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Abstract—A K-receiver degraded broadcast channel with required to be secured from all receivers with worse channel
secrecy outside a bounded range is studied, in which a transtter quality.
sends K messages respectively td receivers, and the channel
quality gradually degrades from receiver K to receiver 1. Each Differently from the above model where the messages are
receiver k is required to decode messagedVi,..., Wy, for  kept secure from receivers with immediate next-level worse
1 < k < K. Furthermore, each messagéV’; should be kept secure  channel quality, a new broadcast channel model with secrecy
from receivers with two-level worse cha_nnel_quallty, i.e.receivers outside a bounded range was studied in [9] and [10], in
}Fh.é.éaﬁh_ie?/ét;rlzesscicerg%y gz‘g%ﬂgefg(')?g 'zuf;g)r’pgﬁ{gﬁtelg;;d't which each message is required to be kept secure from the

receivers with two-level worse channel quality. Such a nhisde

each message with random binning employed for each layer for cularl ful to d b s in which the i ;
protecting all upper-layer messages from lower-layer receers. particularly useful to describe scenarios in which the nexs

Furthermore, the scheme allows adjacent layers to share ras so ~ channel quality varies continuously. The secrecy capavaty
that part of the rate of each message can potentially be shate ~ characterized in this setting for the three-receiver madel

with its immediate upper-layer message to enlarge the rateagion.  [9] and four-receiver model in [10]. It turns out that a natur
More importantly, an induction approach is developed to peform generalization of the three-receiver model does not peovid
Fourier-Motzkin elimination over 2K variables among ©(K?)  the capacity region for the four-receiver model. A novekrat
bounds to obtain a close-form achievable rate region. A corrse splitting and sharing scheme was proposed in [10], which is
proof is developed that matches the achievable rate regiomhich  shown to be critical to further enlarge the achievable negio
involves recursive consiruction of the rate bounds. and establish the secrecy capacity region for the fourivece
model. The idea is to first use lower-layer messages to serve
as random sources to protect high-layer messages, and if the
lower-layer messages are more than enough to protect high:

The broadcast channel models scenarios in which onkyers messages, then further share the remaining ratevef-lo
transmitter's signal can simultaneously reach multiple relayer messages with upper-layer messages, as such parts ¢
ceivers, and it has been used widely to model wireless transewer layer messages can satisfy the same secrecy comstrain
missions due to the open nature of wireless environments. Ofis high-layer messages.

ten in broadcast situations, among the receivers withinnsom o . L
nication range of the transmitter, some are intended receiv _ Further generalization of the capacity characterizatam f
while others are unintended receivers or even eavesdreppdf!® above four-receiver model to the arbitrakj-user case
from which the messages should be kept secure. Variou2ecomes very challenglng_ dug to the followmg reasonst,Firs
broadcast channel models with both transmission reltgbili P@sed on the understanding in the four-receiver model, eact
constraints (i.e., legitimate receivers should decodesages Message as well as the random bin number at each layer ca
destined for them) and secrecy constraints (i.e., eavppare  Potentially serve as a random source to protect all higaged
should be kept ignorant of messages) have been intensiveljessages (from lower layer receivers). The design of joint

studied, especially in recent years. An overview of thesé€mbedded coding and random binning is very complicated to
studies can be found in [1] and [2]. handle. For example, consideration of whether to adoptmand

binning at layerk depends on whether embedded coding of

The basic model with one legitimate receiver and ondayerk — 1 is sufficient to protectV; from receiverk — 2, and
eavesdropper, i.e., the wiretap channel, was initiated pga/  whether embedded coding of layer 2 and (possible) random
in [3]. A more general model with an additional common binning in layerk — 1 are sufficient to proteci¥,_; and
message intended for both the legitimate receiver and th#®/;, and so on. Incorporating all these considerations into the
eavesdropper was studied by Cgisand Korner in [4]. The design of an achievable scheme is not feasible for an ampitra
broadcast channel with multiple legitimate receivers eesp K-user model. Secondly, due to rate splitting and sharing
tively decoding individual messages and with one eaveg@nop across adjacent layers, the rate region is expressed irs term
being kept ignorant of all messages was studied in [5] and [6]of individual rate components. A typical technique to catve
Furthermore, the broadcast channel with layered decodidg a the rate region in terms of the (total) rate for each message
layered secrecy requirements was studied in [6]—[8], inclwhi is Fourier-Motzkin elimination. However, for the arbityak -
as the channel quality of a receiver gets one level better, onuser model, a large numbei of rate variables should be
more message is required to be decoded, and this messageelBninated fromO(K?) rate bounds. Such a procedure is not

I. INTRODUCTION



analytically tractable in general. e K message setsVi, € Wi {1,--.,2"B} for
k= , K, which are mdependent from each other
and in wh|ch each message is uniformly distributed over
the corresponding message set;

e An (possibly stochastic) encodé¢f: Wy x -+ - x Wi —

In this paper, despite the challenges mentioned above,
we fully characterize the secrecy capacity region for e
receiver model with secrecy outside a bounded range. Our
solution of the problem includes the following new ingredi-

X ; o X" and
ents. First, our achlevable_ scheme employs ran_dom plnnmg o K decodersg? : VI — (Wi,---, W) for k =
in each layer, which avoids the complex consideration of " =~
whether or not it is necessary to employ random binning o
for each layer. Our observation of rate sharing only between A secrecy rate tupleR,, - - - , Rx) is said to beachievable,
adjacent layers without loss of generality is critical teege if there exist a sequence ()B”Rl ..., 2"Ex n) codes such
the obtained rate region simple enough for further manipulathat both the average error probability
tion. Secondly, we design an induction algorithm to perform n_ K nivn
Fourier-MotzIZn eIimina?ion. Instead of di?ectly eIim'rFtJ'mag P =Pr(Ud (W, W) # gE()}) (1)

2K variables amon@ (K ?) bounds, we eliminate a pair of and the leakage rate at each recedor k = 3,..., K,

variables at a time. We then further show that the region

after each elimination step possesses a common structure by —I(sz s Wk Yy y) (2)

induction. Finally, the converse proof is developed to thatc

the achievable rate region, which involves careful resersi @PProach zero as goes to infinity.

construction of rate upper bounds. Here, the asymptotically small error probability as in (1)
The remainder of this paper is organized as follows. In|mpI|es that each receivek is able to decode messages

Section I, we introduce our system model. In Section Ill, we , Wi, and the asymptotically small leakage rate as in
present our main results and describe the main idea of th@) for ea(;h receivek — 2 implies that reC(Ialvek 7h2 is kept
achievable scheme. In Section 1V, we provide outlines of th%gnoranto messagdd’y, . .., Wi. Our goal is to characterize
proofs of achievability and converse. Finally, in Sectionvié he secrecy capacity reg|on that consists of all achievati®e
conclude our paper. tuples.

1. MAIN RESULTS
II. CHANNEL MODEL ) ) ) o
Our main result is the following characterization of the

. Wo O secrecy capacity region for th&-user model with secrecy
Wi 3% outside a bounded range. For simplicity of notation, we let
W We ax B-wW.W, Wk Ur=2X
17 Wy = Theorem 1. Consider the K-receiver degraded broadcast
W W,W3 W : . o
. e i channel with secrecy outside a bounded range as described in
: : Section 11. The secrecy capacity region consists of rate tuples
@ W, WL W5 W (R1,Ro, ..., Ry) satisfying
Ry < I(U1; Y1), (3a)
Fig. 1. The broadcast channel with secrecy outside a bouradegk k k
> R <ZIUL,Y|UL 1), for 2 <k <K, (3b)
In this paper, we consider th&-receiver degraded broad- =2
cast channel with secrecy outside a bounded range (see)Fig. 1 J
A transmitter sends information t& receivers over a discrete ZR" < Z I(U; Y |Uiq) | = I(Uy; Yi—2|Ui—2),
memoryless channel. The channel transition probabilibcfu P

Fion is given byPy, ...y, | x, whereX € X denotes the chqnnel for 3<1<j<K, 3¢)
input, andY; € ). denotes the channel output at receiker . .
for 1 < k < K. The channel is assumed to be degraded, i.efor some Py,u,..u, such that the following Markov chain
the following Markov chain condition holds: condition holds:

XYk =Y 1 — - =Y. U,—-Us— - —-Ug =Ygk ==Y =Y. (4)

Hence, the channel quality gradually degrades from receive In the above capacity region, the bounds (3a) and (3b)
K to receiver 1. are due to the decoding requirements, i.e., receivehould
decode messagé®y,..., Wy, for 1 < k < K. The sum rate

There are in total” messages§V;, Wo, ..., Wi intended 046 ave “que to the rate sharing scheme we design. Th

for K receivers with the following decoding and secrecy,),,,qs (3c) are due to the secrecy requirements, i.e., gEssa
requirements. Receivek is required to decode messages e

_ 1,...,W; need to be kept secure from receiver 2 for
Wy, W,..., Wy, for k= 1,2, ..., K. Furthermore, message s = = ;= & Fyrthermore, the bounds (3c) can be further
Wy needs to be kept secure from receivérs. .,k — 2 for fitten as
k = 3,...,K. Thus, each message is required to be kep¥v ,
J

secure from receivers with two-level worse channel quality XJ: R < Z (I(U YilUs 1) — I(Us: Yi |U ))
i iy Xi|Ui—1) — iy Y1—2|Ui-1 )
A (2nfa ... 2nBx p) code for the channel consists of par Farat



which has a clear intuitive interpretation. However, the total number of bounds in the achievable

Th nver roof of Theorem 1 is mainlv based region (5) is©(K?) with 2K variables to be eliminated. Di-
€ converse proot o eore S mainly base Qr}ectly applying Fourier-Motzkin elimination is not anatylly

recursive construction of rate upper bounds and imens'v?ractable In order to solve such a problem, we design an
manipulations of mutual information terms. An outline o&th ;. ,ction algorithm to perform Fourier Motzkin eliminatio
proof is provided in Section V. We next explain our design ofW

an achievable scheme and derivation of the achievablemegio < eliminate the rate pait;_, 2 and Ry, for 3 < k < X,
; ) 9%ne at each step. We wish to show that the regiynafter
in more detail as follows.

eliminating R, 2 and Ry ; takes the following structure:
We adopt the following techniques to design our achievable

scheme: 1) superposition coding; 2) joint embedded codidg a _ i< I<U13 Y1),

random binning; and 3) rate splitting and sharing. Due to the J J
requirement of layered decoding, we design one layer ofrsupe ZRi < Z I(U;Yi|Ui—q), for2 <j <k -1,
position coding for each message, i.e., layerorresponds to i=2 i=2

Wy, for 1 < k < K. We then design random binning for each k

layer. We use joint embedded coding and random binning to ZRi + Rpo < ZI(UL-;Y,L-|UL-_1),
provide randomness for secrecy. We further apply ratetisyit i=2 i

and sharing to enlarge the achievable region. j j

=2
J
Since the messages do not need to be kept secure from their Z Ri < Z I(U3; Yi|Ui—1) — I(Uj; Yi—2|Ui—2),

immediate downstream receivers, such a receiver's message

can serve as embedded coding to provide additional random- for3<i<j<k-1,
ness. More specifically, within thé-th layer, we split the k k

messagel;, into two partsWj; and Wy o. The message ZRiJrRm < Z I(U;Yi|Ui—1) — I(Ug; Yi—2|Ui—2),
Wi serves as embedded coding which is an additional i=: i=l—1

random source in addition to the random binning to protect for3<i<k. (6)
Wi.2 and the higher layer messages from receligery, i.e.,

we require that Wy o, Wit 1.1, Wiy1.2,--., Wk 1, Wk o) are  Such a claim can be easily verified for the case whes

secured fronY;,_1, for 2 < k < K — 1. On the other hand, 3,4,5. If such a claim holds foiR;, we are then able to show
the upstream receiveY,; can also decodéV, » because that the regioriRy ., after eliminatingRy » and Ry11,1 has
Y41 has a better channel quality than,. The message the same structure given by

W2 satisfies both the decoding and secrecy requirements for

messagel/;. 1. Therefore, the rate ofV; » can be counted ' =< I(_Ul?yl)’

towards the rate of eithé#’;, or Wy 1. By such a rate sharing J J ‘
strategy, the achievable region may be enlarged. ZRZ- < ZI(Ui§ Yi|Ui—1), for 2 <j <k,
We note that the rate can only be shared between adjacent = ;;21

receivers, which is an important observation of the problem R 4+ R < I(U:: YU
and is critical to reducing the complexity of the design of th Z i+ MLz = Z (U3 YilUi-v),

achievable scheme. More specifically, the ratéiaf, cannot =2 ; ’:JQ

be counted towards the rates ®Fy,o,..., Wk, because . R }
Wia,..., Wy are required to be secured not only from > i< Z I(U3; YilUiz1) = I(Uj; Yi-2|Ui-2),
receiverY;_, but also from receivel;, both of which are i=l i=i=1 '

required to decodéVy, . for3<i<j<k,

k+1

. . . k+1

Based on the achievable scheme, we obtain the followin

achievable region: gZ:Ri + Rit1,2 < Z I(U;; Yi|\Ui—1) — I(Ugs1; Yi—2|Ui—2),
i=l i=l—1

Ry < I(U; 1), for3<i<k+1.
Ry + Ri2 < I(Uy; Yi|Ug—1), for2 <k < K, ) _ _ )
; Thus, the above induction argument yields the achievable

J J ; ;
Riio+ ) (Rin+Rip) < Y (U Yi|Uisa) region in Theorem 1.
1=l 1=l—1
— I(Uj; Yi—2|Uj—2), IV. OUTLINE OF PROOF
for3<I<K,l—-1<j<K. (5)

In this section, we outline the achievability and converse
The above region is expressed in terms of component rates dpeoofs of Theorem 1.

to rate splitting. In order to express the above region imgof

total rate for each message, we deffye= Ry_1 2+ Ry 1 for - s ;

S<k<K—1, Ry — Ros andRy — Ry 15+ B+ Ric.o. A. Proof of Achievability (Outline)

We then wish to project the region (5) onto the rate space Fix a distribution Py, v,.. v, x Py, vex Satisfying
(Ry1,...,Rk). This can be done by adding the above ratethe Markov chain condition in (4). For simplicity, we define
definitions to the achievable region (5) and then performingd/x = X in the following proof. We design the achievable
the Fourier-Motzkin elimination to eliminat®; ; and Ry 2 scheme as follows:

for2<k<K.



Random codebook generation:

e Generate2™' independent and identically distributed
(i.i.d.) u} with distribution] T?"_; p(u1,;). Index these code-
words asuf (w1), wy € [1,2"].

e For eachu? (w,), generat@"fza+Rzz2 jjd. 43 with dis-
tribution [T;" ; p(uz,:|u1,;). Partition these codewords into
2nR2.2 pins. Index these codewords @$(w1, wa 1, w2 2),
wa,1 € [1, 2”R2'1], wa,2 € [1, 2”R2'2]. N

e For eachul(wy,ws 1, w2 2), generat@™ s ii.d. uf with
distribution [;"_, p(us,i|u2,;). Partition these codewords
into 2771 bins. We further partition each bin in@#z
sub-bins. Hence, there ag#(fis—flsi—Fs2) 4» in each
sub-bin. We usews; € [1 : 2"Fs1] to denote the
bin number,ws, € [1 : 2"%:2] to denote the sub-
bin number, ands € [1 : 27(Fs—fs1=Fs.2)] to denote
the index within the bin. Hence, eacl} is indexed by
(whU}2,17U12,2,w3,1,w3,2,l3)-

e For eachu}_,(wi,...,wk—1,1,Wk—1,2,lk—1), generate
2nBe j.i.d. up with distribution [T}, p(ug,:|uk—1,:). Par-
tition these codewords int@"*1 bins. We further par-
tition each bin into2"%+2 sub-bins. Hence, there are
2nfk—Ria—Ri2) 47 in each sub-bin. We usey; € [1 :
21%.1] to denote the bin numbery, > € [1 : 2" 2] to de-
note the sub-bin number, arg € [1 : 27— Rea—Fr2))
to denote the index within the bin. Hence, each is
indexed by(w:, ..., Wk—1,1, Wrk—1,2, lk—1, Wk,1, W,2, k).

receiver 1 decodes the messagewith asymptotically small
probability of error if the following inequalities are ssfied:

Ry <I(Uy; Y1),
Ro1+ Rao < I(Ug; Ya|Uy),

Ri < I({Up; Yi|Up—1), for3<k < K. (7)

Analysis of the leakage ratee We require
W12, Wi1,Wgo,...,Wk1,Wko to be secured from
receiverY,_o for 3 < k < K. Therefore, it suffices to show

1 n
EI(Wk—l,Qy Wi, Wi, ..., Wk 1, Wk 2; Y, o
[Wi,.. ~7Wk—2,17Wk—2,2) — 0, asn — oo, (8)

for 3 <k < K. It can be shown that if

J

Ri_1—Ri_12+ Z(Rz —Ri1—Ri2) > I(Uj; Yi-2|Ui—2)
=l

9

for3<I< K-1andl—-1<j <K, then the condition (8)
is satisfied.

Combining the conditions (7) and (9), we have the achiev-
able region as in (5).

Rate sharing: We note that the messag€_ o satisfies
the decoding and secrecy requirement ¥gt_, but also for

the receivers.
Encoding:

To send a message tuple;, wa 1, wa 2, ..., Wk,1, WK,2),
the transmitter randomly and uniformly generatgs <

[1 on(Fx—Fra—Re2)] for 3 < k < K, and sends
x”(wl, e ,U}K,l,w;(,g, 13, ceey lK)
Decoding:

e Receiverl claims thatw; is sent, if there exists a unique
w; such that

(ut (@), 97 € T2 (Pvys).

Otherwise, it declares an error.
e Receiver2 claims that(w;, ws,1,ws22) is sent, if there
exists a unique tupléw;, ws 1, Wa,2) such that

(U?(ﬂjl),UEL(&J\L@\Q,M@\Q,Q),?J;L) € T (Pu,v,v,)-

Otherwise, it declares an error.

eFor 3 < k < K, receiver k claims that
(w1, ..., WK1, W 2) is sent, if there exists a unique tuple
(W1, ..., Wk1, Wk 2,l3,...,1lk) such that
(u?(wl)a .o auZ(wla .o a@k,la @k,2; 137 ceey lk)vyg)

€T (Pu, - .uyvi)-
Otherwise, it declares an error.

Analysis of the error probability: By the law of large
numbers and the packing lemma, we can show that reckiver
decodes the messag@e, ..., w1, ws,2) for 2 <k < K and

Thus, we design a rate sharing scheme by defiding= Rs 1,
Ri = RK—I,Q + RKJ + RK’Q and Ry, = Rk7172 + Rk,l; for

3 < k < K — 1. After adding these equations and performing
Fourier-Motzkin elimination to eliminate?;,; and Ry for

2 < k < K, we obtain the achievable region as in (3).

B. Proof of Converse (Outline)

To prove the converse, we construct the auxiliary random
variables as follows:

Ui = (Wi, YY),
UQ,'L' - (Wla WQ; }/2171%
Uk,i = (Wla . '7Wk7YI:_17Ykn—2,i+1>ﬂ for 3 <k< Ka
(10)
which satisfy the following Markov chain condition:

Ul,i4>-~-%UK,i*)Xi*)YK,i%”-‘)YLi; (11)

fori=1,...,n.

The bounds (3a) and (3b) corresponding to the decoding
requirements can be derived following similar techniques a
those used to derive the sum rate boudgd+ R, as in [10].
However, the proof for the bounds (3c) is more involved
and requires careful recursive construction of the terms. |
the following, we only outline the key steps due to space
limitations.

By Fano’s inequality and the secrecy requirements, we have

H(Wi|Y) < ne, for 1 <k <K,

I(W]m---,WK§Y]€”,2|W17---7W]§—2) < NEp, for 3 < k < K.



For any3 < [ < j < K, we can boundy.’_, R; as
follows:

J

Z nRn, = H(Wl,. . .,W]') + H(Wlfl) — H(Wlfl)
m=l
J
< D HWiw) = I(Wiir, ., Wi Y| Wi, ., Wia) + nen.
m=Il—1
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We further bound” (W,,,) for eachl —1 < m < j as follows:

) <> I(Un i Yin il Um—10)
_[(Y‘—l-Ymi|W1,... W’m IY il Ym% 31+1)

m—

( m—3,i+1> mz|W17"' Wn— 11/!?1 1)

H(W,

( m— 2z+17 mz|W1,...,WmY7; 1). (12) [2]
We also bound—I(W;_q,..., W;;Y,",|Wh,..., W;_5) as
follows: 3]
_I(Wl—h"'7Wj;Y712|W17'--7Wl—2) [4]
< Z —I(Uji;Y1-2,:|Ui—2,)
=1 [5]
I( 27 l 2L|W1)"' m—QY;Ti47i+1)
+ (Y o 15V 21|W1,-~-aWjYJ‘271Y712,z‘+1) (6]
+I(Yf g Yo L|W1,.. WjYEEQ,iJrl)
+I(}/i 21—‘,—17}/[ 2’L|W17~-~7Wl72}/l’rl47i+1>. (13) [7]
Summing up (12) for eaci — 1 < m < j and (13), (8]
and applying Csisme’s sum identity, we can show that those
redundant terms either cancel each other or are less than zer
Therefore, the converse proof for (3c) is completed. [9]
V. CONCLUSION [10]

In this paper, we have studied/é-receiver discrete mem-
oryless degraded broadcast channel with secrecy outside a
bounded range. We have characterized the secrecy capacity
region for this model by designing an achievable scheme
based on superposition coding, joint embedded coding and
random binning and rate splitting and sharing. To design
an achievable scheme that loses no optimality but yields a
tractable achievable rate region, we have employed random
binning in each layer to avoid the complex decision of whethe
or not to use random binning as in the achievable scheme
for the four-receiver model [10]. Moreover, we have expmdit
a critical property of the problem so that the design of rate
sharing is only between adjacent receivers, which sigmifiga
reduces the complexity of designing the achievable scheme.
We have further proposed a novel induction algorithm to
perform Fourier-Motzkin elimination on the achievableiceg
with 2K variables to be eliminated amo@y K2) bounds. We
have also constructed a converse proof, which involveddare
recursive construction of the terms in the bounds. We gratei
that our induction algorithm to implement Fourier-Motzkin
elimination can be useful to study other network models with
rate sharing among a large number of users.

Science Foundation (ISF).
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