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Abstract—A three-receiver degraded broadcast channel with
secrecy outside of a bounded range is studied, in which the
channel quality gradually degrades from receiver 3 to receiver
1. The transmitter has three messages intended for the receivers
with receiver 3 decoding all messages, receiver 2 decoding the first
two messages, and receiver 1 decoding only the first message.
Furthermore, the third message should be kept secure from
receiver 1. The discrete memoryless channel is studied and the
secrecy capacity region is characterized. The achievable scheme is
based on superposition coding and random binning, in which one
superposition layer and random binning together provide secrecy.
The converse proof is derived based on the insight obtained from
the achievable scheme so that manipulations of terms yield tight
rate bounds.

I. INTRODUCTION

The broadcast nature is one of the major reasons that
challenge secure communications in wireless networks. In the
seminal work by Wyner [1], a physical layer approach to
secrecy was proposed and studied for a degraded broadcast
channel. This approach guarantees secure transmission from
a sender to a legitimate receiver and keeps the transmission
secure from an eavesdropper. Csiszár and Körner further ex-
tended this model to the case, in which the sender also wants to
transmit a common message to both the legitimate receiver and
the eavesdropper [2] in addition to the confidential message,
and the secrecy capacity region was fully characterized.

Following the initial studies in [1], [2], broadcast channels
with various decoding and secrecy constraints have been
studied intensively (see [3], [4] for recent surveys for these
studies). For example, the broadcast channel with two legit-
imate receivers and one eavesdropper was studied in [5], in
which the sender transmits two messages to two legitimate
receivers respectively, and wants to keep both messages confi-
dential from the eavesdropper. The secrecy capacity region was
derived when the channel is degraded. The same channel but
with layered decoding and secrecy constraints was studied in
[6], [7], in which the receiver with the better channel quality is
required to decode one more message compared to the receiver
with the worse channel quality, and this message should be
kept confidential from the receiver with the worse channel
quality, and both messages should be kept confidential from
the eavesdropper. In [8], [9], the above model was generalized
to the case with more than two receivers.

We note that for the model with layered decoding and
secrecy, the additional message decoded by a better receiver
needs to be kept confidential from the receiver with only

one level worse channel quality (layered secrecy, zero secrecy
range). Although such a model is feasible for broadcast
channels with discrete states (i.e., quality of receivers can
be captured by discrete channel states), it cannot capture the
scenarios with receivers’ channel quality varying continuously.
For such a case, it is more reasonable to require the message to
be secured from the receivers with a certain amount of worse
channel quality, instead of being secured from the receiver
with one level worse channel quality, which is not even well
defined for continuous channel quality. To be more explicit, we
use an example to illustrate the motivation of such a model.
Consider a degraded broadcast channel with infinite number
of receivers, in which h denotes the amplitude of the channel
gain (the larger h, the better the channel). In this case, it is
impossible to require that the message intended for receivers
with h ≥ h0 to be secured from receivers with h < h0, because
no positive secrecy rate can be achieved. Instead, it is more
nature to require that the messages intended for receivers with
h ≥ h0 to be secured from receivers with h ≤ h0 −Δ, where
Δ > 0. We refer to such a secrecy requirement as secrecy
outside of a bounded range.

In this paper, we focus on the three-receiver degraded
broadcast channel (see Fig. 1) to convey the central idea
of the design of the achievable scheme and development of
the converse proof for the capacity region. More specifically,
we study the three-receiver broadcast channel that satisfies
the degraded condition, i.e., the channel quality gradually
degrades from receiver 3 to receiver 1. The transmitter has
three messages, i.e., W1,W2 and W3 for the receivers with
receiver 3 decoding all messages, receiver 2 decoding two
messages W1 and W2, and receiver 1 decoding only W1.
Furthermore, the message W3 should be kept secure from
receiver 1. Hence, the secrecy is outside of a bounded range,
i.e., the secrecy is required from a receiver with two-level
worse channel quality.

We characterize the secrecy capacity region for the three-
receiver degraded broadcast channel with secrecy outside of
a bounded range. Our novelty in this paper lies in both the
design of the joint binning and embedded secrecy scheme
and the derivation of the converse proof. More specifically,
in order to design an achievable scheme, it is natural to
apply superposition coding for encoding three messages, and
to apply binning scheme in the level of W3 to keep W3 secure
from receive 1. However, such a natural scheme turns out to
be suboptimal because it misses an important fact that the
random message W2, which is not required to be detected



at receiver 1, can also serve as a random source to protect
W3 from receiver 1. The novelty of our achievable scheme
lies in exploiting the superposition layer of W2 as embedded
coding in addition to the binning scheme for protecting W3.
Consequently, in the case when W2 is sufficient to protect
W3, no binning scheme is needed. Otherwise, joint embedded
coding and binning is applied, and hence W3 is protected via
the second superposition layer and random binning in the third
layer.

We further show that the above scheme is optimal by
developing an outer bound on the capacity region that matches
the achievable region. The novelty lies in bounding R3 by
exploiting the intuitions in the two cases of the achievable
scheme. For the case that W2 is sufficient to protect W3, R3

can be bounded directly by the decoding capability of receiver
3. For the case that W2 is not sufficient to protect W3, the key
idea is to bound the difference between the rate R3 of W3 and
the rate R2 of W2 rather than bounding R3 directly, because
R3 is closely related to R2 due to the fact that W2 is utilized
to protect W3 in the achievable scheme. Furthermore, in order
to derive a tight bound, a critical step is to identify a useful
term that corresponds to receiver 1’s knowledge of W2 given
W1 and W3, which vanishes in this case and hence discarding
it does not loosen the bound.

This paper is organized as follows. In Section II, we
introduce our system model. In section III, we present our main
results with outlined achievable and converse proofs. Finally,
in Section IV, we conclude our paper.

II. CHANNEL MODEL

Fig. 1. System Model

In this paper, we consider the degraded broadcast channel
with secrecy outside of a bounded range (see Fig. 1 for an
illustration), in which a transmitter sends information to three
receivers. The channel is discrete memoryless with the channel
transition probability given by PY1,Y2,Y3|X , in which X ∈ X
denotes the channel input, and Yk ∈ Yk denotes the channel
output at receiver k for k = 1, 2, 3. It is assumed that the
channel satisfies the degraded condition with the following
Markov chain condition being satisfied:

X → Y3 → Y2 → Y1. (1)

Hence, the quality of channels gradually degrades from re-
ceiver 3 to receiver 1.

The transmitter have three messages W1,W2,W3 intended
for the three receivers with receiver 1 being required to decode
W1, receiver 2 being required to decode W1,W2, and receiver
3 being required to decode W1,W2,W3. The system is also
required to satisfy the secrecy constraint that the message W3

is kept secure from receiver 1.

A (2nR1 , 2nR2 , 2nR3 , n) code for the channel consists of

• Three message sets: Wk ∈ Wk = {1, · · · , 2nRk} for k =
1, 2, 3, which are independent from each other and each

message is uniformly distributed over the corresponding
message set;

• An (possibly stochastic) encoder fn: W1×W2×W3 →
Xn;

• Three decoders gnk : Yn
k → (W1, · · · ,Wk) for k =

1, 2, 3.

Hence, a secrecy rate tuple (R1, R2, R3) is said to be achiev-
able, if there exists a sequence of (2nR1 , 2nR2 , 2nR3 , n) codes
such that both the average error probability

Pn
e = Pr

(∪3
k=1{(W1, · · · ,Wk) �= gnk (Y

n
k )}) (2)

and the leakage rate at receiver 1

1

n
I(W3;Y

n
1 |W1) (3)

approach zero as n goes to infinity.

The asymptotically small probability of error in (2) implies
that receiver k can decode W1, · · · ,Wk for k = 1, 2, 3.
And the asymptotically small leakage rate in (3) implies that
receiver 1 is kept ignorant of the message W3.

III. MAIN RESULTS

Our main result in this paper is the full characterization of
the secrecy capacity region of the degraded broadcast channel
with secrecy outside of a bounded range as presented in the
following theorem.

Theorem 1. The secrecy capacity region of the degraded
broadcast channel with secrecy outside of a bounded range
as described in Section II contains rate tuples (R1, R2, R3)
satisfying

R1 ≤ I(U1;Y1),

R2 ≤ I(U2;Y2|U1), (4)
R3 ≤ min{0, I(U2;Y2|U1)− I(X ;Y1|U1)}+ I(X ;Y3|U2)

for some PU1U2X such that the following Markov chain holds

U1 → U2 → X → Y3 → Y2 → Y1. (5)

The achievable scheme we design applies superposition
coding to encode the messages W1,W2 and W3 in order into
three layers, respectively. Furthermore, in order to keep W3

secure from receive 1, the second layer of W2 first serves
as a random source to protect W3. If this is not sufficient to
protect W3, a random binning scheme is adopted at layer 3
of W3 to further protect W3 from being known by receiver
1. The novelty of our achievable scheme lies in exploiting the
superposition layer of W2 as embedded coding in addition to
the binning scheme for protecting W3.

Such a scheme is also reflected in the expression of the
above capacity region. The minimum of two bounds on R3

corresponds to the two cases whether or not the second
layer of W2 is sufficient to protect W3. If I(U2;Y2|U1) >
I(X ;Y1|U1), the randomness of W2 is sufficient to exhaust
receiver 1’s decoding capability, and hence is good enough
for protecting W3. Hence, in this case, no binning is required
in layer 3, and R3 ≤ I(X ;Y3|U2). On the other hand, if
I(U2;Y2|U1) ≤ I(X ;Y1|U1), binning is required at layer 3 to
protect W3 jointly with randomness of W2, and hence, R3 ≤
I(U2;Y2|U1)− I(X ;Y1|U1) + I(X ;Y3|U2). This can also be



written as R3 ≤ I(X ;Y3|U2)− I(X ;Y1|U2)+ I(U2;Y2|U1)−
I(U2;Y1|U1), which has a clear intuitive interpretation. If
receiver 1 know the message W1,W2 (i.e., U1, U2), the secrecy
rate of W3 will be I(U2;Y2|U1) − I(X ;Y1|U1). But part
of U2 is secure from receiver 1 with rate I(U2;Y2|U1) −
I(U2;Y1|U1), which can be used to convey further secrecy
rate for W3.

In the converse proof, the key idea to bound R3 is to exploit
the intuitions gathered in the two cases of the achievable
scheme. For the case that W2 is sufficient to protect W3, R3

can be bounded directly by the decoding capability of receiver
3. For the case that W2 is not sufficient to protect W3, our
novelty lies in bounding R3 − R2 rather than bounding R3

directly, because R3 is closely related to R2 due to the fact
that W2 is utilized to protect W3 in the achievable scheme,
and hence R3 should be bounded by decoding the capability
of receiver Y2 as shown in the bound of R3. However, directly
bounding R3 would involve only the decoding and secrecy
constraints on W3 and hence Y1 and Y3, but it is challenging
to introduce Y2 to the bound of R3. In this case, bounding
R3 − R2 naturally incorporates the decoding capability of
receiver Y2 into the bound. Furthermore, in order to derive
a tight bound, a critical step is to identify a useful term that
corresponds to receiver 1’s knowledge of W2 given W1 and
W3, which vanishes in this case and hence discarding it does
not loosen the bound.

We next outline the proofs of achievability and converse
for Theorem 1 in two subsections.

A. Proof of Achievability

Random codebook generation: Fix a distribution
PU1PU2|U1

PX|U2
PY1,Y2,Y3|X . Randomly generate the

codebook as follows:

• Generate 2nR1 independent identically distributed (i.i.d.)
un
1 with distribution

∏n
i=1 p(u1,i). Index these codewords

as un
1 (w1), w1 ∈ [1, 2nR1].

• For each un
1 (w1), generate 2nR2 i.i.d. un

2 with dis-
tribution

∏n
i=1 p(u2,i|u1,i). Index these codewords as

un
2 (w1, w2), w2 ∈ [1, 2nR2 ].

• For each un
2 (w1, w2), generate 2n

˜R3 i.i.d. xn with dis-
tribution

∏n
i=1 p(xi|u2,i). Partition these codewords into

2nR3 bins. Hence, there are 2n(
˜R3−R3) number of xn

in each bin. We use w3 ∈ [1 : 2nR3 ] to denote the
bin number, and l ∈ [1 : 2n(

˜R3−R3)] to denote the
index within the bin. Hence, each xn is indexed by
(w1, w2, w3, l).

The chosen codebook is revealed to both the transmitter and
the receivers. Since w3 is superposed on w2, the uncertainty
that receiver 1 has about w2 propagates to the uncertainty that
receiver 1 has about w3. Hence, both w2 and l are utilized to
protect w3.

Encoding: To send a message tuple (w1, w2, w3), the trans-
mitter randomly and uniformly generates l ∈ [1 : 2n(

˜R3−R3)],
and sends xn(w1, w2, w3, l).

Decoding:

• Receiver 1 claims that ŵ1 is sent, if there exists a unique
ŵ1 such that (un

1 (ŵ1), y
n
1 ) ∈ T n

ε (PU1Y1). Otherwise, it
declares an error.

• Receiver 2 claims that (ŵ1, ŵ2) is sent, if
there exists a unique pair (ŵ1, ŵ2) such that
(un

1 (ŵ1), u
n
2 (ŵ1, ŵ2), y

n
2 ) ∈ T n

ε (PU1U2Y2). Otherwise, it
declares an error.

• Receiver 3 claims that (ŵ1, ŵ2, ŵ3) is sent, if
there exists a unique tuple (ŵ1, ŵ2, ŵ3, l̂) such
that (un

1 (ŵ1), u
n
2 (ŵ1, ŵ2), u

n
3 (ŵ1, ŵ2, ŵ3, l̂), y

n
3 ) ∈

T n
ε (PU1U2U3Y3). Otherwise, it declares an error.

We first analyze the probability of decoding error, and then
analyze the leakage rate.

Analysis of error probability: By the law of large numbers
and the packing lemma, it can be shown that receiver k
decodes the messages (w1, · · · , wk) with asymptotically small
probability of error for k = 1, 2, 3, if the following inequalities
are satisfied:

R1 ≤ I(U1;Y1),

R2 ≤ I(U2;Y2|U1),

R̃3 ≤ I(X ;Y3|U2). (6)

Analysis of leakage rate: In this model, receiver 1 needs to
be kept ignorant of message W3. It is sufficient to show that
the average leakage rate over the random generated codebook
is asymptotically small, because this implies that there must
exist one codebook guaranteeing such property.

I(W3;Y
n
1 |W1, C)

= I(W1,W2,W3, L;Y
n
1 |C)− I(W1,W2, L;Y

n
1 |W3, C)

−H(W3|Y n
1 ,W1, C) +H(W3|Y n

1 , C)
≤ I(W1,W2,W3, L;Y

n
1 |C)− I(W1,W2, L;Y

n
1 |W3, C) + nεn

= I(Xn;Y n
1 |C)−H(W1,W2, L|W3, C)

+H(W1,W2, L|Y n
1 ,W3, C) + nεn. (7)

Next, we bound the three terms in (7) one by one. For the first
term, we have,

I(Xn;Y n
1 |C) = I(Un

1 , X
n;Y n

1 |C)
= I(Un

1 ;Y
n
1 |C) + I(Xn;Y n

1 |Un
1 , C)

≤ H(Un
1 |C) +H(Y n

1 |Un
1 , C)−H(Y n

1 |Xn, C)
≤ nR1 + nH(Y1|U1)− nH(Y1|X)

= nR1 + nI(X ;Y1|U1). (8)

For the second term, due to the independence of W1,W2 and
L, we have

H(W1,W2, L|W3, C) = nR1 + nR2 + n(R̃3 −R3). (9)

For the last term, we have

H(W1,W2, L|Y n
1 ,W3, C)

= H(W2, L|Y n
1 ,W3, C) +H(W1|Y n

1 ,W2,W3, C)
≤ H(W2, L|Y n

1 ,W3, C) + nεn
≤ H(W2, L|Y n

1 , Un
1 ,W3) + 2nεn. (10)

Following the techniques in [10, Chapter 22], it can be shown
that if R2 + R̃3 −R3 ≥ I(X ;Y1|U1) and R2 ≥ I(U2;Y1|U1),
then

lim
n→∞

1

n
H(W2, L|Y n

1 , Un
1 ,W3)

≤ R2 + R̃3 −R3 − I(X ;Y1|U1) + δ(ε).



Combining the above analysis of the three terms together, it is
clear that 1

nI(W3;Y
n
1 |W1, C) → 0 as n → ∞, if the following

inequalities are satisfied:

R2 + R̃3 −R3 ≥ I(X ;Y1|U1),

R2 ≥ I(U2;Y1|U1). (11)

Combining the bounds in (6) and (11), we conclude that the
rate tuple (R1, R2, R3) is achievable if

R1 ≤ I(U1;Y1),

R2 ≤ I(U2;Y2|U1),

R3 ≤ min{0, I(U2;Y2|U1)− I(X ;Y1|U1)}+ I(X ;Y3|U2).

We note that the lower bound on R2 is redundant due to the fact
that if the rate R2 = I(U2;Y2|U1) can be achieved, any rate
below this value can be achieved by sending certain amount
of information independent of W2. Since the second layer is
utilized to protect W3, we generate 2nI(U2;Y2|U1) of un

2 for
each un

1 such that the secrecy rate R3 is maximized.

We finally note that it can be easily argued that there
exists one codebook that guarantees both asymptotically small
probability of error and asymptotically small leakage rate.

B. Proof of Converse

By Fano’s inequality and the secrecy requirement, we have
the following inequalities:

H(Wk|Y n
k ) ≤ nεn, for 1 ≤ k ≤ 3,

I(W3;Y
n
1 |W1) ≤ nεn. (12)

We set U1,i = (W1, Y
i−1
1 ), U2,i = (W1,W2, Y

i−1
2 ), U3,i =

(W1,W2,W3, Y
i−1
3 , Y n

1,i+1). It can be shown that the follow-
ing Markov chain is satisfied:

U1,i → U2,i → U3,i → Xi → Y3,i → Y2,i → Y1,i (13)

for i = 1, . . . , n.

We first bound the rate R1 as follows.

nR1 ≤ I(W1;Y
n
1 ) + nεn

=

n∑
i=1

I(W1;Y1,i|Y i−1
1 ) + nεn

≤
n∑

i=1

I(W1, Y
i−1
1 ;Y1,i) + nεn

=

n∑
i=1

I(U1,i;Y1,i) + nεn. (14)

Similarly, we bound the rate R2 as follows.

nR2 ≤ I(W2;Y
n
2 |W1) + nεn

=

n∑
i=1

I(W2;Y2,i|W1, Y
i−1
2 ) + nεn

=
n∑

i=1

I(W2;Y2,i|W1, Y
i−1
1 , Y i−1

2 ) + nεn

≤
n∑

i=1

I(W2, Y
i−1
2 ;Y2,i|W1, Y

i−1
1 ) + nεn

=

n∑
i=1

I(U2,i;Y2,i|U1,i) + nεn. (15)

We next derive two bounds on R3. Following the steps
similar to those in bounding R1 and R2, we derive the
following bound.

nR3 ≤ I(W3;Y
n
3 |W1,W2) + nεn

=

n∑
i=1

I(W3;Y3,i|W1,W2, Y
i−1
3 ) + nε

≤
n∑

i=1

I(W3, Y
i−1
3 ;Y3,i|W1,W2, Y

i−1
2 ) + nε

≤
n∑

i=1

I(W3, Y
i−1
3 , Y n

1,i+1;Y3,i|W1,W2, Y
i−1
2 ) + nε

=

n∑
i=1

I(U3,i;Y3,i|U2,i)

≤
n∑

i=1

I(Xi;Y3,i|U2,i). (16)

We now derive the second bound on R3 by bounding R3−R2

as follows.

nR3 − nR2

= H(W3)−H(W2)

≤ H(W3|W1,W2) + nεn −H(W3|Y n
3 ,W1,W2)−H(W2)

+ nεn − I(W3;Y
n
1 |W1)

= I(W3;Y
n
3 |W1,W2)−H(W2)−H(W3|W1)

+H(W3|Y n
1 ,W1) + 2nεn

= I(W3;Y
n
3 |W1,W2)−H(W2,W3|W1)

+H(W2,W3|Y n
1 ,W1)−H(W2|Y n

1 ,W1,W3) + 2nεn
(a)

≤ I(W3;Y
n
3 |W1,W2)− I(W2,W3;Y

n
1 |W1) + 2nεn, (17)

where (a) is due to the fact that the entropy
H(W2|Y n

1 ,W1,W3) is nonnegative. Here we note that
discarding such an entropy term does not result in a looser
bound. This is because if H(W2|Y n

1 ,W1,W3) is not a
vanishing term (which implies that Y1 cannot decode W2

given W1 and W3), then W2 provides enough randomness
for protecting W3, and hence (16) (which is bounded by the
decoding capability of receiver Y3) should already provide a
tighter bound on R3.

We further bound the two terms in (17) one by one. The
first term in (17) is bounded as follows:

I(W3;Y
n
3 |W1,W2) =

n∑
i=1

I(W3;Y3,i|W1,W2, Y
i−1
3 )

=

n∑
i=1

I(W3, Y
n
1,i+1;Y3,i|W1,W2, Y

i−1
3 )

− I(Y n
1,i+1;Y3,i|W1,W2,W3, Y

i−1
3 )

=
n∑

i=1

I(W3, Y
n
1,i+1;Y3,i|W1,W2, Y

i−1
3 )

− I(Y i−1
3 ;Y1,i|W1,W2,W3, Y

n
1,i+1)

≤
n∑

i=1

I(W3, Y
i−1
3 , Y n

1,i+1;Y3,i|W1,W2, Y
i−1
2 )

− I(Y i−1
3 ;Y1,i|W1,W2,W3, Y

n
1,i+1). (18)



The second term in (17) is bounded as follows:

− I(W2,W3;Y
n
1 |W1)

=

n∑
i=1

−I(W2,W3;Y1,i|W1, Y
n
1,i+1)

=

n∑
i=1

−I(W2,W3, Y
i−1
3 ;Y1,i|W1, Y

n
1,i+1)

+ I(Y i−1
3 ;Y1,i|W1,W2,W3, Y

n
1,i+1)

=

n∑
i=1

−I(Y i−1
3 ;Y1,i|W1, Y

n
1,i+1)

− I(W2,W3;Y1,i|W1, Y
n
1,i+1, Y

i−1
3 )

+ I(Y i−1
3 ;Y1,i|W1,W2,W3, Y

n
1,i+1)

=

n∑
i=1

−I(Y i−1
3 ;Y1,i|W1, Y

n
1,i+1)

− I(W2,W3, Y
i−1
3 , Y n

1,i+1;Y1,i|W1, Y
i−1
1 )

+ I(Y i−1
3 , Y n

1,i+1;Y1,i|W1, Y
i−1
1 )

+ I(Y i−1
3 ;Y1,i|W1,W2,W3, Y

n
1,i+1)

(a)
=

n∑
i=1

−I(W2,W3, Y
i−1
3 , Y n

1,i+1;Y1,i|W1, Y
i−1
1 )

+ I(Y i−1
3 ;Y1,i|W1,W2,W3, Y

n
1,i+1), (19)

where (a) is due to the following fact:
n∑

i=1

[−I(Y i−1
3 ;Y1,i|W1, Y

n
1,i+1)

+ I(Y i−1
3 , Y n

1,i+1;Y1,i|W1, Y
i−1
1 )]

=

n∑
i=1

[−I(Y i−1
1 ;Y1,i|W1, Y

n
1,i+1)

− I(Y i−1
3 ;Y1,i|W1, Y

i−1
1 , Y n

1,i+1)

+ I(Y n
1,i+1;Y1,i|W1, Y

i−1
1 )

+ I(Y i−1
3 ;Y1,i|W1, Y

i−1
1 , Y n

1,i+1)]

= 0 .

Combining (18) and (19), we obtain

nR3 − nR2

≤
n∑

i=1

[I(U3,i;Y3,i|U2,i)− I(U3,i;Y1,i|U1,i)] + 2nεn

≤
n∑

i=1

[I(Xi, Y3,i|U2,i)− I(Xi;Y1,i|U1,i)] + 2nεn. (20)

We finally define a uniformly distributed random variable
Q ∈ {1, . . . , n}, and set Uk

Δ
= (Q,Uk,Q), Yk

Δ
= (Q, Yk,Q),

for k = 1, 2, 3, and X
Δ
= (Q,XQ). Then the desired bounds

follow from the standard single letter characterization, which
concludes the proof.

IV. CONCLUSION

In this paper, we have studied a three-receiver discrete
memoryless degraded broadcast channel with secrecy outside

of a bounded range. We have characterized the secrecy capacity
region for such a model. In particular, we have proposed a
novel achievable scheme in which a superposition layer of
a message serves as random resource jointly with binning
to achieve the secrecy constraint. We have showed that such
a scheme is optimal by developing a converse proof, which
exploits the idea of the achievable scheme for manipulating
terms. The techniques derived in this paper can be further
generalized to study the degraded broadcast channel with
arbitrary K receivers and with secrecy outside of an arbitrarily
bounded range. In the future, we will also extend the current
study to models with receivers having continuously changing
channel state parameters.
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