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Abstract—An anomaly detection problem is investigated, in
which there are totally n sequences, withs anomalous sequences
to be detected. Each normal sequence containsm independent
and identically distributed (i.i.d.) samples drawn from a distri-
bution p, whereas each anomalous sequence containsm i.i.d.
samples drawn from a distribution q that is distinct from p. The
distributions p and q are assumed to be unknown a priori. The
scenario with a reference sequence generated byp is studied.
Distribution-free tests are constructed using maximum mean
discrepancy (MMD) as the metric, which is based on mean
embeddings of distributions into a reproducing kernel Hilbert
space (RKHS). It is shown that as the numbern of sequences
goes to infinity, if the value ofs is known, then the numberm of
samples in each sequence should be of orderO(log n) or larger
in order for the developed tests to consistently detects anomalous
sequences. If the value ofs is unknown, thenm should be of order
strictly larger than O(log n). The computational complexity of
all developed tests is shown to be polynomial. Numerical results
demonstrate that these new tests outperform (or perform as
well as) tests based on other competitive traditional statistical
approaches and kernel-based approaches under various cases.

I. I NTRODUCTION

In this paper, we study an anomaly detection problem
(see Figure 1), in which there aren sequences in total, out
of which s sequences are anomalous. Each normal sequence
consists ofm independent and identically distributed (i.i.d.)
samples drawn from a distributionp, whereas each anomalous
sequence contains i.i.d. samples drawn from a distributionq
that is distinct fromp. The distributionsp andq are assumed
to be unknown a priori. Instead, a reference data sequence
consisting of i.i.d. samples generated fromp is available. This
is reasonable because a normal sequence of samples fromp
is easy to collect in typical applications. (The study of the
scenario without a reference sequence is treated in an extended
version of this work [1]). The goal is to build distribution-free
tests to detect thes anomalous data sequences generated byq
out of all data sequences.

Such a problem is very useful in many applications. For
example, as studied in [2], in cognitive wireless networks,
output signals follow different distributionsp or q depending
on whether the channel is busy or vacant. A major issue
in such a network is to identify vacant channels out of a
large number of busy channels based on their corresponding
output signals in order to utilize vacant channels for improving
spectral efficiency.

We note that in the model here each data point contains
a sequence of data samples drawn from one distribution.
This is different from the typical anomaly or outlier detection
problems studied in machine learning [3], [4], in which each

data point contains only one sample. The parametric model of
the problem has been well studied, e.g., [2], which assumes
that the distributions ofp and q are known a priori and can
be exploited for detection. However, the nonparametric model
which assumes that the distributionsp and q are unknown
and arbitrary, has been less well explored. Recently, Li, Niti-
nawarat, and Veeravalli proposed divergence-based generalized
likelihood tests in [5], and characterized the error decay
exponents of these tests. However, their tests utilize empirical
distributions of p and q, and hence are applicable only to
discrete distributions with finite alphabets.

In this paper, we study the nonparametric model, in which
the distributionsp and q can be continuous and arbitrary. A
number of statistical approaches and tools may be applied to
solve this problem. A natural approach, e.g., the FR-Smirnov
test [6], is to first estimate the distributions based on data
samples, and then compare the estimated distributions for
anomaly detection. Such an approach typically does not per-
form very well, because the error in estimating the distributions
can propagate to the anomaly detection step. Some traditional
statistical approaches such as the t-test, FR-Wolf test [6],
and Hall test [7] do not require distribution estimation as an
intermediate step, and can be applied to solve this problem.
However, the t-test and FR-wolf test do not perform well for
arbitrary distributions. The Hall test has high computational
complexity. More recently, kernel-based approaches such as
the kernel density ratio (KDR) test [8] and kernel Fisher
discriminant analysis (KFDA) test [9] have been developed,
which use kernels to estimate certain distance metrics between
two distributions. In particular, the KDR test uses kernelsto
estimate the ratio between two probability densities and then
further estimates the divergence between the two probability
distributions. In this paper, our approach introduced below
falls into the class of kernel-based approaches.We demonstrate
that our tests outperform or equal those tests mentioned above
under various test cases.

More specifically, our approach adopts the emerging tech-
nique based on mean embedding of distributions into a repro-
ducing kernel Hilbert space (RKHS) [10], [11]. The idea is to
map probability distributions into an RKHS with an associated
kernel such that distinguishing the two probabilities can be
carried out by distinguishing their corresponding embeddings
in the RKHS. Such an approach is justified by the fact that
mapping of distributions into an RKHS is injective (i.e., one-
to-one) for certain kernels including Gaussian and Laplace
kernels as shown in [12] and [11]. Since an RKHS naturally
carries a distance metric, mean embeddings of distributions
can be compared easily based on their distances in the RKHS
using the samples of distributions. Such a metric is referred



to as themaximum mean discrepancy (MMD) as introduced
in [13]. A major advantage of MMD-based approaches is that
MMD can be easily estimated based on samples, and hence
leads to low complexity tests.

In this paper, we apply MMD as a metric to construct our
tests for detecting data sequences generated by the anomalous
distribution. We are interested in the large data regime, in
which the total numbern of data sequences goes to infinity.
It is clear that as the total numbern of sequences becomes
large (and possibly the numbers of anomalous data sequences
also becomes large), it becomes increasingly challenging to
consistently detect all anomalous sequences. It is then neces-
sary that the numberm of samples in each data sequence
correspondingly enlarge in order to more accurately detect
anomalous sequences. Hence, there is a tension between(n, s)
and m in the asymptotic regime asn goes to infinity for
guaranteeing correct detection. This also differentiatesour
work from the study in [5], in whichn and s are assumed
to be fixed and only the number of samples becomes large.

We summarize our main contributions as follows. We
construct MMD-based distribution-free consistent tests,which
enjoy low computational complexity (which is polynomial
as n increases) and superior performance (as compared to
other tests). We study the scenario with a reference data
sequence generated byp, and build distribution-free tests for
the two cases with and without knowledge of the numbers
of anomalous sequences. From the performance of the tests,
lack of information abouts results in an order-level increase
in m needed for consistent detection. We not only provide
numerical results to demonstrate our theoretical assertions but
also compare our MMD-based tests with other competitive
tests. Our numerical results demonstrate that the MMD-based
test is the best performing test (or among the best performing
tests) under various experimental cases. We note that due to
space limitations, we omit the proofs of the theorems here.
The details can be found in [1].

II. PROBLEM STATEMENT AND PRELIMINARIES ON MMD

A. Problem Statement

We study an anomaly detection problem (see Figure 1),
in which there are in totaln data sequences denoted byYk

for 1 ≤ k ≤ n. Each data sequenceYk consists ofm i.i.d.
samplesyk1, . . . , ykm drawn from either a distributionp or an
anomalous distributionq, wherep 6= q. In the sequel, we use
the notationYk := (yk1, . . . , ykm). We assume that the distri-
butionsp andq are arbitrary and unknown a priori. Instead, a
reference data sequenceX is assumed to be available a priori,
which contains i.i.d. samples(x1, . . . , xm) generated from the
distributionp. We use the notationX := (x1, . . . , xm).

We assume thats out of n data sequences are anomalous,
i.e., are generated by the anomalous distributionq. We study
both cases with the value ofs known and unknown a priori,
respectively. We are interested in the asymptotic regime, in
which the numbern of data sequences goes to infinity. We
assume that the numbers of anomalous sequences satisfies
s
n

→ α as n → ∞, where0 ≤ α ≤ 1. This includes the
following three cases: (1)s is fixed asn → ∞; (2) s → ∞,
but s

n
→ 0 as n → ∞; and (3) s

n
approaches a positive

constant, which is less than or equal to1. Some of our results

are applicable to the case withs = 0, i.e., the null hypothesis
in which there is no anomalous sequence. We will comment on
such a case when the corresponding results are presented. In
this paper,f(n) = O(g(n)) denotes thatf(n)/g(n) converges
to a constant asn → ∞.

Fig. 1. An anomaly detection model with data sequences generated by
distribution p and anomalous distributionq.

We next define the probability of error as the performance
measure of tests. We letI denote the set that contains
indices of all anomalous data sequences. Hence, the cardinality
|I| = s. We let În denote a sequence of index sets that
contain indices of all anomalous data sequences claimed by
a corresponding sequence of tests.

Definition 1. A sequence of tests are said to be consistent if

lim
n→∞

Pe = lim
n→∞

P{În 6= I} = 0. (1)

We note that the limit in the above definition in fact
corresponds to the asymptotic regime, in whichm scales fast
enough asn goes to infinity in order to guarantee asymp-
totically small probability of error. Such a regime is also
applicable to the following definition.

Definition 2. A sequence of tests are said to be exponentially
consistent if

lim inf
m→∞

−
1

m
logPe = lim inf

m→∞
−

1

m
logP{În 6= I} > 0. (2)

In this paper, our goal is to construct distribution-free
tests for detecting anomalous sequences, and characterizethe
scaling behavior ofm with n (and possiblys) so that the
developed tests are consistent (and possibly exponentially
consistent).

B. Introduction of MMD

In this subsection, we briefly introduce the idea of mean
embedding of distributions into an RKHS [10], [11] and
the metric of MMD. SupposeP is a class of probability
distributions, and supposeH is an RKHS with an associated
kernel k(·, ·) (see [14] for an introduction to RKHS theory).
We define a mapping fromP to H such that each distribution
p ∈ P is mapped into an element inH as follows:

µp(·) = Ep[k(·, x)] =

∫
k(·, x)dp(x).

Here, µp(·) is referred to as themean embedding of the
distributionp into the Hilbert spaceH.

It has been shown in [12] and [11] that for many RKHSs
such as those associated with Gaussian and Laplace kernels,
the mean embedding is injective, such that eachp ∈ P is
mapped to a unique elementµp ∈ H. In order to distinguish



between two distributionsp andq, [13] introduced the follow-
ing measure of MMD based on the mean embeddingsµp and
µq of p andq in an RKHSH:

MMD [p, q] := ‖µp − µq‖H. (3)

Due to the reproducing property of the kernel, it can be
easily shown that

MMD2[p,q]=Ex,x′[k(x, x′)]− 2Ex,y[k(x, y)] + Ey,y′ [k(y, y′)],

wherex andx′ are independent but have the same distribution
p, andy andy′ are independent but have the same distribution
q. An unbiased estimator of MMD2[p, q] based onl1 samples
of X and l2 samples ofY is given as follows:

MMD 2

u[X, Y ] =
1

l1(l1 − 1)

l1
∑

i=1

l1
∑

j 6=i

k(xi, xj)

+
1

l2(l2 − 1)

l2
∑

i=1

l2
∑

j 6=i

k(yi, yj)−
2

l1l2

l1
∑

i=1

l2
∑

j=1

k(xi, yj). (4)

III. M AIN RESULTS

We first consider the case with only one anomalous
sequence. With the reference sequenceX , we compute
MMD2

u[X,Yk] for each sequenceYk for 1 ≤ k ≤ n using
(4). It is clear that ifYk is generated byp, then MMD2

u[X,Yk]
is an estimator of MMD2[p, p] and hence should be close to
zero. If Yk is anomalous, MMD2u[X,Yk] is an estimator of
MMD2[p, q], which is a positive constant. This understanding
naturally leads to the following distribution-free test when
s = 1. The sequencek∗ is the index of the anomalous data
sequence if

k∗ = arg max
1≤k≤n

MMD2
u[X,Yk]. (5)

The following theorem characterizes the condition under
which the above test is consistent.

Theorem 1. Consider the anomaly detection model with a
reference sequence generated by p and with one anomalous
sequence. Suppose the test (5) applies a bounded kernel with
0 ≤ k(x, y) ≤ K for any (x, y). Then the test (5) is consistent
if

m >
24K2(1 + η)

MMD4[p, q]
logn, (6)

where η is any positive constant. Furthermore, under the above
condition, the test (5) is also exponentially consistent.

We note that the boundedness condition0 ≤ k(x, y) ≤ K
on the kernel function is satisfied by many kernels such as the
Gaussian kernel and Laplace kernel. Theorem 1 implies that it
is sufficient to haveO(logn) samples in each data sequence in
order to guarantee consistency of the test (5). This is desirable
in practice because as the number of sequences gets large (and
hence detection becomes more challenging), the number of
sample needed for building a distribution-free and consistent
test can still be much smaller, i.e., of the logarithmic order of
the number of sequences.

We now consider the general case withs anomalous
sequences, where1 ≤ s ≤ n − 1. Here, we allows ≥ n

2
for generality of our result. We first consider the case when
the value ofs is known a priori, and build the following test.
We compute MMD2u[X,Yk] for each1 ≤ k ≤ n, and choose
sequences with the largests values of MMD2u[X,Yk] to be
anomalous. More specifically, the test outputs the following
set that contains indices of anomalous sequences:

Î ={k : MMD2
u[X,Yk] is among thes largest

values of MMD2u[X,Yi] for i = 1, . . . , n}. (7)

The following theorem characterizes a condition under
which the above test is consistent.

Theorem 2. Consider the anomaly detection model with a
reference sequence generated by p and with s anomalous
sequences, where 1 ≤ s ≤ n − 1. Assume the value of s is
known. Further assume that the test (7) applies a bounded
kernel with 0 ≤ k(x, y) ≤ K for any (x, y). Then the
distribution-free test (7) is consistent if

m >
24K2(1 + η)

MMD4[p, q]
log((n− s)s), (8)

where η is any positive constant. Furthermore, under the
above condition, the test (7) is also exponentially con-
sistent. The computational complexity of the test (7) is
max{O(nm2),O(ns− s2

2 )}.

Sinces has an order less than or equal toO(n), Theorem
2 implies that it is sufficient to haveO(log n) samples in each
data sequence in order to guarantee consistency of the test.
Althoughs does not affect the order ofm, it is still interesting
to further understand hows affects the exact value of the
threshold in (8). It can be seen that ifs ≤ n

2 , the threshold on
m to guarantee consistent detection increases ass increases,
which is reasonable. It is somewhat surprising that ifs > n

2 ,
the threshold onm decreases ass increases. This is in fact also
intuitive, because ifs > n

2 , the number of normal sequences is
less thann2 , and it is hence more convenient to detect normal
sequences (and consequently anomalous sequences are also
identified). Ass increases, the number of normal sequences
decreases, and thus detection is easier.

Theorem 2 also implies that computational complexity of
the test (7) is at mostO(n2), because the orderO(logn) for
m is sufficient for the test to be consistent, ands is at most
n.

We next consider the case in which the value ofs is
unknown. For this case, the test (7) is not applicable, because
it depends on the value ofs. In order to build a test now,
we observe that for large enoughm, MMD2

u[X,Yk] should
be close to zero ifYk is drawn fromp, and should be far
away enough from zero (in fact, close to MMD2[p, q]) if Yk

is drawn from the anomalous distributionq. Based on this
understanding, we build the following test:

Î = {k : MMD2
u[X,Yk] > δn} (9)

where the thresholdδn → 0 asn → ∞. This requirement on
δn is to guarantee that the threshold is asymptotically less than
MMD2[p, q], which is positive but unknown. The following



theorem characterizes a condition thatm should satisfy in
order for the test (9) to be consistent.

Theorem 3. Consider the anomaly detection model with a
reference sequence generated by p and with s anomalous
sequences, where 0 ≤ s ≤ n− 1. Assume that the value of s
is unknown a priori. Further assume that the test (9) adopts
a threshold δn that converges to 0 as n → ∞, and applies a
bounded kernel with 0 ≤ k(x, y) ≤ K for any (x, y). Then
the test (9) is consistent if

m >16(1 + η)K2 max

{

log(max{s, 1})

(MMD2[p, q]− δn)2
,
log(n− s)

δ2n

}

(10)

where η is any positive constant. The computational complex-
ity of the test (9) is O(nm2).

Remark 1. Theorem 3 is also applicable for the case with
s = 0, i.e., the null hypothesis when there is no anomalous
sequence.

Theorem 3 implies that ifs
n
< 1 asn → ∞, the threshold

onm in (10) is dominated by the second term. Sinceδn → 0 as
n → ∞, m should scale strictly faster thanO(log n) in order
to guarantee consistent detection. Compared to the case with
the value ofs known (for which it is sufficient form to scale
at the orderO(log n)), the threshold onm has an order-level
increase due to lack of the knowledge ofs. An extreme case
occurs if s

n
= 1 asn → ∞, in which having the orderO(log n)

for m is sufficient. This is reasonable, because now anomalous
sequences dominate so that errors caused by the asymptotically
small thresholdδn do not dominate the performance, and hence
do not enlarge the requirement on the order ofm.

We also note that the test (9) is not exponentially consistent.
In fact, when there is no null hypothesis (i.e.,s > 1), an
exponentially consistent test can be built as follows. For each
subsetS of {1, . . . , n}, we compute 1

|S|

∑
k∈S MMD2

u[X,Yk],
and the test finds the set of indices corresponding to the
largest average value. However, for such a test to be consistent,
m needs to scale linearly withn and the computational
complexity is exponential withn, which is not desirable.

IV. N UMERICAL RESULTS

A. Demonstration of Theorems

We choose the distributionp to be Gaussian with mean
zero and variance one, i.e.,N (0, 1), and choose the anomalous
distribution q to be the Laplace distribution with mean one
and variance one. We use the Gaussian kernelk(x, x′) =

exp(− |x−x′|2

2σ2 ) with σ = 1 for all experiments.

For the case withs = 1, we run the test (5) for five cases
with n = 100, 200, 300, 400 and500, respectively. In Figure 2,
we show how the probability of error changes withm. For
illustrational convenience, we normalizem by logn, i.e., the
horizontal axis representsmlogn

. It is clear from the figure that
when m

logn
is above a certain threshold, the probability of error

converges to zero, which is consistent with our theoretical
results. Furthermore, for different values ofn, all curves drop
to zero almost at the same threshold. This observation confirms
Theorem 1, which states that the threshold onmlogn

depends
only on the boundK of the kernel and the MMD of the two
distributions. Both quantities are constant for all valuesof n.
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Fig. 2. Performance whens = 1.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Number of Samples in One Sequence: m

P
ro

ba
bi

lit
y 

of
 E

rr
or

 P
e

 

 

s=1
s=20
s=40

Fig. 3. Performance whens ≥ 1.
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Fig. 4. Performance whens is unknown.

For the case withs ≥ 1, we setn = 100, and run the test
(7) for three cases with the numbers of anomalous sequences
beings = 1, 20 and40, respectively. In Figure 3, we plot the
probability of error as a function ofm. It can be seen that
for each value ofs, when m is above a certain threshold,
the probability of error converges to zero, confirming that our
test is consistent. Furthermore, the threshold onm at which
a curve drops to zero increases withs. This observation is
consistent with Theorem 2, which suggests that the threshold
on m increases withs if s < n

2 .

We next study the case withs anomalous sequences, but
the value ofs is unknown a priori. For this simulation, we set
s = 10, but our test does not exploit such information. We
choose the distributionp to beN (0, 1

2 ), and chooseq to be
a mixture of two Laplace distributions with equal probability:
one with mean−3 and variance12 and the other with mean
3 and variance12 . We apply the test (9), and set the threshold
δn = 1

(logn)0.7 , which converges to zero asn → ∞. We set
m = ⌈0.28(logn)1.4 log(n − s)⌉. In Figure 4, we plot the
probability of error as a function ofn. It can be seen that as
n increases, the probability of error converges to zero. This
clearly confirms Theorem 3, which implies that the chosen
scaling behavior ofm should guarantee consistency of the test.

B. Comparison with Other Tests

We first compare the MMD-based test with four other tests
based on traditional statistical approaches: the t-test, FR-Wolf
test, FR-Smirnov test, and Hall test. We focus on the scenario
with s = 1, and setn = 100, and compare the five tests for
the following four cases:

• p and q have same mean and same variance:p is a
Laplacian distribution with mean1 and variance5, and
q is a mixture of two Laplacian distributions with equal
probability: one with mean−1 and variance1, and the
other with mean3 and variance1.
• p andq have different means and same variance:p is a
Gaussian distribution with mean0 and variance1, andq
is a Laplacian distribution with mean 1 and variance 1.
• p andq have different mean and different variance:p is
Gaussian distribution with mean0 and variance1, andq
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(a) p andq have the same mean and variance (b)p andq have different means and the same variance
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(c) p andq have different means and variances (d)p andq have the same mean and different variances

Fig. 5. Comparison of MMD-based test with other four tests

is a Laplacian distribution with mean1 and variance3.
• p andq have same mean and different variance:p is a
Gaussian distribution with mean0 and variance1, and
q is a mixture of two Laplacian distributions with equal
probability: one with mean−2 variance3 and the other
with mean2 and variance3.

In Figure 5, we plot the probability of error as a function
of m for the five tests for the above four cases. It can be
seen that for all cases, the MMD-based test is either the best
or one of the best tests among the five tests. In particular,
the MMD-based test performs much better than other tests
for the case whenp andq have the same mean and variance,
which suggests that the MMD-based test is especially useful
for capturing differences in higher order moments between two
distributions compared to other tests. We also note that al-
though the Hall test sometimes yields comparable performance
with the MMD-based test, its complexity is much larger than
that of the MMD-based test.
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Fig. 6. Comparison of MMD-based test with two other kernel-based tests

We next compare our MMD-based test with two other
kernel-based tests, KFDA and KDR (KDR uses divergence
as the metric). We focus on the scenario withs = 1, and
set n = 100. For all tests, we use the Gaussian kernel with
σ = 1. We compare the three kernel-based tests for the same

four cases as in the previous comparison. In Figure 6, we plot
the probability of error as a function ofm for the three tests.
It can be seen that the MMD-based test performs much better
than the other two tests whenp and q have the same mean
and variance, and performs as well as the other two tests in
the remaining three cases.

V. CONCLUSION

In this paper, we have investigated a nonparametric
anomaly detection problem, and have built MMD-based
distribution-free tests to detect anomalous sequences. Wehave
characterized the scaling behavior of the numberm of samples
as the total numbern of sequences goes to infinity in order to
guarantee consistency of the developed tests. We have demon-
strated the performance of our tests by comparing them to
other appealing tests. Our study of this problem demonstrates a
useful application of the mean embedding of distributions and
MMD, and we believe that such an approach can be applied
to solving various other nonparametric problems.
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