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Abstract—A K-receiver degraded broadcast channel with
secrecy outside a bounded range is studied, in which a transmitter
sendsK messages respectively toK receivers, and the channel
quality gradually degrades from receiver K to receiver 1. Each
receiver k is required to decode messagesW1, . . . ,Wk, for
1 ≤ k ≤ K. Furthermore, each messageWk should be kept secure
from receivers with two-level worse channel quality, i.e.,receivers
1, . . . , k − 2. The secrecy capacity region is fully characterized.
The achievable scheme designates one superposition layer to
each message with random binning employed for each layer for
protecting all upper-layer messages from lower-layer receivers.
Furthermore, the scheme allows adjacent layers to share rates so
that part of the rate of each message can potentially be shared
with its immediate upper-layer message to enlarge the rate region.
More importantly, an induction approach is developed to perform
Fourier-Motzkin elimination over 2K variables among Θ(K2)
bounds to obtain a close-form achievable rate region. A converse
proof is developed that matches the achievable rate region,which
involves recursive construction of the rate bounds.

I. I NTRODUCTION

The broadcast channel models scenarios in which one
transmitter’s signal can simultaneously reach multiple re-
ceivers, and it has been used widely to model wireless trans-
missions due to the open nature of wireless environments. Of-
ten in broadcast situations, among the receivers within commu-
nication range of the transmitter, some are intended receivers
while others are unintended receivers or even eavesdroppers
from which the messages should be kept secure. Various
broadcast channel models with both transmission reliability
constraints (i.e., legitimate receivers should decode messages
destined for them) and secrecy constraints (i.e., eavesdroppers
should be kept ignorant of messages) have been intensively
studied, especially in recent years. An overview of these
studies can be found in [1] and [2].

The basic model with one legitimate receiver and one
eavesdropper, i.e., the wiretap channel, was initiated by Wyner
in [3]. A more general model with an additional common
message intended for both the legitimate receiver and the
eavesdropper was studied by Csiszár and K̈orner in [4]. The
broadcast channel with multiple legitimate receivers respec-
tively decoding individual messages and with one eavesdropper
being kept ignorant of all messages was studied in [5] and [6].
Furthermore, the broadcast channel with layered decoding and
layered secrecy requirements was studied in [6]–[8], in which
as the channel quality of a receiver gets one level better, one
more message is required to be decoded, and this message is

required to be secured from all receivers with worse channel
quality.

Differently from the above model where the messages are
kept secure from receivers with immediate next-level worse
channel quality, a new broadcast channel model with secrecy
outside a bounded range was studied in [9] and [10], in
which each message is required to be kept secure from the
receivers with two-level worse channel quality. Such a model is
particularly useful to describe scenarios in which the receivers’
channel quality varies continuously. The secrecy capacitywas
characterized in this setting for the three-receiver modelin
[9] and four-receiver model in [10]. It turns out that a natural
generalization of the three-receiver model does not provide
the capacity region for the four-receiver model. A novel rate
splitting and sharing scheme was proposed in [10], which is
shown to be critical to further enlarge the achievable region
and establish the secrecy capacity region for the four-receiver
model. The idea is to first use lower-layer messages to serve
as random sources to protect high-layer messages, and if the
lower-layer messages are more than enough to protect high-
layers messages, then further share the remaining rate of lower-
layer messages with upper-layer messages, as such parts of
lower layer messages can satisfy the same secrecy constraints
as high-layer messages.

Further generalization of the capacity characterization for
the above four-receiver model to the arbitraryK-user case
becomes very challenging due to the following reasons. First,
based on the understanding in the four-receiver model, each
message as well as the random bin number at each layer can
potentially serve as a random source to protect all higher-layer
messages (from lower layer receivers). The design of joint
embedded coding and random binning is very complicated to
handle. For example, consideration of whether to adopt random
binning at layerk depends on whether embedded coding of
layerk−1 is sufficient to protectWk from receiverk−2, and
whether embedded coding of layerk−2 and (possible) random
binning in layer k − 1 are sufficient to protectWk−1 and
Wk, and so on. Incorporating all these considerations into the
design of an achievable scheme is not feasible for an arbitrary
K-user model. Secondly, due to rate splitting and sharing
across adjacent layers, the rate region is expressed in terms
of individual rate components. A typical technique to convert
the rate region in terms of the (total) rate for each message
is Fourier-Motzkin elimination. However, for the arbitrary K-
user model, a large number2K of rate variables should be
eliminated fromΘ(K2) rate bounds. Such a procedure is not



analytically tractable in general.

In this paper, despite the challenges mentioned above,
we fully characterize the secrecy capacity region for theK-
receiver model with secrecy outside a bounded range. Our
solution of the problem includes the following new ingredi-
ents. First, our achievable scheme employs random binning
in each layer, which avoids the complex consideration of
whether or not it is necessary to employ random binning
for each layer. Our observation of rate sharing only between
adjacent layers without loss of generality is critical to keep
the obtained rate region simple enough for further manipula-
tion. Secondly, we design an induction algorithm to perform
Fourier-Motzkin elimination. Instead of directly eliminating
2K variables amongΘ(K2) bounds, we eliminate a pair of
variables at a time. We then further show that the region
after each elimination step possesses a common structure by
induction. Finally, the converse proof is developed to match
the achievable rate region, which involves careful recursive
construction of rate upper bounds.

The remainder of this paper is organized as follows. In
Section II, we introduce our system model. In Section III, we
present our main results and describe the main idea of the
achievable scheme. In Section IV, we provide outlines of the
proofs of achievability and converse. Finally, in Section V, we
conclude our paper.

II. CHANNEL MODEL

Fig. 1. The broadcast channel with secrecy outside a boundedrange

In this paper, we consider theK-receiver degraded broad-
cast channel with secrecy outside a bounded range (see Fig. 1).
A transmitter sends information toK receivers over a discrete
memoryless channel. The channel transition probability func-
tion is given byPY1···YK |X , whereX ∈ X denotes the channel
input, andYk ∈ Yk denotes the channel output at receiverk,
for 1 ≤ k ≤ K. The channel is assumed to be degraded, i.e.,
the following Markov chain condition holds:

X → YK → YK−1 → · · · → Y1.

Hence, the channel quality gradually degrades from receiver
K to receiver 1.

There are in totalK messagesW1,W2, . . . ,WK intended
for K receivers with the following decoding and secrecy
requirements. Receiverk is required to decode messages
W1,W2, . . . ,Wk, for k = 1, 2, . . . ,K. Furthermore, message
Wk needs to be kept secure from receivers1, . . . , k − 2 for
k = 3, . . . ,K. Thus, each message is required to be kept
secure from receivers with two-level worse channel quality.

A (2nR1 , · · · , 2nRK , n) code for the channel consists of

• K message sets:Wk ∈ Wk = {1, · · · , 2nRk} for
k = 1, · · · ,K, which are independent from each other
and in which each message is uniformly distributed over
the corresponding message set;

• An (possibly stochastic) encoderfn: W1×· · ·×WK →
Xn; and

• K decodersgnk : Yn
k → (W1, · · · ,Wk) for k =

1, · · · ,K.

A secrecy rate tuple(R1, · · · , RK) is said to beachievable,
if there exist a sequence of(2nR1 , · · · , 2nRK , n) codes such
that both the average error probability

Pn
e = Pr

(
∪K
k=1{(W1, · · · ,Wk) 6= gnk (Y

n
k )}

)
(1)

and the leakage rate at each receiverk for k = 3, . . . ,K,

1

n
I(Wk, · · · ,WK ;Y n

k−2) (2)

approach zero asn goes to infinity.

Here, the asymptotically small error probability as in (1)
implies that each receiverk is able to decode messages
W1, . . . ,Wk, and the asymptotically small leakage rate as in
(2) for each receiverk − 2 implies that receiverk − 2 is kept
ignorant of messagesWk, . . . ,WK . Our goal is to characterize
the secrecy capacity region that consists of all achievablerate
tuples.

III. M AIN RESULTS

Our main result is the following characterization of the
secrecy capacity region for theK-user model with secrecy
outside a bounded range. For simplicity of notation, we let
UK = X .

Theorem 1. Consider the K-receiver degraded broadcast
channel with secrecy outside a bounded range as described in
Section II. The secrecy capacity region consists of rate tuples
(R1, R2, . . . , RK) satisfying

R1 ≤ I(U1;Y1), (3a)
k∑

i=2

Ri ≤

k∑

i=2

I(Ui;Yi|Ui−1), for 2 ≤ k ≤ K, (3b)

j∑

i=l

Ri ≤

(
j∑

i=l−1

I(Ui;Yi|Ui−1)

)
− I(Uj;Yl−2|Ul−2),

for 3 ≤ l ≤ j ≤ K, (3c)

for some PU1U2...UK
such that the following Markov chain

condition holds:

U1 → U2 → · · · → UK → YK → · · · → Y2 → Y1. (4)

In the above capacity region, the bounds (3a) and (3b)
are due to the decoding requirements, i.e., receiverk should
decode messagesW1, . . . ,Wk, for 1 ≤ k ≤ K. The sum rate
bounds are due to the rate sharing scheme we design. The
bounds (3c) are due to the secrecy requirements, i.e., messages
Wl, . . . ,Wj need to be kept secure from receiverl − 2 for
3 ≤ l ≤ j ≤ K. Furthermore, the bounds (3c) can be further
written as

j∑

i=l

Ri ≤

j∑

i=l−1

(
I(Ui;Yi|Ui−1)− I(Ui;Yl−2|Ui−1)

)
,



which has a clear intuitive interpretation.

The converse proof of Theorem 1 is mainly based on
recursive construction of rate upper bounds and intensive
manipulations of mutual information terms. An outline of the
proof is provided in Section V. We next explain our design of
an achievable scheme and derivation of the achievable region
in more detail as follows.

We adopt the following techniques to design our achievable
scheme: 1) superposition coding; 2) joint embedded coding and
random binning; and 3) rate splitting and sharing. Due to the
requirement of layered decoding, we design one layer of super-
position coding for each message, i.e., layerk corresponds to
Wk, for 1 ≤ k ≤ K. We then design random binning for each
layer. We use joint embedded coding and random binning to
provide randomness for secrecy. We further apply rate splitting
and sharing to enlarge the achievable region.

Since the messages do not need to be kept secure from their
immediate downstream receivers, such a receiver’s message
can serve as embedded coding to provide additional random-
ness. More specifically, within thek-th layer, we split the
messageWk into two partsWk,1 and Wk,2. The message
Wk,1 serves as embedded coding which is an additional
random source in addition to the random binning to protect
Wk,2 and the higher layer messages from receiverYk−1, i.e.,
we require that(Wk,2,Wk+1,1,Wk+1,2, . . . ,WK,1,WK,2) are
secured fromYk−1, for 2 ≤ k ≤ K − 1. On the other hand,
the upstream receiverYk+1 can also decodeWk,2 because
Yk+1 has a better channel quality thanYk. The message
Wk,2 satisfies both the decoding and secrecy requirements for
messageWk+1. Therefore, the rate ofWk,2 can be counted
towards the rate of eitherWk or Wk+1. By such a rate sharing
strategy, the achievable region may be enlarged.

We note that the rate can only be shared between adjacent
receivers, which is an important observation of the problem,
and is critical to reducing the complexity of the design of the
achievable scheme. More specifically, the rate ofWk,2 cannot
be counted towards the rates ofWk+2, . . . ,WK , because
Wk+2, . . . ,WK are required to be secured not only from
receiverYk−1 but also from receiverYk both of which are
required to decodeWk,2.

Based on the achievable scheme, we obtain the following
achievable region:

R1 ≤ I(U1;Y1),

Rk,1 +Rk,2 ≤ I(Uk;Yk|Uk−1), for 2 ≤ k ≤ K,

Rl−1,2 +

j
∑

i=l

(Ri,1 +Ri,2) ≤

j
∑

i=l−1

I(Ui;Yi|Ui−1)

− I(Uj ; Yl−2|Ul−2),

for 3 ≤ l ≤ K, l − 1 ≤ j ≤ K. (5)

The above region is expressed in terms of component rates due
to rate splitting. In order to express the above region in terms of
total rate for each message, we defineRk = Rk−1,2+Rk,1 for
3 ≤ k ≤ K−1, R2 = R2,1 andRK = RK−1,2+RK,1+RK,2.
We then wish to project the region (5) onto the rate space
(R1, . . . , RK). This can be done by adding the above rate
definitions to the achievable region (5) and then performing
the Fourier-Motzkin elimination to eliminateRk,1 and Rk,2

for 2 ≤ k ≤ K.

However, the total number of bounds in the achievable
region (5) isΘ(K2) with 2K variables to be eliminated. Di-
rectly applying Fourier-Motzkin elimination is not analytically
tractable. In order to solve such a problem, we design an
induction algorithm to perform Fourier Motzkin elimination.
We eliminate the rate pairsRk−1,2 andRk,1 for 3 ≤ k ≤ K,
one at each step. We wish to show that the regionRk after
eliminatingRk−1,2 andRk,1 takes the following structure:

R1 ≤ I(U1;Y1),
j∑

i=2

Ri ≤

j∑

i=2

I(Ui;Yi|Ui−1), for 2 ≤ j ≤ k − 1,

k∑

i=2

Ri +Rk,2 ≤

k∑

i=2

I(Ui;Yi|Ui−1),

j∑

i=l

Ri ≤

j∑

i=l−1

I(Ui;Yi|Ui−1)− I(Uj ;Yl−2|Ul−2),

for 3 ≤ l ≤ j ≤ k − 1,
k∑

i=l

Ri +Rk,2 ≤

k∑

i=l−1

I(Ui;Yi|Ui−1)− I(Uk;Yl−2|Ul−2),

for 3 ≤ l ≤ k. (6)

Such a claim can be easily verified for the case whenk =
3, 4, 5. If such a claim holds forRk, we are then able to show
that the regionRk+1 after eliminatingRk,2 andRk+1,1 has
the same structure given by

R1 ≤ I(U1;Y1),
j∑

i=2

Ri ≤

j∑

i=2

I(Ui;Yi|Ui−1), for 2 ≤ j ≤ k,

k+1∑

i=2

Ri +Rk+1,2 ≤

k+1∑

i=2

I(Ui;Yi|Ui−1),

j∑

i=l

Ri ≤

j∑

i=l−1

I(Ui;Yi|Ui−1)− I(Uj ;Yl−2|Ul−2),

for 3 ≤ l ≤ j ≤ k,

k+1∑

i=l

Ri +Rk+1,2 ≤

k+1∑

i=l−1

I(Ui;Yi|Ui−1)− I(Uk+1;Yl−2|Ul−2),

for 3 ≤ l ≤ k + 1.

Thus, the above induction argument yields the achievable
region in Theorem 1.

IV. OUTLINE OF PROOF

In this section, we outline the achievability and converse
proofs of Theorem 1.

A. Proof of Achievability (Outline)

Fix a distribution PU1U2...,UK−1XPY1...YK |X satisfying
the Markov chain condition in (4). For simplicity, we define
UK = X in the following proof. We design the achievable
scheme as follows:



Random codebook generation:

• Generate2nR1 independent and identically distributed
(i.i.d.) un

1 with distribution
∏n

i=1 p(u1,i). Index these code-
words asun

1 (w1), w1 ∈ [1, 2nR1 ].
• For eachun

1 (w1), generate2nR2,1+R2,2 i.i.d. un
2 with dis-

tribution
∏n

i=1 p(u2,i|u1,i). Partition these codewords into
2nR2,2 bins. Index these codewords asun

2 (w1, w2,1, w2,2),
w2,1 ∈ [1, 2nR2,1 ], w2,2 ∈ [1, 2nR2,2].

• For eachun
2 (w1, w2,1, w2,2), generate2nR̃3 i.i.d. un

3 with
distribution

∏n

i=1 p(u3,i|u2,i). Partition these codewords
into 2nR3,1 bins. We further partition each bin into2nR3,2

sub-bins. Hence, there are2n(R̃3−R3,1−R3,2) un
k in each

sub-bin. We usew3,1 ∈ [1 : 2nR3,1 ] to denote the
bin number,w3,2 ∈ [1 : 2nR3,2 ] to denote the sub-
bin number, andl3 ∈ [1 : 2n(R̃3−R3,1−R3,2)] to denote
the index within the bin. Hence, eachun

3 is indexed by
(w1, w2,1, w2,2, w3,1, w3,2, l3).

• For eachun
k−1(w1, . . . , wk−1,1, wk−1,2, lk−1), generate

2nR̃k i.i.d. un
k with distribution

∏n

i=1 p(uk,i|uk−1,i). Par-
tition these codewords into2nRk,1 bins. We further par-
tition each bin into2nRk,2 sub-bins. Hence, there are
2n(R̃k−Rk,1−Rk,2) un

k in each sub-bin. We usewk,1 ∈ [1 :
2nRk,1 ] to denote the bin number,wk,2 ∈ [1 : 2nRk,2 ] to de-
note the sub-bin number, andlk ∈ [1 : 2n(R̃k−Rk,1−Rk,2)]
to denote the index within the bin. Hence, eachun

k is
indexed by(w1, . . . , wk−1,1, wk−1,2, lk−1, wk,1, wk,2, lk).

The chosen codebook is revealed to both the transmitter and
the receivers.

Encoding:

To send a message tuple(w1, w2,1, w2,2, . . . , wK,1, wK,2),
the transmitter randomly and uniformly generateslk ∈

[1 : 2n(R̃k−Rk,1−Rk,2)] for 3 ≤ k ≤ K, and sends
xn(w1, . . . , wK,1, wK,2, l3, . . . , lK).

Decoding:

• Receiver1 claims thatŵ1 is sent, if there exists a unique
ŵ1 such that

(
un
1 (ŵ1), y

n
1

)
∈ T n

ǫ (PU1Y1
).

Otherwise, it declares an error.
• Receiver2 claims that(ŵ1, ŵ2,1, ŵ2,2) is sent, if there
exists a unique tuple(ŵ1, ŵ2,1, ŵ2,2) such that
(
un
1 (ŵ1), u

n
2 (ŵ1, ŵ2,1, ŵ2,2), y

n
2

)
∈ T n

ǫ (PU1U2Y2
).

Otherwise, it declares an error.
• For 3 ≤ k ≤ K, receiver k claims that
(ŵ1, . . . , ŵk,1, ŵk,2) is sent, if there exists a unique tuple
(ŵ1, . . . , ŵk,1, ŵk,2, l̂3, . . . , l̂k) such that
(
un
1 (ŵ1), . . . , u

n
k(ŵ1, . . . , ŵk,1, ŵk,2, l̂3, . . . , l̂k), y

n
k

)

∈ T n
ǫ (PU1···UkYk

).

Otherwise, it declares an error.

Analysis of the error probability: By the law of large
numbers and the packing lemma, we can show that receiverk
decodes the message(w1, . . . , wk,1, wk,2) for 2 ≤ k ≤ K and

receiver 1 decodes the messagew1 with asymptotically small
probability of error if the following inequalities are satisfied:

R1 ≤ I(U1;Y1),

R2,1 +R2,2 ≤ I(U2;Y2|U1),

R̃k ≤ I(Uk;Yk|Uk−1), for 3 ≤ k ≤ K. (7)

Analysis of the leakage rate: We require
Wk−1,2,Wk,1,Wk,2, . . . ,WK,1,WK,2 to be secured from
receiverYk−2 for 3 ≤ k ≤ K. Therefore, it suffices to show

1

n
I

(

Wk−1,2,Wk,1,Wk,2, . . . ,WK,1,WK,2;Y
n
k−2

|W1, . . . ,Wk−2,1,Wk−2,2

)

→ 0, asn → ∞, (8)

for 3 ≤ k ≤ K. It can be shown that if

R̃l−1 −Rl−1,2 +

j∑

i=l

(R̃i −Ri,1 −Ri,2) ≥ I(Uj;Yl−2|Ul−2)

(9)

for 3 ≤ l ≤ K − 1 and l− 1 ≤ j ≤ K, then the condition (8)
is satisfied.

Combining the conditions (7) and (9), we have the achiev-
able region as in (5).

Rate sharing: We note that the messageWk−1,2 satisfies
the decoding and secrecy requirement forWk−1 but also for
Wk. Hence, its rate can be counted towards eitherRk−1 or Rk.
Thus, we design a rate sharing scheme by definingR2 = R2,1,
RK = RK−1,2 + RK,1 +RK,2 andRk = Rk−1,2 + Rk,1, for
3 ≤ k ≤ K − 1. After adding these equations and performing
Fourier-Motzkin elimination to eliminateRk,1 and Rk,2 for
2 ≤ k ≤ K, we obtain the achievable region as in (3).

B. Proof of Converse (Outline)

To prove the converse, we construct the auxiliary random
variables as follows:

U1,i = (W1, Y
i−1
1 ),

U2,i = (W1,W2, Y
i−1
2 ),

Uk,i = (W1, . . . ,Wk, Y
i−1
k , Y n

k−2,i+1), for 3 ≤ k ≤ K,

(10)

which satisfy the following Markov chain condition:

U1,i → . . . → UK,i → Xi → YK,i → . . . → Y1,i, (11)

for i = 1, . . . , n.

The bounds (3a) and (3b) corresponding to the decoding
requirements can be derived following similar techniques as
those used to derive the sum rate boundR3 + R4 as in [10].
However, the proof for the bounds (3c) is more involved
and requires careful recursive construction of the terms. In
the following, we only outline the key steps due to space
limitations.

By Fano’s inequality and the secrecy requirements, we have

H(Wk|Y
n
k ) ≤ nǫn, for 1 ≤ k ≤ K,

I(Wk, . . . ,WK ;Y n
k−2|W1, . . . ,Wk−2) ≤ nǫn, for 3 ≤ k ≤ K.



For any 3 ≤ l ≤ j ≤ K, we can bound
∑j

i=l Ri as
follows:

j
∑

m=l

nRm = H(Wl, . . . ,Wj) +H(Wl−1)−H(Wl−1)

≤

j
∑

m=l−1

H(Wm)− I(Wl−1, . . . ,Wj ;Y
n
l−2|W1, . . . ,Wl−2) + nǫn.

We further boundH(Wm) for eachl−1 ≤ m ≤ j as follows:

H(Wm) ≤

n∑

i=1

I(Um,i;Ym,i|Um−1,i)

− I(Y i−1
m ;Ym,i|W1, . . . ,Wm−1Y

i−1
m−1Y

n
m−3,i+1)

+ I(Y n
m−3,i+1;Ym,i|W1, . . . ,Wm−1Y

i−1
m )

− I(Y n
m−2,i+1;Ym,i|W1, . . . ,WmY i−1

m ). (12)

We also bound−I(Wl−1, . . . ,Wj ;Y
n
l−2|W1, . . . ,Wl−2) as

follows:

−I(W l−1, . . . ,Wj ;Y
n
l−2|W1, . . . ,Wl−2)

≤

n∑

i=1

−I(Uj,i;Yl−2,i|Ul−2,i)

− I(Y i−1
l−2 ;Yl−2,i|W1, . . . ,Wl−2Y

n
l−4,i+1)

+ I(Y n
j−2,i+1;Yl−2,i|W1, . . . ,WjY

i−1
j Y n

l−2,i+1)

+ I(Y i−1
j ;Yl−2,i|W1, . . . ,WjY

n
l−2,i+1)

+ I(Y n
l−2,i+1;Yl−2,i|W1, . . . ,Wl−2Y

n
l−4,i+1). (13)

Summing up (12) for eachl − 1 ≤ m ≤ j and (13),
and applying Csisźar’s sum identity, we can show that those
redundant terms either cancel each other or are less than zero.
Therefore, the converse proof for (3c) is completed.

V. CONCLUSION

In this paper, we have studied aK-receiver discrete mem-
oryless degraded broadcast channel with secrecy outside a
bounded range. We have characterized the secrecy capacity
region for this model by designing an achievable scheme
based on superposition coding, joint embedded coding and
random binning and rate splitting and sharing. To design
an achievable scheme that loses no optimality but yields a
tractable achievable rate region, we have employed random
binning in each layer to avoid the complex decision of whether
or not to use random binning as in the achievable scheme
for the four-receiver model [10]. Moreover, we have exploited
a critical property of the problem so that the design of rate
sharing is only between adjacent receivers, which significantly
reduces the complexity of designing the achievable scheme.
We have further proposed a novel induction algorithm to
perform Fourier-Motzkin elimination on the achievable region
with 2K variables to be eliminated amongΘ(K2) bounds. We
have also constructed a converse proof, which involves careful
recursive construction of the terms in the bounds. We anticipate
that our induction algorithm to implement Fourier-Motzkin
elimination can be useful to study other network models with
rate sharing among a large number of users.
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