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Abstract—An anomaly detection problem is investigated, in
which there are totally n sequences, withs anomalous sequences
to be detected. Each normal sequence contains independent
and identically distributed (i.i.d.) samples drawn from a distri-
bution p, whereas each anomalous sequence contaims i.i.d.
samples drawn from a distribution ¢ that is distinct from p. The
distributions p and ¢ are assumed to be unknown a priori. The
scenario with a reference sequence generated by is studied.
Distribution-free tests are constructed using maximum mea
discrepancy (MMD) as the metric, which is based on mean
embeddings of distributions into a reproducing kernel Hilbert
space (RKHS). It is shown that as the numbern of sequences
goes to infinity, if the value of s is known, then the numberm of
samples in each sequence should be of ordé?(logn) or larger
in order for the developed tests to consistently deteat anomalous
sequences. If the value of is unknown, thenm should be of order
strictly larger than O(logn). The computational complexity of
all developed tests is shown to be polynomial. Numerical rets
demonstrate that these new tests outperform (or perform as
well as) tests based on other competitive traditional stastical
approaches and kernel-based approaches under various case

I. INTRODUCTION

In this paper, we study an anomaly detection proble
(see Figure 1), in which there are sequences in total, out
of which s sequences are anomalous. Each normal sequen
consists ofm independent and identically distributed (i.i.d.)
samples drawn from a distributign whereas each anomalous
sequence contains i.i.d. samples drawn from a distribugion

that is distinct fromp. The distributiong andg¢ are assumed

to be unknown a priori. Instead, a reference data sequen

consisting of i.i.d. samples generated frpns available. This

is reasonable because a normal sequence of samplespfro
is easy to collect in typical applications. (The study of the
scenario without a reference sequence is treated in andeden

version of this work [1]). The goal is to build distributidree

tests to detect the anomalous data sequences generateg by

out of all data sequences.

Such a problem is very useful in many applications. For
example, as studied in [2], in cognitive wireless networks

output signals follow different distributions or ¢ depending

on whether the channel is busy or vacant. A major issu
in such a network is to identify vacant channels out of a
large number of busy channels based on their correspondi

output signals in order to utilize vacant channels for invorg
spectral efficiency.
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data point contains only one sample. The parametric model of
the problem has been well studied, e.g., [2], which assumes
that the distributions op and ¢ are known a priori and can
be exploited for detection. However, the nonparametric ehod
which assumes that the distributiopsand ¢ are unknown
and arbitrary, has been less well explored. Recently, Lii- Ni
nawarat, and Veeravalli proposed divergence-based deeetra
likelihood tests in [5], and characterized the error decay
exponents of these tests. However, their tests utilize ecapi
distributions ofp and ¢, and hence are applicable only to
discrete distributions with finite alphabets.

In this paper, we study the nonparametric model, in which
the distributionsp and ¢ can be continuous and arbitrary. A
number of statistical approaches and tools may be applied to
solve this problem. A natural approach, e.g., the FR-Smirno
test [6], is to first estimate the distributions based on data
samples, and then compare the estimated distributions for
anomaly detection. Such an approach typically does not per-
form very well, because the error in estimating the distidns
can propagate to the anomaly detection step. Some traalition
statistical approaches such as the t-test, FR-Wolf test [6]

mand Hall test [7] do not require distribution estimation as a

intermediate step, and can be applied to solve this problem.
Egowever, the t-test and FR-wolf test do not perform well for
arbitrary distributions. The Hall test has high computagio
complexity. More recently, kernel-based approaches sisch a
the kernel density ratio (KDR) test [8] and kernel Fisher
discriminant analysis (KFDA) test [9] have been developed,
hich use kernels to estimate certain distance metricsdwsgtw
wo distributions. In particular, the KDR test uses kerriels
estimate the ratio between two probability densities areh th

Murther estimates the divergence between the two probabili

distributions. In this paper, our approach introduced \Wwelo

falls into the class of kernel-based approaches.We demadest

that our tests outperform or equal those tests mentionedeabo
under various test cases.

More specifically, our approach adopts the emerging tech-
nigue based on mean embedding of distributions into a repro-

'ducing kernel Hilbert space (RKHS) [10], [11]. The idea is to

ap probability distributions into an RKHS with an assoeiht
ernel such that distinguishing the two probabilities can b

nclt_?rried out by distinguishing their corresponding embegsli
[

the RKHS. Such an approach is justified by the fact that
mapping of distributions into an RKHS is injective (i.e.,en
to-one) for certain kernels including Gaussian and Laplace

We note that in the model here each data point containkernels as shown in [12] and [11]. Since an RKHS naturally
a sequence of data samples drawn from one distributiorcarries a distance metric, mean embeddings of distribsition
This is different from the typical anomaly or outlier defeat  can be compared easily based on their distances in the RKHS
problems studied in machine learning [3], [4], in which eachusing the samples of distributions. Such a metric is referre



to as themaximum mean discrepancy (MMD) as introduced are applicable to the case with= 0, i.e., the null hypothesis

in [13]. A major advantage of MMD-based approaches is thatn which there is no anomalous sequence. We will comment on
MMD can be easily estimated based on samples, and henseich a case when the corresponding results are presented. In
leads to low complexity tests. this paperf(n) = O(g(n)) denotes thaf(n)/g(n) converges

In this paper, we apply MMD as a metric to construct ourtO a constant as — co.

tests for detecting data sequences generated by the anmmalo Yii viyie seeees y<:(>
distribution. We are interested in the large data regime, in .

which the total number of data sequences goes to infinity. Yf' YAYR eeeees yi”b@
It is clear that as the total number of sequences becomes Yy Ve s wreaanie yﬂ
large (and possibly the numbeiof anomalous data sequences A ;

also becomes large), it becomes increasingly challenging t Yot Vi ¥eo ymc:l@

consistently detect all anomalous sequences. It is theasnec

sary that (tjhe Inumblem Of san:jples in each data SelqugnceFig. 1. An anomaly detection model with data sequences gtaterby
correspondingly enlarge in order to more accurately deteGfisyipution p and anomalous distribution.

anomalous sequences. Hence, there is a tension befween ) B

and m in the asymptotic regime as goes to infinity for We next define the probability of error as the performance
guaranteeing correct detection. This also differentiatas ~Measure of tests. We lef denote the set that contains
work from the study in [5], in whichn and s are assumed indices of all anomalous data sequences. Hence, the chtylina

to be fixed and only the number of samples becomes large.|Z| = s. We let I" denote a sequence of index sets that

) ) o contain indices of all anomalous data sequences claimed by
We summarize our main contributions as follows. We g corresponding sequence of tests.

construct MMD-based distribution-free consistent testsich o ) ) )
enjoy low computational complexity (which is polynomial Definition 1. A sequence of tests are said to be consistent if
as n increases) and superior performance (as compared to . L . B
other tests). We study the scenario with a reference data 77,11—{20 Pe _nh—>nolo P #£1} =0, (1)
sequence generated by and build distribution-free tests for
the two cases with and without knowledge of the number We note that the limit in the above definition in fact
of anomalous sequences. From the performance of the testmrresponds to the asymptotic regime, in whighscales fast
lack of information about results in an order-level increase enough asn goes to infinity in order to guarantee asymp-
in m needed for consistent detection. We not only providetotically small probability of error. Such a regime is also
numerical results to demonstrate our theoretical assertiot  applicable to the following definition.
also compare our MMD-based tests with other competitive. .. .. . .
tests. Ourpnumerical results demonstrate that the MMIFD)d)asgDef'n't'on 2. A sequence of tests are said to be exponentially
test is the best performing test (or among the best perfclyminCOnS|Stent if
tests) under various experimental cases. We note that due to,, . 1 L. 1 A
space limitations, we omit the proofs of the theorems here. li,?gggf—g log Pe = li,?gggf—g log P{T" # 1} > 0. (2)
The details can be found in [1].

In this paper, our goal is to construct distribution-free
[I. PROBLEM STATEMENT AND PRELIMINARIES ON MMD tests for detecting anomalous sequences, and charadiesize
scaling behavior ofim with n (and possiblys) so that the
developed tests are consistent (and possibly exponegntiall

We study an anomaly detection problem (see Figure 1)consistent).
in which there are in totah data sequences denoted by
for 1 < k < n. Each data sequendg, consists ofm i.i.d. B. Introduction of MMD
samplesyi1, - - ., yrm drawn from either a distributiop or an . . . . )
anomalous distribution, wherep # ¢. In the sequel, we use In thl_s subseqtlo_n, we brl_efly introduce the idea of mean
the notationYy := (yx1, ..., yem). We assume that the distri- embeddlng of distributions into an RKHS [10], [11]. _and
butionsp andgq are arbitrary and unknown a priori. Instead, athe metric of MMD. SupposeP is a class of probability
reference data sequen&eis assumed to be available a priori, distributions, and suppos is an RKHS with an associated

which contains i.i.d. samplegs, . .., z,,) generated from the Kernelk(-,-) (see [14] for an introduction to RKHS theory).
distributionp. We use the notatioi := (z1,. .., 2m). We define a mapping fror® to 7 such that each distribution

p € P is mapped into an element iH as follows:
We assume that out of n data sequences are anomalous,

i.e., are generated by the anomalous distributioliVe study () = E [k(-, z)] = /k(~ z)dp(x).
both cases with the value afknown and unknown a priori, b pE ’

respectively. We are interested in the asymptotic regime, iHere 1,(-) is referred to as themean embedding of the
which the numbem of data sequences goes to infinity. We distril’autzi)onp into the Hilbert spacéy

assume that the numberof anomalous sequences satisfies '
£ —» aasn — oo, where) < o < 1. This includes the It has been shown in [12] and [11] that for many RKHSs
%Ilowing three cases: (1) is fixed asn — oo; (2) s — oo,  such as those associated with Gaussian and Laplace kernels,
but & — 0 asn — oo, and (3) ;- approaches a positive the mean embedding is injective, such that eack P is
constant, which is less than or equalltoSome of our results mapped to a unique elemenf € . In order to distinguish

A. Problem Satement



between two distributiong andgq, [13] introduced the follow-
ing measure of MMD based on the mean embeddjngand
g Of p andgq in an RKHSH:

MMD [p, q] := HNP‘#qHH- 3

We now consider the general case withanomalous
sequences, whereé < s < n — 1. Here, we allows > %
for generality of our result. We first consider the case when
the value ofs is known a priori, and build the following test.
We compute MM [X,Y;] for eachl < k < n, and choose
sequences with the largestvalues of MMD}[X, Y] to be

Due to the reproducing property of the kernel, it can beanomalous. More specifically, the test outputs the follgwin

easily shown that

MMD2[P,‘1]:E1,1’[M$’ xl)] - 2Ew,y[k(xa y)] + Eyy (% (y, y/)]v

wherex andz’ are independent but have the same distribution

set that contains indices of anomalous sequences:

7 ={k : MMD2[X, Y] is among thes largest
values of MMD} [X,Y;] fori=1,...,n}. (7)

p, andy andy’ are independent but have the same distribution

q. An unbiased estimator of MMtlp, ¢] based ori; samples
of X andl, samples ofY” is given as follows:

[t

1
2
MMD, [X,Y] = mzzk(%,%)
i=1 jAi
la Ia i l2

+ ﬁ sz(ynyj) - % ZZk(xi,w). (4)

i=1 j#i i=1 j=1

IIl. M AIN RESULTS

The following theorem characterizes a condition under
which the above test is consistent.

Theorem 2. Consider the anomaly detection model with a
reference sequence generated by p and with s anomalous
sequences, where 1 < s < n — 1. Assume the value of s is
known. Further assume that the test (7) applies a bounded
kernel with 0 < k(z,y) < K for any (z,y). Then the
distribution-free test (7) is consistent if

24K2(1 4 )

MMD4[p, q] log((n - S)S)a (8)

We first consider the case with only one anomalougvhere 7 is any positive constant. Furthermore, under the

sequence. With the reference sequenke we compute

MMD2[X,Y;] for each sequenc®; for 1 < k < n using
(4). It is clear that ifY;, is generated by, then MMD? [ X, Y3 ]

is an estimator of MMB|p, p] and hence should be close to
zero. If Y3 is anomalous, MM@[X, Y] is an estimator of

above condition, the test (7) is also exponentially con-
sistent. The computatior;al complexity of the test (7) is

max{O(nm?), O(ns — %)}

Sinces has an order less than or equal®n), Theorem

MMD ?[p, q], which is a positive constant. This understanding2 implies that it is sufficient to havé(log n) samples in each

naturally leads to the following distribution-free test avh

data sequence in order to guarantee consistency of the test.

s = 1. The sequencé* is the index of the anomalous data Althoughs does not affect the order of, it is still interesting

sequence if

k" = arg max MMD2[X, Yz]. (5)

The following theorem characterizes the condition unde

which the above test is consistent.

Theorem 1. Consider the anomaly detection model with a

reference sequence generated by p and with one anomalous

sequence. Suppose the test (5) applies a bounded kernel with

0 < k(z,y) < K for any (x,y). Then the test (5) is consistent
if

- 24K2(1 + 1)

MMDp, g

where ) isany positive constant. Furthermore, under the above
condition, the test (5) is also exponentially consistent.

logn, (6)

We note that the boundedness conditibg k(x,y) < K

on the kernel function is satisfied by many kernels such as th
Gaussian kernel and Laplace kernel. Theorem 1 implies that
is sufficient to have)(logn) samples in each data sequence in
order to guarantee consistency of the test (5). This is alelsir

in practice because as the number of sequences gets lathe (an

to further understand how affects the exact value of the
threshold in (8). It can be seen thatsit< 7, the threshold on

m to guarantee consistent detection increases mereases,
which is reasonable. It is somewhat surprising that if 3,

IIhe threshold omn decreases asincreases. This is in fact also
intuitive, because i > 7, the number of normal sequences is
less thang, and it is hence more convenient to detect normal
sequences (and consequently anomalous sequences are also
identified). Ass increases, the number of normal sequences
decreases, and thus detection is easier.

Theorem 2 also implies that computational complexity of
the test (7) is at mos(n?), because the orded(logn) for
m is sufficient for the test to be consistent, ands at most
n.

We next consider the case in which the value sofs
unknown. For this case, the test (7) is not applicable, bezau
it depends on the value of. In order to build a test now,
we observe that for large enough, MMD?[X,Y}] should
ge close to zero ifY;, is drawn fromp, and should be far
Away enough from zero (in fact, close to MNP, q)) if Yy
Is drawn from the anomalous distributian Based on this
understanding, we build the following test:

7 ={k:MMD2[X,Y;] > 4,} (9)

hence detection becomes more challenging), the number of
sample needed for building a distribution-free and coasist where the threshold,, — 0 asn — oo. This requirement on

test can still be much smaller, i.e., of the logarithmic orde
the number of sequences.

0., is to guarantee that the threshold is asymptotically leas th
MMD?[p, ¢], which is positive but unknown. The following



theorem characterizes a condition that should satisfy in T
order for the test (9) to be consistent.

Theorem 3. Consider the anomaly detection model with a
reference sequence generated by p and with s anomalous
sequences, where 0 < s < n — 1. Assume that the value of s

e
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is unknown a priori. Further assume that the test (9) adopts L, e taiieg o, |
a threshold ¢,, that converges to 0 as n — oo, and applies a e ? Number of Samples n On Sequence:m
bounded kernel with 0 < k(z,y) < K for any (z,y). Then
the test (9) is consistent if Fig. 2. Performance when= 1. Fig. 3. Performance when > 1.
log(max{s,1}) log(n —s) 04
16(1 +n) K> - 10
m >16(1 + n) K~ max { MMD2[p, g] — 6,7 52 (10)

03l

ility of Error P
e

where 7 is any positive constant. The computational complex-
ity of the test (9) is O(nm?).

Remark 1. Theorem 3 is also applicable for the case with ST —
s = 0, i.e, the null hypothesis when there is no anomalous Total Number of Sequences: n
sequence.

Fig. 4. Performance whesis unknown.

Theorem 3 implies that if <1 asn — oo, the threshold
onm in (10) is dominated by the second term. Sidge— 0 as For the case withs > 1, we setn = 100, and run the test
n — oo, m should scale strictly faster thafi(log n) in order  (7) for three cases with the numbers of anomalous sequences
to guarantee consistent detection. Compared to the cabe wibeing s = 1,20 and 40, respectively. In Figure 3, we plot the
the value ofs known (for which it is sufficient forn to scale probab|||ty of error as a function ofn. It can be seen that
at the orderO(logn)), the threshold onn has an order-level for each value ofs, whenm is above a certain threshold,
increase due to lack of the knowledge 0fAn extreme case  the probability of error converges to zero, confirming that o
occursifs. = 1asn — oo, in which having the orde®(logn)  test is consistent. Furthermore, the thresholdnorat which
for m is sufficient. This is reasonable, because now anomaIOLﬁ curve drops to zero increases with This observation is
sequences dominate so that errors caused by the asymibfoticaconsistent with Theorem 2, which suggests that the threshol
small threshold,, do not dominate the performance, and hencegp 11, increases withs if s < n

do not enlarge the requirement on the ordemnof )
We next study the case with anomalous sequences, but

We also note that the test (9) is not exponentially consistenthe value ofs is unknown a priori. For this simulation, we set
In fact, when there is no null hypothesis (i.8.,> 1), an s = 10, but our test does not exploit such information. We
exponentially consistent test can be built as follows. Fawhe  choose the distributiop to be A/(0, %), and choosey to be
subsets of {1,...,n}, we computes >, MMD[X, V3], a mixture of two Laplace distributions with equal probaili
and the test finds the set of indices corresponding to thene with mean—3 and variance% and the other with mean
largest average value. However, for such a test to be censist 3 and variance}. We apply the test (9), and set the threshold
m needs to scale linearly witm and the computational s — __L___ “which converges to zero as — co. We set

n . L .

1
. X . . X . (Tog n)
complexity is exponential withn, which is not desirable. m = [0.28(logn)*log(n — 5)]. In Figure 4, we plot the

probability of error as a function ai. It can be seen that as
IV. NUMERICAL RESULTS n increases, the probability of error converges to zero. This
clearly confirms Theorem 3, which implies that the chosen

A. Demonstration of Theorems scaling behavior ofn should guarantee consistency of the test.

We choose the distributiop to be Gaussian with mean
zero and variance one, i.¢V;(0, 1), and choose the anomalous B. Comparison with Other Tests

gfér'?,;tr'igﬂget%nbf t\?veé biréli%i désgﬂgg;{;%n kvé :I?elrr;e/? nione We first compare the MMD-based test with four other tests
z—a|? ' o based on traditional statistical approaches: the t-té3t\\elf

exp(—-5,7—) with o = 1 for all experiments. test, FR-Smirnov test, and Hall test. We focus on the scenari
For the case withs = 1, we run the test (5) for five cases With s = 1, and setn = 100, and compare the five tests for
with n = 100, 200, 300, 400 and 500, respectively. In Figure 2, the following four cases:

we show how the probability of error Changes with For e p and ¢ have same mean and same variances a
illustrational convenience, we normalize by logn, i.e., the Laplacian distribution with meam and variances, and
horizontal axis represen%. It is clear from the figure that ¢ is a mixture of two Laplacian distributions with equal

when 2 is above a certain threshold, the probability of error - probability: one with mean-1 and variancel, and the
converges to zero, which is consistent with our theoretical other with mear and variancel.

results. Furthermore, for different valuessafall curves drop e p andq have different means and same variancés a
to zero almost at the same threshold. This observation casfir Gaussian distribution with medahand variancd, andq
Theorem 1, which states that the thresholdgh- depends is a Laplacian distribution with mean 1 and variance 1.

only on the boundx of the kernel and the MMD of the two e p andq have different mean and different variangds
distributions. Both quantities are constant for all valoés:. Gaussian distribution with medhand variancd, andq



four cases as in the previous comparison. In Figure 6, we plot

1 :‘: 3R SRR SR AN = ’--4 l',, -=-MMD, < k
goss"idn el B the probability of error as a function of. for the three tests.
G| YT & FRowolf 8 RN ~e-FR-smirnov|
Togt A [T Sogf o My, Lo It can be seen that the MMD-based test performs much better
‘* Sod b N than the other two tests whenand ¢ have the same mean
oot ® T wetog : Caa, and variance, and performs as well as the other two tests in

0 20 40 60 80 1;0 0 20 :} * -SAO ‘-7780 * 100 the remalnlng three Cases'

Length of the Sequence, m Length of the Sequence, m

(a) p and ¢ have the same mean and variance %bdnd g have different means and the same variance

V. CONCLUSION

1 -u-MMD? e T S A R e
wrog i, Lo ol y In this paper, we have investigated a nonparametric
Eod 13, el S Sog n, Basan anomaly detection problem, and have built MMD-based
;U N AA ;D s A distribution-free tests to detect anomalous sequencehake
., \‘i\_i * I : characterized the scaling behavior of the numbhesf samples

| N Ty SN " . = = S, as the total numbet of sequences goes to infinity in order to

40 60 80 40 60 80
Length of the Sequence, m Length of the Sequence, m

(c) p and g have different means and variances

fdpnd g have the same mean and different variances

Fig. 5. Comparison of MMD-based test with other four tests

is a Laplacian distribution with meahand variances.
e p andg have same mean and different variangés a
Gaussian distribution with meah and variancel, and

¢ is a mixture of two Laplacian distributions with equal
probability: one with mean-2 variance3 and the other

with mean2 and variances.

guarantee consistency of the developed tests. We have demon
strated the performance of our tests by comparing them to
other appealing tests. Our study of this problem demorestiat
useful application of the mean embedding of distributiond a
MMD, and we believe that such an approach can be applied
to solving various other nonparametric problems.
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We next compare our MMD-based test with two other
kernel-based tests, KFDA and KDR (KDR uses divergence

as the metric). We focus on the scenario with= 1, and
100. For all tests, we use the Gaussian kernel with

setn =

[13]

o = 1. We compare the three kernel-based tests for the sam&?]
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