a∈A

π(a|s)
(
r(s, a) + γσPa

s
(V )

)
, (6)

where σPa
s
(V ) ≜ minp∈Pa

s
p⊤V is the support function of

V on Pa
s . Based on the contraction of Tπ, robust dynamic

programming approaches, e.g., robust value iteration, can
be designed (Nilim and El Ghaoui 2004; Iyengar 2005) (see
Appendix for a review of these methods). However, there is
no such contraction result for robust average-reward MDPs.
In this paper, our goal is to find a policy that optimizes the
robust average-reward value function:

max
π∈Π

gπP(s), for any s ∈ S, (7)

where Π is the set of all stationary policies, and we denote
by g∗P(s) ≜ maxπ g

π
P(s) the optimal robust average-reward.

Limit Approach for Robust Average-Reward
MDPs

We first take a limit approach to solve the problem of robust
average-reward MDPs in eq. (7). It is known that under the
non-robust setting, for any fixed π and P, the discounted value
function converges to the average-reward value function as
the discount factor γ approaches 1 (Puterman 1994), i.e.,

lim
γ→1

(1− γ)V π
P,γ = gπP . (8)

We take a similar idea, and show that the same result holds
in the robust case: limγ→1(1− γ)V π

P,γ = gπP. Based on this
result, we further design algorithms (Algorithms 1 and 2)
that apply a sequence of robust discounted Bellman operators
while increasing the discount factor at a certain rate. We
then theoretically prove that our algorithms converge to the
optimal solutions.

In the following, we first show that the convergence
limγ→1(1 − γ)V π

P,γ = gπP is uniform on the set Π × P.
We make a mild assumption as follows.
Assumption 1. For any s ∈ S, a ∈ A, the uncertainty set Pa

s
is a compact subset of ∆(S).

The set Pa
s is compact if and only if it is bounded and

closed. Since Pa
s ⊆ ∆(S), it is clearly bounded. Hence, As-

sumption 1 amounts to assuming that the uncertainty set is
closed. We remark that many standard uncertainty sets sat-
isfy this assumption, e.g., those defined by ϵ-contamination
(Huber 1965), finite interval (Tewari and Bartlett 2007), total-
variation (Rahimian, Bayraksan, and De-Mello 2022) and
KL-divergence (Hu and Hong 2013).

In (Puterman 1994), the convergence limγ→1(1 −
γ)V π

P,γ = gπP for a fixed policy π and a fixed transition
kernel P (non-robust setting) is point-wise. However, such
point-wise convergence does not provide any convergence
guarantee on the robust discounted value function, as the
robust value function measures the worst-case performance
over the uncertainty set and the order of lim and min may not
be exchanged in general. In the following theorem, we prove
the uniform convergence of the discounted value function
under the foregoing assumption.
Theorem 1 (Uniform convergence). Under Assumption 1,
the discounted value function converges uniformly to the
average-reward value function on Π × P as γ → 1, i.e.,

lim
γ→1

(1− γ)V π
P,γ = gπP , uniformly. (9)

With uniform convergence in Theorem 1, the order of
the limit γ → 1 and min over P can be interchanged, then
the following convergence of the robust discounted value
function can be established.
Theorem 2. The robust discounted value function in eq. (4)
converges to the robust average-reward uniformly on Π:

lim
γ→1

(1− γ)V π
P,γ = gπP, uniformly. (10)

We note that a similar convergence result is shown in
(Tewari and Bartlett 2007), but only for a special uncertainty
set of finite interval. Our Theorem 2 holds for general com-
pact uncertainty sets. Moreover, it is worth highlighting that
our proof technique is fundamentally different from the one
in (Tewari and Bartlett 2007). Specifically, under the finite
interval uncertainty set, the worst-case transition kernels are
from a finite set, i.e., V π

P,γ = minP∈M V π
P,γ for a finite set

M ⊆ P. This hence implies the interchangeability of lim and
min. However, for general uncertainty sets, the number of
worst-case transition kernels may not be finite. We demon-
strate the interchangeability via our uniform convergence
result in Theorem 1.

The convergence result in Theorem 2 is of key importance
to motivate the design of the following two algorithms, the ba-
sic idea of which is to apply a sequence of robust discounted
Bellman operators on an arbitrary initialization while increas-
ing the discount factor at a certain rate.

We first consider the robust policy evaluation problem,
which aims to estimate the robust average-reward gπP for a
fxied policy π. This problem for robust discounted MDPs
is well studied in the literature, however, results for robust
average-reward MDPs are quite limited except for the one
in (Tewari and Bartlett 2007) for a specific finite interval
uncertainty set. We present the a robust value iteration (robust
VI) algorithm for evaluating the robust average-reward with
general compact uncertainty sets in Algorithm 1.

At each time step t, the discount factor γt is set to t+1
t+2 ,

which converges to 1 as t → ∞. Subsequently, a robust
Bellman operator w.r.t discount factor γt is applied on the
current estimate Vt of the robust discounted value function
(1 − γt)V

π
P,γt

. As the discount factor approaches 1, the es-
timated robust discounted value function converges to the
robust average-reward gπP by Theorem 2.



Algorithm 1: Robust VI: Policy Evaluation
Input: π, V0(s) = 0,∀s, T

1: for t = 0, 1, ..., T − 1 do
2: γt ← t+1

t+2

3: for all s ∈ S do
4: Vt+1(s)← Eπ[(1− γt)r(s,A) + γtσPA

s
(Vt)]

5: end for
6: end for
7: return VT

Theorem 3. Algorithm 1 converges to robust average reward,
i.e., limT→∞ VT → gπP.

Theorem 3 shows that the output of Algorithm 1 converges
to the robust average-reward.

Besides the robust policy evaluation problem, it is also of
great practical importance to find an optimal policy that max-
imizes the worst-case average-reward, i.e., to solve eq. (7).
Based on a similar idea as the one of Algorithm 1, we ex-
tend our limit approach to solve the robust optimal control
problem in Algorithm 2.

Algorithm 2: Robust VI: Optimal Control
Input: V0(s) = 0,∀s, T

1: for t = 0, 1, ..., T − 1 do
2: γt ← t+1

t+2

3: for all s ∈ S do
4: Vt+1(s)← max

a∈A

{
(1− γt)r(s, a) + γtσPa

s
(Vt)

}
5: end for
6: end for
7: for s ∈ S do
8: πT (s)← argmaxa∈A

{
(1− γt)r(s, a) + γtσPa

s
(Vt)

}
9: end for

10: return VT , πT

Similar to Algorithm 1, at each time step, the discount fac-
tor γt is set to be closer to 1, and a one-step robust discounted
Bellman operator (for optimal control) w.r.t. γt is applied to
the current estimate Vt. The following theorem establishes
that VT in Algorithm 2 converges to the optimal robust value
function, hence can find the optimal robust policy.

Theorem 4. The output VT in Algorithm 2 converges to the
optimal robust average-reward g∗P: VT → g∗P as T →∞.

As discussed in (Blackwell 1962; Hordijk and Yushkevich
2002), the average-reward criterion is insensitive and under
selective since it is only interested in the performance un-
der the steady-state distribution. For example, two policies
providing rewards: 100 + 0 + 0 + · · · and 0 + 0 + 0 + · · ·
are equally good/bad. Towards this issue, for the non-robust
setting, a more sensitive term of optimality was introduced
by Blackwell (Blackwell 1962). More specifically, a policy
is said to be Blackwell optimal if it optimizes the discounted
value function for all discount factor γ ∈ (δ, 1) for some
δ ∈ (0, 1). Together with eq. (8), the optimal policy obtained
by taking γ → 1 is optimal not only for the average-reward

criterion, but also for the discounted criterion with large γ.
Intuitively, it is optimal under the average-reward setting, and
is sensitive to early rewards.

Following a similar idea, we justify that the obtained policy
from Algorithm 2 is not only optimal in the robust average-
reward setting, but also sensitive to early rewards.

Denote by Π∗ the set of all the optimal policies for robust
average-reward, i.e. Π∗ = {π : gπP = g∗P} .

Theorem 5 (Blackwell optimality). There exists 0 < δ < 1
and a finite policy set Π∗, such that for any γ > δ, the
optimal robust policy for robust discounted value function
V ∗
P,γ belongs to Π∗, i.e., for any δ < γ < 1, ∃π∗ ∈ Π∗, s.t.

V ∗
P,γ = V π∗

P,γ .

This result implies that using the limit method in this sec-
tion to find the optimal robust policy for average-reward
MDPs has an additional advantage that the policy it finds not
only optimizes the average reward in steady state, but also is
sensitive to early rewards.

It is worth highlighting the distinction of our results from
the technique used in the proof of Blackwell optimality
(Blackwell 1962). In the non-robust setting, the existence
of a stationary Blackwell optimal policy is proved via contra-
diction, where a difference function of two policies π and ν:
fπ,ν(γ) ≜ V π

P,γ − V µ
P,γ is used in the proof. It was shown by

contradiction that f has infinitely many zeros, which however
contradicts with the fact that f is a rational function of γ with
a finite number of zeros. A similar technique was also used in
(Tewari and Bartlett 2007) for the finite interval uncertainty
set. Specifically, in (Tewari and Bartlett 2007), it was shown
that the worst-case transition kernels for any π, γ are from a
finite set M, hence fπ,ν(γ) ≜ minP∈M V π

P,γ−minP∈M V µ
P,γ

can also be shown to be a rational function with a finite num-
ber of zeroes. For a general uncertainty set P, the difference
function fπ,ν(γ), however, may not be rational. This makes
the method in (Blackwell 1962; Tewari and Bartlett 2007)
inapplicable to our problem.

Direct Approach for Robust Average-Reward
MDPs

The limit approach in Section is based on the uniform conver-
gence of the discounted value function, and uses discounted
MDPs to approximate average-reward MDPs. In this section,
we develop a direct approach to solving the robust average-
reward MDPs that does not adopt discounted MDPs as inter-
mediate steps.

For average-reward MDPs, the relative value iteration
(RVI) approach (Puterman 1994) is commonly used since
it is numerically stable and has convergence guarantee. In
the following, we generalize the RVI algorithm to the robust
setting, and design the robust RVI algorithm in Algorithm 3.

We first generalize the relative value function in eq. (2) to
the robust relative value function. The robust relative value
function measures the difference between the worst-case
cumulative reward and the worst-case average-reward for a
policy π.



Definition 1. The robust relative value function is defined as

V π
P (s) ≜ min

κ∈
⊗

t≥0 P
Eκ,π

[ ∞∑
t=0

(rt − gπP)|S0 = s

]
, (11)

where gπP is the worst-case average-reward defined in eq. (5).
The following theorem presents a robust Bellman equation

for robust average-reward MDPs.
Theorem 6. For any s and π, (V π

P , gπP) is a solution to the
following robust Bellman equation:

V (s) + g =
∑
a

π(a|s)
(
r(s, a) + σPa

s
(V )

)
. (12)

It can be seen that the robust Bellman equation for average-
reward MDPs has a similar structure to the one for discounted
MDPs in eq. (6) except for a discount factor. This actually
reveals a fundamental difference between the robust Bellman
operator of the discounted MDPs and the average-reward
ones. For a discounted MDP, its robust Bellman operator is
a contraction with constant γ (Nilim and El Ghaoui 2004;
Iyengar 2005), and hence the fixed point is unique. Based on
this, the robust value function can be found by recursively ap-
plying the robust Bellman operator (see Appendix ). In sharp
contrast, in the average-reward setting, the robust Bellman
is not necessarily a contraction, and the fixed point may not
be unique. Therefore, repeatedly applying the robust Bell-
man operator in the average-reward setting may not even
converge, which underscores that the two problem settings
are fundamentally different.

Using the robust Bellman equation in Theorem 6, we de-
rive the following equivalent optimality condition for robust
average-reward MDPs.
Theorem 7. For any (g, V ) that is a solution to

max
a

{
r(s, a)− g + σPa

s
(V )− V (s)

}
= 0,∀s, (13)

g = g∗P. If we further set

π∗(s) = argmax
a

{
r(s, a) + σPa

s
(V )

}
(14)

for any s ∈ S, then π∗ is an optimal robust policy.
Theorem 7 suggests that as long as we find a solution

(g, V ) to eq. (13), which though may not be unique, then
g is the optimal robust average-reward g∗P, and the greedy
policy π∗ is the optimal policy to our robust average-reward
MDP problem in eq. (7). Based on Theorem 7, our problem
in eq. (7) can be equivalently solved by finding a solution
to eq. (13). We note that eq. (12) holds for any π and if we
let the π in eq. (12) be the greedy policy, then eq. (12) and
eq. (13) are equivalent.

In the following, we generalize the RVI approach to the
robust setting, and design a robust RVI algorithm in Algo-
rithm 3. We will further show that the output of this algo-
rithm converges to a solution to eq. (13), and further the
optimal policy could be obtained by eq. (14). Here 1 de-
notes the all-ones vector, and sp denotes the span semi-norm:
sp(w) = maxs w(s)−mins w(s). Different from Algorithm
2, in Algorithm 3, we do not need to apply the robust dis-
counted Bellman operator. The method directly solves the

Algorithm 3: Robust RVI
Input: V0, ϵ and arbitrary s∗ ∈ S

1: w0 ← V0 − V0(s
∗)1

2: while sp(wt − wt+1) ≥ ϵ do
3: for all s ∈ S do
4: Vt+1(s)← maxa(r(s, a) + σPa

s
(wt))

5: wt+1(s)← Vt+1 − Vt+1(s
∗)1

6: end for
7: end while
8: return wt, Vt

robust optimal control problem for average-reward robust
MDPs.

In studies of average-reward MDPs, it is usually the case
that a certain class of MDPs are considered, e.g., unichain
and communicating (Wei et al. 2020; Zhang and Ross 2021;
Chen, Jain, and Luo 2022; Wan, Naik, and Sutton 2021). In
this paper, we focus on the unichain setting to highlight the
major technical novelty to achieve robustness.
Assumption 2. For any P = {pas ∈ ∆(S)} ∈ P and any
a ∈ A, s, s′ ∈ S, pas,s′ > 0, and the induced Markov process
is a unichain.

In the following theorem, we show that our Algorithm 3
converges to a solution of eq. (13), hence according to The-
orem 7 if we set π according to (14), then π is the optimal
robust policy.
Theorem 8. (wt, Vt) converges to a solution (w, V ) to
eq. (13) as ϵ→ 0, which satisfies

w(s) + max
a
{r(s∗, a) + σPa

s∗
(w)}

= max
a
{r(s, a) + σPa

s
(w)}. (15)

Remark 1. In this section, we mainly present the robust RVI
algorithm for the robust optimal control problem, and its con-
vergence and optimality guarantee. A robust RVI algorithm
for robust policy evaluation can be similarly designed by
replacing the max in line 4, Algorithm 3 with an expectation
w.r.t. π. The convergence results in Theorem 8 can also be
similarly derived.

Assumption 2 can be also replaced using some weaker
ones, e.g., Proposition 4.3.2 of (Bertsekas 2011), or be re-
moved by designing a variant of RVI, e.g., Proposition 4.3.4
of (Bertsekas 2011).

Examples and Numerical Results
In this section, we study several commonly used uncertainty
set models, including contamination model, Kullback-Lerbler
(KL) divergence defined model and total-variation defined
model.

As can be observed from Algorithms 1 to 3, for different
uncertainty sets, the only difference lies in how the support
function σPa

s
(V ) is calculated. In the sequel, we discuss

how to efficiently calculate the support function for various
uncertainty sets.

We numerically compare our robust (relative) value itera-
tion methods v.s. non-robust (relative) value iteration method



on different uncertainty sets. Our experiments are based on
the Garnet problem G(20, 40) (Archibald, McKinnon, and
Thomas 1995). More specifically, there are 20 states and
30 actions; the nominal transition kernel P = {pas ∈ ∆(S)}
is randomly generated according to the uniform distribu-
tion, and the reward functions r(s, a) ∼ N(0, σs,a), where
σs,a ∼ Uniform[0, 1]. In our experiments, the uncertainty
sets are designed to be centered at the nominal transition ker-
nel. We run different algorithms, i.e., (robust) value iteration
and (robust) relative value iteration, and obtain the greedy
policies at each time step. Then, we use robust average-
reward policy evaluation (Algorithm 1) to evaluate the robust
average-reward of these policies. We plot the robust average-
reward against the number of iterations.
Contamination model. For any (s, a) the uncertainty set Pa

s
is defined as Pa

s = {q : q = (1−R)pas +Rp′, p′ ∈ ∆(S)},
where pas is the nominal transition kernel. It can be viewed
as an adversarial model, where at each time-step, the envi-
ronment transits according to the nominal transition kernel p
with probability 1−R, and according to an arbitrary kernel
p′ with probability R.

It can be easily shown that the value of the problem
σPa

s
(V ) = (1−R)(pas)

⊤V+Rmins V (s). Our experimental
results under the contamination model are shown in Figure 1.

(a) Robust VI. (b) Robust RVI.

Figure 1: Comparison on contamination model with R = 0.4.

Total variation. The total variation distance is an-
other commonly used distance metric to measure the
difference between two distributions. Specifically, the
total variation between two distributions p and q is
defined as DTV (p, q) = 1

2∥p − q∥1. Consider an
uncertainty set defined via total variation: Pa

s =
{q : DTV (q||pas) ≤ R}. Then, its support function can be ef-
ficiently solved as follows (Iyengar 2005): σPa

s
(V ) = p⊤V −

Rminµ≥0 {maxs(V (s)− µ(s))−mins(V (s)− µ(s))} .
Our experimental results under the total variation model

are shown in Figure 2.
Kullback-Lerbler (KL) divergence. The Kullback–Leibler
divergence is widely used to measure the distance between
two probability distributions. The KL-divergence of two dis-
tributions p, q is defined as DKL(q||p) =

∑
s q(s) log

q(s)
p(s) .

Consider an uncertainty set defined via KL divergence:
Pa
s = {q : DKL(q||pas) ≤ R}. Then, its support function can

be efficiently solved using the duality result in (Hu and Hong
2013): σPa

s
(V ) = −minα≥0

{
Rα+ α log

(
p⊤e

−V
α

)}
.

Our experimental results under the KL-divergence model
are shown in Figure 3.

(a) Robust VI. (b) Robust RVI.

Figure 2: Comparison on total variation model with R = 0.6.

(a) Robust VI. (b) Robust RVI.

Figure 3: Comparison on KL-divergence model with R = 0.8.

It can be seen that our robust methods can obtain policies
that achieve higher worst-case reward. Also, both our limit-
based robust value iteration and our direct method of robust
relative value iteration converge to the optimal robust policies,
which validates our theoretical results.

Conclusion
In this paper, we investigated the problem of robust MDPs
under the average-reward setting. We established uniform
convergence of the discounted value function to average-
reward, which further implies the uniform convergence of the
robust discounted value function to robust average-reward.
Based on this insight, we designed a robust dynamic pro-
gramming approach using the robust discounted MDPs as an
approximation (the limit method). We theoretically proved
their convergence and optimality and proved a robust version
of the Blackwell optimality (Blackwell 1962), i.e., any op-
timal policy of the robust discounted MDP when γ is large
enough is also an optimal policy of the robust average-reward.
We then designed a direct approach for robust average-reward
MDPs, where we derived the robust Bellman equation for
robust average-reward MDPs. We further designed a robust
RVI method, which was proven to converge to the optimal
robust solution. Technically, our proof techniques are funda-
mentally different from existing studies on average-reward
robust MDPs, e.g., those in (Blackwell 1962; Tewari and
Bartlett 2007).
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Review of Robust Discounted MDPs
In this section, we provide a brief review on the existing methods and results for robust discounted MDPs.

Robust Policy Evaluation
We first consider the robust policy evaluation problem, where we aim to estimate the robust value function V π

P,γ for any policy
π. It has been shown that the robust Bellman operator Tπ is a γ-contraction, and the robust value function V π

P,γ is its unique
fixed-point. Hence by recursively applying the robust Bellman operator, we can find the robust discounted value function (Nilim
and El Ghaoui 2004; Iyengar 2005).

Algorithm 4: Policy evaluation for robust discounted MDPs
Input: π, V0, T

1: for t = 0, 1, ..., T − 1 do
2: for all s ∈ S do
3: Vt+1(s)← Eπ[r(s,A) + γσPA

s
(Vt)]

4: end for
5: end for
6: return VT

Robust Optimal Control
Another important problem in robust MDP is to find the optimal policy which maximizes the robust discounted value function:

π∗ = argmax
π

V π
P,γ . (16)

A robust value iteration approach is developed in (Nilim and El Ghaoui 2004; Iyengar 2005) as follows.

Algorithm 5: Optimal Control for robust discounted MDPs
Input: V0, T

1: for t = 0, 1, ..., T − 1 do
2: for all s ∈ S do
3: Vt+1(s)← maxa

{
r(s, a) + γσPa

s
(Vt)

}
4: end for
5: end for
6: π∗(s)← argmaxa

{
r(s, a) + γσPa

s
(VT )

}
,∀s

7: return π∗

Equivalence between Time-Varying and Stationary Models
We first provide an equivalence result between time-varying and stationary transition kernel models under stationary policies,
which is an analog result to the one for robust discounted MDPs (Iyengar 2005; Nilim and El Ghaoui 2004). This result will be
used in our following proofs.

Recall the definitions of robust discounted value function and worst-case average reward in eqs. (4) and (5), the worst-case
is taken w.r.t. κ = (P0,P1...) ∈

⊗
t≥0 P, therefore, the transition kernel at each time step could be different. This model is

referred to as time-varying transition kernel model (as in (Iyengar 2005; Nilim and El Ghaoui 2004)). Another commonly used
setting is that the transition kernels at different time step are the same, which is referred to as the stationary model (Iyengar
2005; Nilim and El Ghaoui 2004). In this paper, we use the following notations to distinguish the two models. By EP[·], we
denote the expectation when the transition kernels at all time steps are the same, P, i.e., the stationary model. We also denote by
gπP(s) ≜ limn→∞ EP,π

[
1
n

∑n−1
t=0 rt

∣∣S0 = s
]

and V π
P.γ(s) ≜ EP,π

[∑∞
t=0 γ

trt
∣∣S0 = s

]
being the expected average-reward and

expected discounted value function under the stationary model P. By Eκ[·], we denote the expectation when the transition kernel
at time t is Pt, i.e., the time-varying model.

For the discounted setting, it has been shown in (Nilim and El Ghaoui 2004) that for a stationary policy π, any γ ∈ [0, 1), and
any s ∈ S,

V π
P,γ(s) = min

κ∈
⊗

t≥0 P
Eπ,κ

[ ∞∑
t=0

γtrt|S0 = s

]



= min
P∈P

Eπ,P

[ ∞∑
t=0

γtrt|S0 = s

]
. (17)

In the following theorem, we prove an analog of eq. (17) for robust-average reward MDPs that if we consider stationary policies,
then the robust average-reward problem with the time-varying model can be equivalently solved by a stationary model.

Specifically, we define the worst-case average reward for the stationary transition kernel model as follows:

min
P∈P

lim
n→∞

Eπ,P

[
1

n

n−1∑
t=0

rt
∣∣S0 = s

]
. (18)

Recall the worst-case average reward for the time-varying model in eq. (5). We will show that for any stationary policy, eq. (5)
can be equivalently solved by solving eq. (18).

Theorem 9. Consider an arbitrary stationary policy π. Then, the worst-case average-reward under the time-varying model is
the same as the one under the stationary model:

gπP(s) ≜ min
κ∈

⊗
t≥0 P

lim
n→∞

Eκ,π

[
1

n

n−1∑
t=0

rt|S0 = s

]

= min
P∈P

lim
n→∞

EP,π

[
1

n

n−1∑
t=0

rt
∣∣S0 = s

]
. (19)

Similar result also holds for the robust relative value function:

V π
P (s) ≜ min

κ∈
⊗

t≥0 P
Eκ,π

[ ∞∑
t=0

(rt − gπP)|S0 = s

]

= min
P∈P

EP,π

[ ∞∑
t=0

(rt − gπP)|S0 = s

]
. (20)

Proof. From the robust Bellman equation in Theorem 6 2, we have that

V π
P (s) + gπP =

∑
a

π(a|s)
(
r(s, a) + σPa

s
(V π

P )
)
. (21)

Denote by argminp∈Pa
s
(p)⊤V π

P ≜ pas
3, and denote by Pπ ≜ {pas : s ∈ S, a ∈ A}. It then follows that

V π
P (s) =

∑
a

π(a|s)
(
r(s, a)− gπP + σPa

s
(V π

P )
)

=
∑
a

π(a|s)(r(s, a)− gπP) +
∑
a

π(a|s)EPπ [V π
P (S1)|S0 = s,A0 = a]

=
∑
a

π(a|s)(r(s, a)− gπP) + EPπ,π[V
π
P (S1)|S0 = s]

=
∑
a

π(a|s)(r(s, a)− gπP) + EPπ,π

[∑
a

π(a|S1)(r(S1, a)− gπP)|S0 = s

]
+ EPπ,π

[∑
a

π(a|S1)σPa
S1
(V π

P )|S0 = s

]
=
∑
a

π(a|s)(r(s, a)− gπP) + EPπ,π [r1 − gπP|S0 = s] + EPπ,π

[
σ
P

A1
S1

(V π
P )|S0 = s

]
=
∑
a

π(a|s)(r(s, a)− gπP) + EPπ,π

[
r1 − gπP

∣∣S0 = s

]
+ EPπ,π

[
(pA1

S1
)⊤V π

P |S0 = s

]
= EPπ,π

[
r0 − gπP + r1 − gπP|S0 = s

]
+ EPπ,π[V

π
P (S2)|S0 = s]

......

2The proof of Theorem 6 is independent of theorem 9 and does not relay on the results to be showed here.
3We pick one arbitrarily, if there are multiple minimizers.



= EPπ,π

[ ∞∑
t=0

(rt − gπP)|s
]
. (22)

By the definition, the following always hold:

min
κ∈

⊗
t≥0 P

Eκ,π

[ ∞∑
t=0

(rt − gπP)|S0 = s

]
≤ min

P∈P
EP,π

[ ∞∑
t=0

(rt − gπP)|S0 = s

]
. (23)

This hence implies that a stationary transition kernel sequence κ = (Pπ,Pπ, ...) is one of the worst-case transition kernels for
V π
P . Therefore, eq. (20) can be proved.
Consider the transition kernel Pπ . We denote its non-robust average-reward and the non-robust relative value function by gπPπ

and V π
Pπ . By the non-robust Bellman equation (Sutton and Barto 2018), we have that

V π
Pπ (s) =

∑
a

π(a|s)(r(s, a)− gπPπ ) + EPπ,π[V
π
Pπ (S1)|s]. (24)

On the other hand, the robust Bellman equation shows that

V π
P (s) = V π

Pπ (s) =
∑
a

π(a|s)(r(s, a)− gπP) + EPπ,π[V
π
Pπ (S1)|s]. (25)

These two equations hence implies that gπP = gπPπ , and hence the stationary kernel (Pπ,Pπ, ...) is also a worst-case kernel of
robust average-reward in the time-varying setting. This proves eq. (19).

Proof of Theorem 1
In the proof, unless otherwise specified, we denote by ∥v∥ the l∞ norm of a vector v, and for a matrix A, we denote by ∥A∥ its
matrix norm induced by l∞ norm, i.e., ∥A∥ = supx∈Rd

∥Ax∥∞
∥x∥∞

.

Lemma 1. [Theorem 8.2.3 in (Puterman 1994)] For any P, γ, π,

V π
P,γ =

1

1− γ
gπP + hπ

P + fπ
P (γ), (26)

where hπ
P = Hπ

P rπ , and fπ
P (γ) =

1
γ

∑∞
n=1(−1)n

(
1−γ
γ

)n
(Hπ

P )
n+1rπ .

Following Proposition 8.4.6 in (Puterman 1994), we can show the following lemma.
Lemma 2. Hπ

P is continuous on Π × P. If Π and P are compact, ∥Hπ
P∥ is uniformly bounded on Π × P, i.e., there exists a

constant h, such that ∥Hπ
P∥ ≤ h for any π,P.

For simplicity, denote by

Sπ
∞(P, γ) ≜

1

γ

∞∑
n=1

(−1)n
(
1− γ

γ

)n

(Hπ
P )

n+1rπ,

Sπ
N (P, γ) ≜

1

γ

N∑
n=1

(−1)n
(
1− γ

γ

)n

(Hπ
P )

n+1rπ. (27)

Clearly Sπ
∞(P, γ) = fπ

P (γ) and limN→∞ Sπ
N (P, γ) = Sπ

∞(P, γ) for any specific π,P.
Lemma 3. There exists δ ∈ (0, 1), such that

lim
N→∞

Sπ
N (P, γ) = Sπ

∞(P, γ) (28)

uniformly on Π × P× [δ, 1].

Proof. Note that ∥Hπ
P∥ ≤ h, hence there exists δ, s.t.

1− δ

δ
h ≤ k < 1 (29)

for some constant k. Then for any γ ≥ δ,

1− γ

γ
h ≤ 1− δ

δ
h ≤ k. (30)



Moreover, note that ∥∥∥∥ 1γ (−1)n
(
1− γ

γ

)n

(Hπ
P )

n+1r

∥∥∥∥ ≤ 1

γ

(
1− γ

γ

)n

hn+1 ≤ hkn

δ
≜ Mn, (31)

which is because ∥A+B∥ ≤ ∥A∥+ ∥B∥ for induced l∞ norm, ∥Ax∥ ≤ ∥A∥∥x∥ and ∥rπ∥∞ ≤ 1.
Note that

∞∑
n=1

Mn =
h

δ

k

1− k
, (32)

hence by Weierstrass M -test (Rudin 2022), Sπ
N (P, γ) uniformly converges to Sπ

∞(P, γ) on Π × P× [δ, 1].

Lemma 4. There exists a uniform constant L, such that

∥Sπ
N (P, γ1)− Sπ

N (P, γ2)∥ ≤ L|γ1 − γ2|, (33)

for any N , π, P, γ1, γ2 ∈ [δ, 1].

Proof. We first show that γSπ
N (P, γ) =

∑N
n=1(−1)n

(
1−γ
γ

)n
(Hπ

P )
n+1rπ ≜ Tπ

N (P, γ) is uniformly Lipschitz w.r.t. the l∞

norm, i.e.,

∥Tπ
N (P, γ1)− Tπ

N (P, γ2)∥ ≤ l|γ1 − γ2|, (34)

for any N , π, P, γ1, γ2 ∈ [δ, 1] and some constant l.
Clearly, it can be shown by verifying∇Tπ

N (P, γ) is uniformly bounded for any π,N,P or γ.
First, it can be shown that

∇Tπ
N (P, γ) =

N∑
n=1

(−1)nn
(
1− γ

γ

)n−1 −1
γ2

(Hπ
P )

n+1rπ, (35)

and moreover

∥∇Tπ
N (P, γ)∥ ≤

N∑
n=1

n

(
1− γ

γ

)n−1
1

γ2
hn+1 ≜ lN (γ). (36)

Note that

h
1− γ

γ
lN (γ) =

N∑
n=1

n

(
1− γ

γ

)n
1

γ2
hn+2, (37)

then, we can show that (
1− h

1− γ

γ

)
lN (γ)

=

N∑
n=1

n

(
1− γ

γ

)n−1
1

γ2
hn+1 −

N∑
n=1

n

(
1− γ

γ

)n
1

γ2
hn+2

=
1

γ2
h2 −N

(
1− γ

γ

)N
1

γ2
hN+2 +

N∑
n=2

(
1− γ

γ

)n−1
1

γ2
hn+1

≤ 1

γ2
h2 +

h2

γ2

1− γ

γ
h

1

1− 1−γ
γ h

=
h2

γ2
+

h2

γ2

1− γ

γ
h

1

1− 1−γ
γ h

. (38)

Hence, we have that

∥∇Tπ
N (P, γ)∥ ≤ lN (γ) ≤ 1

1− h 1−γ
γ

(
h2

γ2
+

h2

γ2

1− γ

γ
h

1

1− 1−γ
γ h

)



≤ 1

1− k

(
h2

δ2
+

h2

δ2
k

1− k

)
, (39)

which implies a uniform bound on ∥∇Tπ
N (P, γ)∥.

Now, we have that

|Sπ
N (P, γ1)− Sπ

N (P, γ2)|

≤ |γ2 − γ1|
γ1γ2

∥Tπ
N (P, γ1)∥+

∥Tπ
N (P, γ1)− Tπ

N (P, γ2)∥
γ2

. (40)

To show ∥Tπ
N (P, γ)∥ is uniformly bounded, we have that

∥Tπ
N (P, γ)∥ ≤

N∑
n=1

∥∥∥∥(1− γ

γ

)n

(Hπ
P )

n+1r

∥∥∥∥
≤

N∑
n=1

(
1− γ

γ

)n

hn+1

≤
N∑

n=1

knh

≤ h
k

1− k
. (41)

Then, it follows that

∥Sπ
N (P, γ1)− Sπ

N (P, γ2)∥

=

∥∥∥∥γ2 − γ1
γ1γ2

Tπ
N (P, γ1) +

Tπ
N (P, γ1)− Tπ

N (P, γ2)

γ2

∥∥∥∥
≤
(

1

δ2
h

k

1− k
+

1

δ

1

1− k

(
h2

δ2
+

h2

δ2
k

1− k

))
|γ1 − γ2|

≜ L|γ1 − γ2|, (42)

where L =
(

1
δ2h

k
1−k + 1

δ
1

1−k

(
h2

δ2 + h2

δ2
k

1−k

))
is a universal constant that does not depend on N,P, π or γ.

Lemma 5. Sπ
∞(P, γ) uniformly converges as γ → 1 on Π × P. Also, Sπ

∞(P, γ) is L-Lipschitz for any γ > δ: for any π,P and
any γ1, γ2 ∈ (δ, 1].

∥Sπ
∞(P, γ1)− Sπ

∞(P, γ2)∥ ≤ L|γ1 − γ2|. (43)

Proof. From Lemma 3, for any ϵ, there exists Nϵ, such that for any n ≥ Nϵ, π,P, γ > δ,

∥Sπ
∞(P, γ)− Sπ

n(P, γ)∥ < ϵ. (44)

Thus for any γ1, γ2 ∈ (δ, 1],

∥Sπ
∞(P, γ1)− Sπ

∞(P, γ2)∥
≤ ∥Sπ

∞(P, γ1)− Sπ
n(P, γ1)∥+ ∥Sπ

n(P, γ1)− Sπ
n(P, γ2)∥+ ∥Sπ

n(P, γ2)− Sπ
∞(P, γ2)∥

≤ 2ϵ+ ∥Sπ
n(P, γ1)− Sπ

n(P, γ2)∥
≤ 2ϵ+ L|γ1 − γ2|, (45)

where the last step is from Lemma 4.
Thus, for any ϵ, there exists ω = max {δ, 1− ϵ}, such that for any γ1, γ2 > ω,

∥Sπ
∞(P, γ1)− Sπ

∞(P, γ2)∥ < (2 + L)ϵ, (46)

and hence by Cauchy’s criterion we conclude that Sπ
∞(P, γ) converges uniformly on Π × P.

On the other hand, since eq. (45) holds for any ϵ, it implies that

∥Sπ
∞(P, γ1)− Sπ

∞(P, γ2)∥ ≤ L|γ1 − γ2|, (47)

which completes the proof.



We now prove Theorem 1. For any P, π, we have that

V π
P,γ =

1

1− γ
gπP + hπ

P + fπ
P (γ). (48)

It then follows that

(1− γ)V π
P,γ = gπP + (1− γ)hπ

P + (1− γ)fπ
P (γ). (49)

Clearly (1− γ)hπ
P → 0 uniformly on Π × P because ∥hπ

P∥ = ∥Hπ
P rπ∥ ≤ h is uniformly bounded. Then,

∥(1− γ1)f
π
P (γ1)− (1− γ2)f

π
P (γ2)∥

≤ ∥(1− γ1)f
π
P (γ1)− (1− γ1)f

π
P (γ2)∥+ ∥(1− γ1)f

π
P (γ2)− (1− γ2)f

π
P (γ2)∥

≤ (1− γ1)L|γ1 − γ2|+ ∥fπ
P (γ2)∥|γ1 − γ2|. (50)

For any π,P, γ > δ,

∥fπ
P (γ)∥ =

∥∥∥∥ 1γ
∞∑

n=1

(−1)n
(
1− γ

γ

)n

(Hπ
P )

n+1rπ

∥∥∥∥
≤
∣∣∣∣ 1γ

∞∑
n=1

(
1− γ

γ

)n

hn+1

∣∣∣∣
≤ h

δ

1− γ

γ
h

1

1− 1−γ
γ h

≤ h

δ

k

1− k

≜ cf . (51)

Hence, (1− γ)fπ
P (γ)→ 0 uniformly on Π × P due to the fact that ∥fπ

P (γ)∥ is uniformly bounded for any π, γ > δ,P.
Then we have that limγ→1(1− γ)V π

P,γ = gπP uniformly on P×Π . This completes the proof of Theorem 1.

Proof of Theorem 2
We first show a lemma which allows us to interchange the order of lim and max.
Lemma 6. If a function f(x, y) converges uniformly to F (x) on X as y → y0, then

max
x

lim
y→y0

f(x, y) = lim
y→y0

max
x

f(x, y). (52)

Proof. For each f(x, y), denote by argmaxx f(x, y) = xy, and hence f(xy, y) ≥ f(x, y) for any x, y. Also denote by
argmaxx F (x) = x′. Now because f(x, y) uniformly converges to F (x), then for any ϵ, there exists δ′, such that ∀|y−y0| < δ′,

|f(x, y)− F (x)| ≤ ϵ (53)

for any x. Now consider |f(xy, y)− F (x′)| for |y − y0| < δ′. If f(xy, y)− F (x′) > 0, then

|f(xy, y)− F (x′)| = f(xy, y)− F (x′) = f(xy, y)− F (xy) + F (xy)− F (x′) ≤ ϵ; (54)

On the other hand if f(xy, y)− F (x′) < 0, then

|f(xy, y)− F (x′)| = F (x′)− f(xy, y) = F (x′)− f(x′, y) + f(x′, y)− f(xy, y) ≤ ϵ. (55)

Hence, we showed that for any ϵ, there exists δ′, such that ∀|y − y0| < δ′,

|f(xy, y)− F (x′)| = |max
x

f(x, y)−max
x

F (x)| ≤ ϵ, (56)

and hence

lim
y→y0

max
x

f(x, y) = max
x

F (x) = max
x

lim
y→y0

f(x, y), (57)

and this completes the proof.

Then, we show that the robust discounted value function converges uniformly to the robust average-reward as the discounted
factor approaches 1.



Theorem 10 (Restatement of Theorem 2). The robust discounted value function converges uniformly to the robust average-reward
on Π:

lim
γ→1

(1− γ)V π
P,γ = gπP. (58)

Proof. Due to Theorem 9, for any stationary policy π, gπP(s) = minP∈P gπP(s) under the stationary model. Hence from the
uniform convergence in Theorem 1, we first show the following:

gπP = min
P∈P

gπP

= min
P∈P

lim
γ→1

(1− γ)V π
P,γ

(a)
= lim

γ→1
min
P∈P

(1− γ)V π
P,γ

= lim
γ→1

(1− γ)V π
P,γ , (59)

where (a) is because Lemma 6. Moreover, note that limγ→1(1− γ)V π
P,γ = gπP uniformly on Π × P, hence the convergence in

(59) is also uniform on Π . Thus, we complete the proof.

Proof of Theorem 3
Theorem 11 (Restatement of Theorem 3). VT generated by Algorithm 1 converges to the robust average-reward gπP as T →∞.

Proof. From discounted robust Bellman equation (Nilim and El Ghaoui 2004), it can be shown that

(1− γt)V
π
P,γt

= (1− γt)
∑
a

π(a|s)(r(s, a) + γtσPa
s
(V π

P,γt
)). (60)

Then we can show that for any s ∈ S,

|Vt+1(s)− (1− γt+1)V
π
P,γt+1

(s)|
= |Vt+1(s)− (1− γt)V

π
P,γt

(s) + (1− γt)V
π
P,γt

(s)− (1− γt+1)V
π
P,γt+1

(s)| (61)

≤ |(1− γt)V
π
P,γt

(s)− (1− γt+1)V
π
P,γt+1

(s)|+ |Vt+1(s)− (1− γt)V
π
P,γt

(s)|
= |(1− γt)V

π
P,γt

(s)− (1− γt+1)V
π
P,γt+1

(s)|

+

∣∣∣∣∑
a

π(a|s)
(
(1− γt)r(s, a) + γtσPa

s
(Vt)− ((1− γt)r(s, a) + γtσPa

s
((1− γt)V

π
P,γt

))

)∣∣∣∣
= |(1− γt)V

π
P,γt

(s)− (1− γt+1)V
π
P,γt+1

(s)|+
∣∣∣∣∑

a

π(a|s)
(
γtσPa

s
(Vt)− γtσPa

s
((1− γt)V

π
P,γt

)

)∣∣∣∣
= |(1− γt)V

π
P,γt

(s)− (1− γt+1)V
π
P,γt+1

(s)|+ γt

∣∣∣∣∑
a

π(a|s)
(
σPa

s
(Vt)− σPa

s
((1− γt)V

π
P,γt

)

)∣∣∣∣. (62)

If we denote by ∆t ≜ ∥Vt − (1− γt)V
π
P,γt
∥∞, then

∆t+1 ≤ ∥(1− γt)V
π
P,γt
− (1− γt+1)V

π
P,γt+1

∥∞ + γt max
s

{∑
a

π(a|s)
∣∣∣∣σPa

s
(Vt)− σPa

s
((1− γt)V

π
P,γt

)

∣∣∣∣}. (63)

It can be easily verified that σPa
s
(V ) is a 1-Lipschitz function, thus the second term in (63) can be further bounded as∑

a

π(a|s)
∣∣∣∣σPa

s
(Vt)− σPa

s
((1− γt)V

π
P,γt

)

∣∣∣∣
≤
∑
a

π(a|s)∥Vt − (1− γt)V
π
P,γt
∥∞

= ∥Vt − (1− γt)V
π
P,γt
∥∞, (64)

and hence

∆t+1 ≤ ∥(1− γt)V
π
P,γt
− (1− γt+1)V

π
P,γt+1

∥∞ + γt∆t. (65)



Recall that

(1− γt)V
π
P,γt

= (1− γt)min
P

V π
P,γt

. (66)

Let s∗t ≜ argmaxs |(1− γt)V
π
P,γt

(s)− (1− γt+1)V
π
P,γt+1

(s)|. Then it follows that

∥(1− γt)V
π
P,γt
− (1− γt+1)V

π
P,γt+1

∥∞ = |(1− γt)V
π
P,γt

(s∗t )− (1− γt+1)V
π
P,γt+1

(s∗t )|. (67)

Note that from (Nilim and El Ghaoui 2004; Iyengar 2005), for any stationary policy π, there exists a stationary model P such

that V π
P,γ(s) = EP,π

[∑∞
t=0 γ

trt|S0 = s

]
≜ V π

P,γ . Hence in the following, for each γt, we denote the worst-case transition

kernel of V π
P,γt

by Pt.
If (1− γt)V

π
P,γt

(s∗t ) ≥ (1− γt+1)V
π
P,γt+1

(s∗t ), then

|(1− γt)V
π
P,γt

(s∗t )− (1− γt+1)V
π
P,γt+1

(s∗t )|
= min

P
(1− γt)V

π
P,γt

(s∗t )−min
P

(1− γt+1)V
π
P,γt+1

(s∗t )

= (1− γt)V
π
Pt,γt

(s∗t )− (1− γt+1)V
π
Pt+1,γt+1

(s∗t )

= (1− γt)V
π
Pt,γt

(s∗t )− (1− γt)V
π
Pt+1,γt

(s∗t ) + (1− γt)V
π
Pt+1,γt

(s∗t )− (1− γt+1)V
π
Pt+1,γt+1

(s∗t )

(a)

≤ (1− γt)V
π
Pt+1,γt

(s∗t )− (1− γt+1)V
π
Pt+1,γt+1

(s∗t )

≤ ∥(1− γt)V
π
Pt+1,γt

− (1− γt+1)V
π
Pt+1,γt+1

∥∞, (68)

where (a) is due to (1− γt)V
π
Pt,γt

(s∗t ) = minP(1− γt)V
π
P,γt

(s∗t ) ≤ (1− γt)V
π
Pt+1,γt

(s∗t ).
Now, according to Lemma 1,

(1− γt)V
π
Pt+1,γt

= gπPt+1
+ (1− γt)h

π
Pt+1

+ (1− γt)f
π
Pt+1

(γt), (69)

(1− γt+1)V
π
Pt+1,γt+1

= gπPt+1
+ (1− γt+1)h

π
Pt+1

+ (1− γt+1)f
π
Pt+1

(γt+1). (70)

Hence, for any γt > δ, eq. (68) can be further bounded as

∥(1− γt)V
π
Pt+1,γt

− (1− γt+1)V
π
Pt+1,γt+1

∥∞
= ∥(γt+1 − γt)h

π
Pt+1

+ (1− γt)f
π
Pt+1

(γt)− (1− γt+1)f
π
Pt+1

(γt+1)∥∞
≤ (γt+1 − γt)∥hπ

Pt+1
∥∞ + ∥fπ

Pt+1
(γt)− fπ

Pt+1
(γt+1)∥∞ + ∥γt+1f

π
Pt+1

(γt+1)− γtf
π
Pt+1

(γt)∥∞
(a)

≤ h(γt+1 − γt) + L(γt+1 − γt) + ∥γt+1f
π
Pt+1

(γt+1)− γtf
π
Pt+1

(γt)∥∞
≤ h(γt+1 − γt) + L(γt+1 − γt) + ∥γt+1f

π
Pt+1

(γt+1)− γt+1f
π
Pt+1

(γt)∥∞ + ∥γt+1f
π
Pt+1

(γt)− γtf
π
Pt+1

(γt)∥∞
≤ h(γt+1 − γt) + L(γt+1 − γt) + γt+1∥fπ

Pt+1
(γt+1)− fπ

Pt+1
(γt)∥∞ + ∥fπ

Pt+1
(γt)∥∞(γt+1 − γt)

(b)

≤ (h+ L+ γt+1L+ sup
π,P,γ

∥fπ
P (γ)∥∞)(γt+1 − γt)

≤ K(γt+1 − γt), (71)

where (a) is from Lemma 5 for any γt > δ, cf is defined in (51) and K ≜ h+ 2L+ cf is a uniform constant; And (b) is from
Lemma 5.

Similarly, the inequality also holds for the case when (1− γt)V
π
P,γt

(s∗t ) ≤ (1− γt+1)V
π
P,γt+1

(s∗t ). Thus we have that for any
t such that γt > δ,

∆t+1 ≤ K(γt+1 − γt) + γt∆t, (72)

where K is a uniform constant.
Following Lemma 8 from (Tewari and Bartlett 2007), we have that ∆t → 0. Note that

∥Vt − gπP∥∞ ≤ ∥Vt − (1− γt)V
π
P,γt
∥∞ + ∥(1− γt)V

π
P,γt
− gπP∥∞ = ∆t + ∥(1− γt)V

π
P,γt
− gπP∥∞. (73)

Together with Theorem 2, we further have that

lim
t→∞

∥Vt − gπP∥∞ = 0, (74)

which completes the proof.



Proof of Theorem 4
Note that the optimal robust average-reward is defined as

g∗P(s) ≜ max
π

gπP(s). (75)

We further define

V ∗
P,γ(s) ≜ max

π
V π
P,γ(s). (76)

Theorem 12 (Restatement of Theorem 4). VT generated by Algorithm 2 converges to the optimal robust average-reward g∗P as
T →∞.

Proof. Firstly, from the uniform convergence in Theorem 2, it can be shown that

lim
t→∞

(1− γt)V
∗
P,γt

= g∗P. (77)

We then show that for any s ∈ S,

|Vt+1(s)− (1− γt+1)V
∗
P,γt+1

(s)|
≤ |Vt+1(s)− (1− γt)V

∗
P,γt

(s)|+ |(1− γt)V
∗
P,γt

(s)− (1− γt+1)V
∗
P,γt+1

(s)|
(a)
= |(1− γt)V

∗
P,γt

(s)− (1− γt+1)V
∗
P,γt+1

(s)|

+

∣∣∣∣max
a

(
(1− γt)r(s, a) + γtσPa

s
(Vt)

)
−max

a

(
((1− γt)r(s, a) + γtσPa

s
((1− γt)V

∗
P,γt

))

)∣∣∣∣
≤ |(1− γt)V

∗
P,γt

(s)− (1− γt+1)V
∗
P,γt+1

(s)|

+max
a

∣∣∣∣(1− γt)r(s, a) + γtσPa
s
(Vt)− ((1− γt)r(s, a) + γtσPa

s
((1− γt)V

∗
P,γt

))

∣∣∣∣, (78)

where (a) is because the optimal robust Bellman equation, and the last inequality is from the fact that |maxx f(x)−maxx g(x)| ≤
maxx |f(x)− g(x)|.

Hence eq. (78) can be further bounded as

|Vt+1(s)− (1− γt+1)V
∗
P,γt+1

(s)|

≤ |(1− γt)V
∗
P,γt

(s)− (1− γt+1)V
∗
P,γt+1

(s)|+ γt max
a

∣∣∣∣σPa
s
(Vt)− σPa

s
((1− γt)V

∗
P,γt

)

∣∣∣∣. (79)

If we denote by ∆t ≜ ∥Vt − (1− γt)V
∗
P,γt
∥∞, then

∆t+1 ≤ ∥(1− γt)V
∗
P,γt
− (1− γt+1)V

∗
P,γt+1

∥∞ + γt max
s.a

∣∣∣∣σPa
s
(Vt)− σPa

s
((1− γt)V

∗
P,γt

)

∣∣∣∣. (80)

Since the support function σPa
s
(V ) is 1-Lipschitz, then it can be shown that for any s, a,∣∣∣∣σPa

s
(Vt)− σPa

s
((1− γt)V

∗
P,γt

)

∣∣∣∣ ≤ ∥Vt − (1− γt)V
∗
P,γt
∥∞. (81)

Hence

∆t+1 ≤ ∥(1− γt)V
∗
P,γt
− (1− γt+1)V

∗
P,γt+1

∥∞ + γt∆t. (82)

Similar to (71) in Theorem 3, we can show that

∥(1− γt)V
∗
P,γt
− (1− γt+1)V

∗
P,γt+1

∥∞ ≤ K|γt − γt+1|, (83)

and similar to Lemma 8 from (Tewari and Bartlett 2007),

lim
t→∞

∆t = 0. (84)

Moreover, note that

∥Vt − g∗P∥∞ ≤ ∥Vt − (1− γt)V
∗
P,γt
∥∞ + ∥(1− γt)V

∗
P,γt
− g∗P∥∞ = ∆t + ∥(1− γt)V

∗
P,γt
− g∗P∥∞, (85)

which together with eq. (77) implies that

∥Vt − g∗P∥∞ → 0, (86)

and hence it completes the proof.



Proof of Theorem 5
We denote the set of all stationary deterministic polices by ΠD in this section.
Theorem 13 (Restatement of Theorem 5). There exists a Blackwell optimal policy set Π∗, i.e., there exists 0 < δ < 1 and a
finite policy set Π∗ ⊆ ΠD, such that for any γ > δ, the optimal robust policy for robust discounted value function V ∗

P,γ belongs
to Π∗, i.e.,

V ∗
P,γ = V π∗

P,γ , (87)

for some π∗ ∈ Π∗. Moreover, when argmaxπ∈ΠD gπP is a singleton, there exists a unique Blackwell optimal policy.

Proof. According to Theorem 74, there exists π∗ ∈ ΠD such that

g∗P = gπ
∗

P . (88)

Assume the robust average-reward of all deterministic policies are sorted in a descending order:

g∗P = g
π∗
1

P = g
π∗
2

P = ... = g
π∗
m

P > gπ1

P ≥ ... ≥ gπn

P (89)

for all π∗
i , πi ∈ ΠD, and we define Π∗ = {π∗

i : i = 1, ...,m}. Denote by d = g
π∗
i

P − gπ1

P .
From Theorem 2, we know that for any π ∈ ΠD,

lim
γ→1

(1− γ)V π
P,γ = gπP. (90)

Because the set ΠD is finite, for any ϵ < d
2 , there exists δ′ < 1, such that for any γ > δ′, π∗

i and πj ,

|(1− γ)V
π∗
i

P,γ − g∗P| < ϵ, (91)

|(1− γ)V
πj

P,γ − g
πj

P | < ϵ. (92)

It hence implies that

(1− γ)V
π∗
i

P,γ ≥ (d− 2ϵ) + (1− γ)V
πj

P,γ > (1− γ)V
πj

P,γ , (93)

and

V
π∗
i

P,γ > V
πj

P,γ . (94)

Note that from Theorem 3.1 in (Iyengar 2005), i.e., maxπ∈ΠD V π
P,γ = V ∗

P,γ , we have that for any γ, there exists a deterministic
policy π ∈ ΠD, such that V ∗

P,γ = V π
P,γ . Together with (94), it implies that all the possible optimal robust polices of V π

P,γ belong
to {π∗

1 , ...π
∗
m}, i.e., the set Π∗. Hence, there exists π∗

j ∈ Π∗, such that

V
π∗
j

P,γ = max
π∈ΠD

V π
P,γ = V ∗

P,γ . (95)

For the second part, when the optimal robust policy of robust average-reward is unique, i.e., Π∗ = {π∗}. Then from the
results above, there exists δ′, such that for any γ > δ′, V π∗

P,γ > V π
P,γ for any π∗ ̸= π ∈ ΠD, and hence π∗ is the optimal policy

for discounted robust MDPs, which is the unique Blackwell optimal policy.

Proof of Results for Direct Approach
Recall that

V π
P (s) ≜ min

κ∈
⊗

t≥0 P
Eκ,π

[ ∞∑
t=0

(rt − gπP)
∣∣S0 = s

]
, (96)

where

gπP = min
κ∈

⊗
t≥0 P

lim
n→∞

Eκ,π

[
1

n

n−1∑
t=0

rt|S0 = s

]
. (97)

We first show that the robust relative function is always finite.
4The proof of Theorem 7 is independent of theorem 5 and does not relay on the results to be showed here.



Lemma 7. For any π, V π
P is finite.

Proof. According to Theorem 9, V π
P = minP∈P V π

P = minP∈P EP,π

[∑∞
t=0(rt − gπP)

]
. Note that V π

P can be rewritten as

V π
P = min

P∈P
EP,π

[ ∞∑
t=0

(rt − gπP)

]

= min
P∈P

EP,π

[
lim
n→∞

n∑
t=0

(rt − gπP)

]

= min
P∈P

EP,π

[
lim
n→∞

n∑
t=0

(rt − gπP + gπP − gπP)

]
= min

P∈P
EP,π

[
lim
n→∞

(Rn − ngπP + ngπP − ngπP)

]
, (98)

where Rn =
∑n

t=0 rt. Note that for any P ∈ P and n, ngπP ≥ ngπP, hence

lim
n→∞

(Rn − ngπP + ngπP − ngπP) ≥ lim
n→∞

(Rn − ngπP), (99)

and thus the lower bound of V π
P can be derived as follows,

V π
P ≥ min

P∈P
EP,π

[ ∞∑
t=0

(rt − gπP)

]
= min

P∈P
V π
P

= min
P∈P

Hπ
P rπ. (100)

which is finite due to the fact that Hπ
P is continuous on the compact set P.

From Theorem 9, we denote the stationary worst-case transition kernel of gπP by Pg. Then the upper bound of V π
P can be

bounded by noting that

V π
P = min

P∈P
EP,π

[ ∞∑
t=0

(rt − gπPg
)

]

≤ EPg,π

[ ∞∑
t=0

(rt − gπPg
)

]
= V π

Pg
, (101)

which is also finite and Pg denotes the worst-case transition kernel of gπP. Hence we show that V π
P is finite for any π and hence

complete the proof.

After showing that the robust relative value function is well-defined, we show the following robust Bellman equation for
average-reward robust MDPs.

Theorem 14 (Restatement of Theorem 6). For any s and π, (V π
P , gπP) is a solution to the following robust Bellman equation:

V (s) + g =
∑
a

π(a|s)
(
r(s, a) + σPa

s
(V )

)
. (102)

Proof. From the definition,

V π
P (s) = min

κ∈
⊗

t≥0 P
Eκ,π

[ ∞∑
t=0

(rt − gπP)
∣∣S0 = s

]
, (103)

hence

V π
P (s) = min

κ∈
⊗

t≥0 P
Eκ,π

[ ∞∑
t=0

(rt − gπP)
∣∣S0 = s

]



= min
κ∈

⊗
t≥0 P

Eκ,π

[
(r0 − gπP) +

∞∑
t=1

(rt − gπP)
∣∣S0 = s

]

= min
κ∈

⊗
t≥0 P

{∑
a

π(a|s)r(s, a)− gπP + Eκ,π

[ ∞∑
t=1

(rt − gπP)
∣∣S0 = s

]}

=
∑
a

π(a|s) (r(s, a)− gπP) + min
κ∈

⊗
t≥0 P

∑
a,s′

π(a|s)Pa
s,s′Eκ,π

[ ∞∑
t=1

(rt − gπP)|S1 = s′
]

=
∑
a

π(a|s) (r(s, a)− gπP) + min
P0∈P

min
κ=(P1,...)∈

⊗
t≥1 P

∑
a,s′

π(a|s)(P0)
a
s,s′Eκ,π

[ ∞∑
t=1

(rt − gπP)|S1 = s′
]

=
∑
a

π(a|s) (r(s, a)− gπP) + min
P0∈P

∑
a,s′

π(a|s)(P0)
a
s,s′ min

κ=(P1,...)∈
⊗

t≥1 P

{
Eκ,π

[ ∞∑
t=1

(rt − gπP)|S1 = s′
]}

=
∑
a

π(a|s) (r(s, a)− gπP) +
∑
a

π(a|s)
∑
s′

min
pa
s,s′∈Pa

s

pas,s′V
π
P (s′)

=
∑
a

π(a|s) (r(s, a)− gπP) +
∑
a

π(a|s)σPa
s
(V π

P )

=
∑
a

π(a|s)
(
r(s, a)− gπP + σPa

s
(V π

P )
)
. (104)

This hence completes the proof.

Theorem 15. [Restatement of Theorem 7, Part 1] For any (g, V ) that is a solution to maxa
{
r(s, a)− g + σPa

s
(V )− V (s)

}
=

0,∀s, then g = g∗P.

Proof. In this proof, for two vectors v, w ∈ Rn, v ≥ w denotes that v(s) ≥ w(s) entry-wise.
Let B(g, V )(s) ≜ maxa

{
r(s, a)− g + σPa

s
(V )− V (s)

}
. Since (g, V ) is a solution to (13), hence for any a ∈ A and any

s ∈ S,

r(s, a)− g + σPa
s
(V )− V (s) ≤ 0, (105)

from which it follows that for any policy π,

g(s) ≥ rπ(s) +
∑
a

π(a|s)σPa
s
(V )− V (s) ≜ rπ(s) +

∑
a

π(a|s)(pas)⊤V − V (s), (106)

where rπ(s) ≜
∑

a π(a|s)r(s, a), pas ≜ argminp∈Pa
s
p⊤V , and PV = {pas : s ∈ S, a ∈ A}. We also denotes the state transition

matrix induced by π and PV by Pπ
V .

Using these notations, and rewrite eq. (106), we have that

g1 ≥ rπ + (Pπ
V − I)V. (107)

Since the inequality in eq. (107) holds entry-wise, all entries of Pπ
V are positive, then by multiplying both sides of eq. (107) by

Pπ
V , we have that

g1 = gPπ
V 1 ≥ Pπ

V rπ + Pπ
V (P

π
V − I)V. (108)

Multiplying the both sides of eq. (108) by Pπ
V , and repeatedly doing that, we have that

g1 ≥ (Pπ
V )

2rπ + (Pπ
V )

2(Pπ
V − I)V, (109)

...
... (110)

g1 ≥ (Pπ
V )

n−1rπ + (Pπ
V )

n−1(Pπ
V − I)V. (111)

Summing up these inequalities from eq. (107) to eq. (111), we have that

ng1 ≥ (I + Pπ
V + ...+ (Pπ

V )
n−1)rπ + (I + Pπ

V + ...+ (Pπ
V )

n−1)(Pπ
V − I)V, (112)



and from which, it follows that

g1 ≥ 1

n
(I + Pπ

V + ...+ (Pπ
V )

n−1)rπ +
1

n
(I + Pπ

V + ...+ (Pπ
V )

n−1)(Pπ
V − I)V

=
1

n
(I + Pπ

V + ...+ (Pπ
V )

n−1)rπ +
1

n
((Pπ

V )
n − I)V. (113)

It can be easily verified that limn→∞
1
n ((P

π
V )

n − I)V = 0, and hence it implies that

g1 ≥ lim
n→∞

1

n
(I + Pπ

V + ...+ (Pπ
V )

n−1)rπ

= lim
n→∞

1

n
EPπ

V ,π

[ n∑
t=0

rt

]
= gπPπ

V
1

≥ gπP1. (114)
Since eq. (114) holds for any policy π, it follows that g ≥ g∗P. On the other hand, since B(g, V ) = 0, there exists a policy τ such
that

g1 = rτ + (Pτ
V − I)V, (115)

where rτ ,Pτ
V are similarly defined as for π. From Theorem 9, there exists a stationary transition kernel Pτ

ave such that gτP = gτPτ
ave

.
We denote the state transition matrix induced by τ and Pτ

ave by Pτ . Then because Pτ
V is the worst-case transition of V , it follows

that
Pτ
V V ≤ PτV. (116)

Thus
g1 ≤ rτ + (Pτ − I)V. (117)

Similarly, we have that
g1 ≤ (Pτ )j−1rτ + (Pτ )j−1(Pτ − I)V, (118)

for j = 2, ..., n. Summing these inequalities together we have that
ng1 ≤ (I + Pτ + ...+ (Pτ )n−1)rτ + (I + Pτ + ...+ (Pτ )n−1)(Pτ )n−1(Pτ − I)V

= (I + Pτ + ...+ (Pτ )n−1)rτ + ((Pτ )n − I)V. (119)
Hence

g1 ≤ lim
n→∞

1

n
EPτ

ave,τ

[ n∑
t=0

rt

]
= gτPτ

ave
1 = gτP1 ≤ g∗P1. (120)

Thus g = g∗P, and this concludes the proof.

Theorem 16 (Restatement of Theorem 7, Part 2). For any (g, V ) that is a solution to

max
a

{
r(s, a)− g + σPa

s
(V )− V (s)

}
= 0,∀s, (121)

if we set
π∗(s) = argmax

a

{
r(s, a) + σPa

s
(V )

}
(122)

for any s ∈ S, then π∗ is an optimal robust policy.

Proof. Note that for any stationary policy π, we denote by σPπ (V ) ≜ (
∑

a π(a|s1)σPa
s1
(V ), ...,

∑
a π(a|s|S|)σPa

s|S|
(V )) being

a vector in R|S|. Then eq. (14) is equivalent to
rπ∗ + σPπ∗ (V ) = max

π
{rπ + σPπ (V )} . (123)

Hence,
rπ∗ − g + σPπ∗ (V )− V = max

π
{rπ − g + σPπ (V )− V } . (124)

Since (g, V ) is a solution to (13), it follows that
rπ∗ − g + σPπ∗ (V )− V = 0. (125)

According to the robust Bellman equation eq. (12), (gπ
∗

P , V π∗

P ) is a solution to eq. (125). Thus from Theorem 15, gπ
∗

P = g∗P, and
hence π∗ is an optimal robust policy.



Theorem 17 (Restatement of Theorem 8). (wT , Vt) in Algorithm 3 converges to a solution of eq. (13).

Proof. We first denote the update operator as

Lv(s) ≜ max
a

(r(s, a) + σPa
s
(v)). (126)

Now, consider sp(Lv − Lu). Denote by ś ≜ argmaxs(Lv(s) − Lu(s)) and s̀ ≜ argmins(Lv(s) − Lu(s)). Also denote by
av ≜ argmaxa(r(ś, a) + σPa

ś
(v)) and au ≜ argmaxa(r(ś, a) + σPa

ś
(u)) Then

Lv(ś)− Lu(ś) = max
a

(r(ś, a) + σPa
ś
(v))−max

a
(r(ś, a) + σPa

ś
(u))

≜ r(ś, av) + σP
av
ś
(v)− (r(ś, au) + σP

au
ś
(u))

≤ r(ś, av) + σP
av
ś
(v)− (r(ś, av) + σP

av
ś
(u))

= σP
av
ś
(v)− σP

av
ś
(u)

≜ (pav,v
ś )⊤v − (pav,u

ś )⊤u, (127)

where pav,v
ś = argminp∈P

av
ś

p⊤v and pav,u
ś = argminp∈P

av
ś

p⊤u. Thus eq. (127) can be further bounded as

Lv(ś)− Lu(ś)

≤ (pav,v
ś )⊤v − (pav,u

ś )⊤u

≤ (pav,u
ś )⊤(v − u). (128)

Similarly,

Lv(s̀)− Lu(s̀) ≥ (pau,v
s̀ )⊤(v − u). (129)

Thus
sp(Lv − Lu) ≤ (pav,u

ś )⊤(v − u)− (pau,v
s̀ )⊤(v − u). (130)

Now denote by v−u ≜ (x1, x2, ..., xn), p
av,u
ś = (p1, ..., pn) and pau,v

s̀ = (q1, ..., qn). Further denote by bi ≜ min{pi, qi} Then
n∑

i=1

pixi −
n∑

i=1

qixi

=

n∑
i=1

(pi − bi)xi −
n∑

i=1

(qi − bi)xi

≤
n∑

i=1

(pi − bi)max{xi} −
n∑

i=1

(qi − bi)min{xi}

=

n∑
i=1

(pi − bi)sp(x) +

( n∑
i=1

(pi − bi)−
n∑

i=1

(qi − bi)

)
min{xi}

=

(
1−

n∑
i=1

bi

)
sp(x). (131)

Thus we showed that

sp(Lv − Lu) ≤
(
1−

n∑
i=1

bi

)
sp(v − u). (132)

Now from Assumption 2, and following Theorem 8.5.3 from (Puterman 1994), it can be shown that there exists 1 > λ > 0, such
that for any a, u, v,

n∑
i=1

bi ≥ λ. (133)

Further, following Theorem 8.5.2 in (Puterman 1994), it can be shown that L is a J-step contraction operator for some integer J ,
i.e.,

sp(LJv − LJu) ≤ (1− λ)sp(v − u). (134)
Then, it can be shown that the relative value iteration converges to a solution of the optimal equation similar to the relative

value iteration for non-robust MDPs under the average-reward criterion (Theorem 8.5.7 in (Puterman 1994), Section 1.6.4
in(Sigaud and Buffet 2013)), and hence (wt, Vt) converges to a solution to eq. (13) as ϵ→ 0.
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