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Abstract—A four-receiver degraded broadcast channel with
secrecy outside a bounded range is studied, over which a transmit-
ter sends four messages to four receivers. In the model considered,
the channel quality gradually degrades from receiver 4 to receiver
1, and receiver k is required to decode the firstk messages for
k = 1, . . . , 4. Furthermore, message 3 is required to be secured
from receiver 1, and message 4 is required to be secured from
receivers 1 and 2. The secrecy capacity region is established. The
achievable scheme includes not only superposition, binning and
embedded coding used in previous studies, but also rate splitting
and sharing particularly designed for this model, which is shown
to be critical to further enlarge the achievable region and enable
the development of the converse proof.

Keywords—Broadcast channel, rate splitting, rate sharing, se-
crecy capacity.

I. I NTRODUCTION

Security arises as an important issue in wireless commu-
nications due to the broadcast nature. Such a practical issue
was modeled as a degraded wiretap channel (i.e., a degraded
broadcast channel) in Wyner’s seminal work [1], in which a
transmitter wishes to send a message to a legitimate receiver,
and wishes to keep the message secure from an eavesdropper.
For such a channel, a physical layer approach was designed
in [1] to satisfy the reliability and secrecy requirements.
The model was further generalized by Csiszár and K̈orner
in [2] to be the general broadcast channel (not necessarily
degraded) with an additional common message intended for
both receivers to decode in addition to the confidential message
that should be kept secure from the eavesdropper.

More recently, broadcast channels with various decoding
and secrecy constraints have been studied (see [3], [4] for
recent surveys for these studies). A multi-receiver extension
of the Wyner’s model was studied in [5], [6], in which a
transmitter broadcasts to a number of receivers, and all mes-
sages need to be secured from an eavesdropper. Another class
of extensions can be viewed as degraded broadcast channels
with layered decoding and layered secrecy constraints [6]–[10],
in which the receiver with one-level better channel quality
is required to decode one more message, and this message
needs to be secured from the receivers with worse channel
quality. In [11], a further extension of the model in [8] was
studied, in which the message is required to be secure from
the receiver with two-level worse channel quality, but not from
the immediate downstream receiver. Such a model is more
practical when the channel has continuous channel quality.It
is more reasonable to require the message to be secured from

the receivers with a certain amount of worse channel quality,
instead of being secured from the receiver with one level worse
channel quality, which is not even well defined for continuous
channel state. To be more explicit, we use an example to
illustrate the motivation of such a model. Consider a degraded
broadcast channel with infinite number of receivers, in which
h denotes the amplitude of the channel gain (the largerh, the
better the channel). In this case, it is impossible to require that
the message intended for receivers withh ≥ h0 to be secured
from receivers withh < h0, because no positive secrecy rate
can be achieved. Instead, it is more nature to require that the
messages intended for receivers withh ≥ h0 to be secured
from receivers withh ≤ h0 − ∆, where∆ > 0. We refer to
such secrecy requirements as secrecy outside a bounded range.

In this paper, we generalize the three-receiver model stud-
ied in [11] to the four-receiver degraded broadcast channel
with secrecy outside a bounded range. Our main result is the
establishment of the secrecy capacity region for the model of
interest. Although our proof of the result may seem to only
likely follow techniques developed in [11], our exploration
turns out to show that the achievable techniques in [11] and
in previous studies of broadcast models in [6]–[9] are not
sufficient for establishing the secrecy capacity region. The
main technical novelty of this paper lies in designing rate
splitting and sharing to enlarge the achievable region, forwhich
we are able to develop the converse proof to establish the
secrecy capacity region. Furthermore, the techniques of rate
splitting and sharing provide us more insight into the general
model with arbitrary number of receivers, which cannot be
concluded from the three-receiver case.

More specifically, in the model we study (see Figure 1),
a transmitter sends four messagesW1,W2,W3,W4 to four
receivers over a degraded broadcast channel with the channel
quality gradually degrading from receiver 4 to receiver 1. Re-
ceiverk is required to decodeW1, . . . ,Wk, for k = 1, 2, 3, 4.
Furthermore, the messageW3 is required to be secured from
receiver 1, and the messageW4 is required to be secured from
receivers 1 and 2. Hence, in this network, each message is
secured from the receiver with two-level worse channel quality.

Our achievable scheme includes (1) superposition coding,
which encodes each message into one layer in order to
satisfy the layered decoding requirements at the four receivers;
(2) embedded coding [12], [13], which exploits the secrecy
requirement outside a bounded range to use lower-layer mes-
sages as random sources to secure higher-layer messages; (3)
random binning, which provides further randomness to secure



each message at its corresponding layer; and (4) rate splitting
and sharing, which turns out to be critical for this model
to further enlarge the achievable region. Since the first three
techniques are developed and utilized in previous studies,we
next illustrate why rate splitting and sharing is useful here.
Consider the case where layer 3 is sufficient to secure layer
4. Random binning is then not necessary in layer 4. Hence,
simply using techniques for three-receiver model yields the rate
of W4 to be bounded by the decoding capability of receiver 4
given decoding of the three other messages. It turns out to be
very difficult to develop the converse proof for the resulting
achievable region, which suggests that such an achievable
region may not be large enough. Indeed, the previous achiev-
able scheme ignores the fact that under assumption of this
case, part of layer 3 (sayW31) is good enough to secure the
remaining part of layer 3 (sayW32) and layer 4 from receiver
2. Hence,W32 can be counted towards either the rateR3 or
the rateR4, which provides the flexibility to enlargeR4 and
correspondingly the achievable region. Such an idea motivates
our development of splittingW3 into two partsW31 andW32

and sharingW32 betweenR3 andR4. The converse for this
resulting achievable region can be developed, suggesting that
rate splitting and sharing are important for establishing the
secrecy capacity region.

The remainder of this paper is organized as follows. In
Section II, we introduce our system model. In Section III, we
present our main results and describe the main idea of the
achievable scheme. In Section IV, we provide outline of the
proofs of achievability and converse. Finally, in Section V, we
conclude our paper.

II. CHANNEL MODEL

Fig. 1. The four-receiver degraded broadcast channel with secrecy outside a
bounded range.

In this paper, we consider a four-receiver degraded broad-
cast channel with secrecy outside of a bounded range (see
Figure 1). Here, a transmitter sends information to four re-
ceivers over a discrete memoryless channel with the channel
transition probability given byPY1Y2Y3Y4|X , in which X ∈ X
denotes the channel input, andYk ∈ Yk denotes the channel
output at receiverk, for k = 1, 2, 3, 4. The channel is assumed
to satisfy the degraded condition, i.e., the following Markov
chain holds:

X → Y4 → Y3 → Y2 → Y1. (1)

Hence, the channel quality gradually degrades from receiver 4
to receiver 1.

The transmitter has four messagesW1,W2,W3,W4 in-
tended for the four receivers with the following decoding
and secrecy requirements. Fork = 1, 2, 3, 4, receiver k is
required to decode the messagesW1, . . . ,Wk. Furthermore,
the messageW3 needs to be kept secure from receiver 1, and

the messageW4 needs to be kept secure from receivers 1 and
2 (see Figure 1).

A (2nR1 , 2nR2 , 2nR3 , 2nR4 , n) code for the channel con-
sists of

• Four message sets:Wk ∈ Wk = {1, · · · , 2nRk} for k =
1, 2, 3, 4, which are independent from each other and each
message is uniformly distributed over the corresponding
message set;

• A (possibly stochastic) encoderfn: W1 ×W2 ×W3 ×
W4 → Xn;

• Four decodersgnk : Yn
k → (W1, · · · ,Wk) for k =

1, 2, 3, 4.

A secrecy rate tuple(R1, R2, R3, R4) is achievable if there
exists a sequence of(2nR1 , 2nR2 , 2nR3 , 2nR4 , n) code such
that both the average error probability

Pn
e = Pr

(
∪4
k=1{(W1, · · · ,Wk) 6= gnk (Y

n
k )}

)
(2)

and the leakage rate at receivers 1 and 2

1

n
I(W3,W4;Y

n
1 |W1) (3)

1

n
I(W4;Y

n
2 |W1,W2) (4)

go to zero asn goes to infinity.

Our goal is to characterize thesecrecy capacity region that
contains all achievable rate tuples.

III. M AIN RESULTS

Our main result in this paper is the following characteriza-
tion of the secrecy capacity region for the model of interest.

Theorem 1. Consider the four-receiver degraded broadcast
channel with secrecy outside a bounded range as described in
Section II. The secrecy capacity region consists of rate tuples
(R1, R2, R3, R4) satisfying

R1 ≤ I(U1;Y1),

R2 ≤ I(U2;Y2|U1),

R3 ≤ I(U3;Y3|U2)

+ min
(
0, I(U2;Y2|U1)− I(U3;Y1|U1)

)
,

R4 ≤ I(X ;Y4|U3) + I(U3;Y3|U2)− I(X ;Y2|U2),

R3 +R4 ≤ I(U3;Y3|U2) + I(X ;Y4|U3)

+ min
(
0, I(U2;Y2|U1)− I(X ;Y1|U1)

)
, (5)

for some PU1U2U3X such that the following Markov chain
holds

U1 → U2 → U3 → X → Y4 → Y3 → Y2 → Y1. (6)

The major technical challenge for establishing the above
secrecy capacity region lies in providing an achievable region
good enough to enable the proof of converse. Here, we briefly
introduce our idea of the achievable scheme, which highlights
the technical novelty of our design. We provide more detailed
proofs in Section IV.

Our achievable scheme includes the following ingredients:



1. Superposition coding: Due to the requirement of layered
decoding, the messages are encoded using superposition cod-
ing with each layer corresponding to one message, i.e., layer
k corresponds toWk for k = 1, 2, 3, 4.

2. Joint embedded coding and binning: Since the messages
do not need to be kept secure from its immediate downstream
receiver, such a receiver’s message can serve as a random
source for securing the higher layer message in addition to
stochastic binning. In fact, if such random source is sufficient
for securing the message, binning is not necessary. More
specifically,W3 serves as a random source to secureW4 from
receiver 2 jointly with random binning designed at layer 4 (if
necessary). Similarly,W2 at layer 2 serves as a random source
to secureW3 andW4 from receiver 1 jointly with binning at
layers 3 and 4 (if necessary).

3. Rate splitting and sharing: We splitW3 into two parts,
i.e.,W31 andW32. Such splitting exploits the opportunity (see
case 1 in the proof of achievability), thatW31 is sufficient to
secure bothW32 andW4 from receiver 2, and thus the rate of
W32 can be counted towards the rate of eitherW3 or W4. In
this way, the rate region may be enlarged.

We note that joint embedded coding and binning is nec-
essary here to exploit the secrecy requirements only outside
the bounded range (i.e., the secrecy is not imposed for the
immediate downstream receiver). Thus, messages intended
for receivers inside the bounded range can serve as random
sources for secrecy purpose. Such a scheme cannot be used
for the model in [9] where the secrecy is imposed for the
immediate downstream receiver. We further note that the
embedded coding here uses messages across superposition
layers as random sources for secrecy, which is different from
the original embedded coding [6] where the messages serving
as random sources are at the same layers as the messages being
protected.

In fact, using only the superposition and joint embedded
coding and binning is shown to be optimal (i.e., achieve
the secrecy capacity region) for the three-receiver model in
[11]. However, for the four-receiver model, such an achievable
scheme is not in a sufficiently good form for which the
machinery of a converse proof is difficult to develop. The
major novelty of our scheme lies in developing rating splitting
and sharing, which helps to potentially enlarge the achievable
region (at least enlarge the region for a given distribution
of auxiliary random variables). Consequently, the proof of
converse can be developed for such an achievable region, and
thus the secrecy capacity region is established.

More specifically, without rate splitting and sharing, su-
perposition and joint embedded coding and binning yields an
achievable region with rates satisfying

R1 ≤ I(U1;Y1),

R2 ≤ I(U2;Y2;U1),

R3 ≤ I(U3;Y3|U2)

+ min
(
0, I(U2;Y2|U1)− I(U3;Y1|U1)

)
,

R4 ≤ I(X ;Y4|U3),

R4 ≤ I(X ;Y4|U3) + I(U3;Y3|U2)− I(X ;Y2|U2),

R3 +R4 ≤ I(U3;Y3|U2) + I(X ;Y4|U3)

+ I(U2;Y2|U1)− I(X ;Y1|U1) (7)

As we comment in Section IV-B, it is very difficult to develop
the converse proof for the boundR4 ≤ I(X ;Y4|U3) in the
above region. However, by using rate splitting and sharing,this
bound is replaced by the boundR3 + R4 ≤ I(U3;Y3|U2) +
I(X ;Y4|U3), and the resulting region (5) is larger than the
above region (7) (for a given distribution of auxiliary random
variables). Furthermore, the converse proof for the new bound
on R3 + R4 in (5) can be derived, and thus establishes the
region (5) as the secrecy capacity region.

IV. T ECHNICAL PROOF

In the following two subsections, we outline the achiev-
ability and converse proofs. Further details can be found in
[14].

A. Proof of Achievability (Outline)

Fix a distribution PU1
PU2|U1

PU3|U2
PX|U3

PY1,Y2,Y3,Y4|X .
We design the achievable schemes for two cases.

1) Case 1: I(U3;Y3|U2) > I(X ;Y2|U2).

Random codebook generation: Randomly generate the
codebook as follows:

• Generate2nR1 independent and identically distributed
(i.i.d.) un

1 with distribution
∏n

i=1 p(u1,i). Index these code-
words asun

1 (w1), w1 ∈ [1, 2nR1].
• For eachun

1 (w1), generate2nR2 i.i.d. un
2 with distribution∏n

i=1 p(u2,i|u1,i). Index these codewords asun
2 (w1, w2),

w2 ∈ [1, 2nR2 ].
• For eachun

2 (w1, w2), generate2nR̃3 i.i.d. un
3 with dis-

tribution
∏n

i=1 p(u3,i|u2,i). Partition these codewords into
2nR31 bins. We further partition each bin into2nR32 sub-
bins. Hence, there are2n(R̃3−R31−R32) un

3 in each sub-
bin. We usew31 ∈ [1 : 2nR31 ] to denote the bin number,
w32 ∈ [1 : 2nR32 ] to denote the sub-bin number, and
l3 ∈ [1 : 2n(R̃3−R31−R32)] to denote the index within the
bin. Hence, eachun

3 is indexed by(w1, w2, w31, w32, l3).
• For eachun

3 (w1, w2, w31, w32, l3), generate2nR̃4 i.i.d.
xn with distribution

∏n

i=1 p(xi|u3,i). Partition these code-
words into 2nR4 bins. We usew4 ∈ [1 : 2nR4 ] to
denote the bin number,l4 ∈ [1 : 2n(R̃4−R4)] to denote
the index inside the sub-bin. Index those codewords as
xn(w1, w2, w31, w32, l3, w4, l4), w4 ∈ [1, 2nR̃4 ].

The chosen codebook is revealed to both the transmitter
and receivers.

Encoding: To send a message tuple(w1, w2, w31, w32, w4),
the transmitter randomly and uniformly generatesl3 ∈ [1 :

2n(R̃3−R31−R32)] and l4 ∈ [1 : 2n(R̃4−R4)], and sends
xn(w1, w2, w31, w32, l3, w4, l4).

Decoding:

• Receiver1 claims thatŵ1 is sent, if there exists a unique
ŵ1 such that

(
un
1 (ŵ1), y

n
1

)
∈ T n

ǫ (PU1Y1
).



Otherwise, it declares an error.
• Receiver2 claims that(ŵ1, ŵ2) is sent, if there exists a
unique pair(ŵ1, ŵ2) such that

(
un
1 (ŵ1), u

n
2 (ŵ1, ŵ2), y

n
2

)
∈ T n

ǫ (PU1U2Y2
).

Otherwise, it declares an error.
• Receiver3 claims that(ŵ1, ŵ2, ŵ31, ŵ32) is sent, if there
exists a unique tuple(ŵ1, ŵ2, ŵ31, ŵ32, l̂3) such that

(
un
1 (ŵ1), u

n
2 (ŵ1, ŵ2), u

n
3 (ŵ1, ŵ2, ŵ31, ŵ32, l̂3), y

n
3

)

∈ T n
ǫ (PU1U2U3Y3

).

Otherwise, it declares an error.
• Receiver4 claims that ŵ1, ŵ2, ŵ31, ŵ32, ŵ4 is sent, if
there exists a unique tuple(ŵ1, ŵ2, ŵ31, ŵ32, l̂3, ŵ4, l̂4)
such that(
un
1 (ŵ1), u

n
2 (ŵ1, ŵ2), u

n
3 (ŵ1, ŵ2, ŵ31, ŵ32, l̂3),

xn(ŵ1, ŵ2, ŵ31, ŵ32, l̂3, ŵ4, l̂4), y
n
4

)
∈ T n

ǫ (PU1U2U3XY4
).

Otherwise, it declares an error.

Analysis of error probability: It can be shown by the law of
large number and packing lemma that receiverk decodes the
messages(w1, . . . , wk) with asymptotically small probability
of error for k = 1, . . . , 4 if the following inequalities are
satisfied.

R1 ≤ I(U1;Y1),

R2 ≤ I(U2;Y2|U1),

R̃3 ≤ I(U3;Y3|U2),

R̃4 ≤ I(X ;Y4|U3). (8)

Analysis of leakage rate: In this model,W31,W32,W4

are required to be kept secured from receiver 1, andW4 is
required to be kept secured from receiver 2. We note that under
the assumption of case 1, i.e.,I(U3;Y3|U2) > I(X ;Y2|U2),
part of W3 (i.e., W31) is sufficient to secure the remaining
part of W3 (i.e., W32) and W4 from receiver 2 without the
necessity of random binning in layer 41. Thus, we strengthen
the secrecy requirements as follows:W31,W32,W4 are kept
secure from receiver 1, andW32,W4 are kept secure from
receiver 2. Therefore, it is sufficient to show

1

n
I(W31,W32,W4;Y

n
1 |W1, C) → 0, (9)

1

n
I(W32,W4;Y

n
2 |W1,W2, C) → 0, (10)

asn → ∞.

It can be shown that if

R2 + R̃3 −R31 −R32 ≥ I(U3;Y1|U1),

R2 ≥ I(U2;Y1|U1),

R2 + R̃3 −R31 −R32 + R̃4 −R4 ≥ I(X ;Y1|U1),

R̃3 −R32 ≥ I(U3;Y2|U2),

R̃3 −R32 + R̃4 −R4 ≥ I(U4;Y2|U2), (11)

1This is only true for securingW4 from receiver 2. Random binning may
still be needed for securingW3 andW4 from receiver 1.

the conditions (9) and (10) are satisfied.

Combining (8) and (11), we obtain the following achievable
region:

R1 ≤ I(U1;Y1),

R2 ≤ I(U2;Y2|U1),

R31 +R32 ≤ I(U3;Y3|U2),

R4 ≤ I(X ;Y4|U3),

R31 +R32 ≤ I(U2;Y2|U1) + I(U3;Y3|U2)

− I(U3;Y1|U1),

R31 +R32 +R4 ≤ I(U2;Y2|U1) + I(U3;Y3|U2)

+ I(X ;Y4|U3)− I(X ;Y1|U1),

R32 ≤ I(U3;Y3|U2)− I(U3;Y2|U2),

R32 +R4 ≤ I(U3;Y3|U2) + I(X ;Y4|U3)

− I(X ;Y2|U2). (12)

We note that the above region use the fact that ifR2 =
I(U2;Y2|U1) can be achieved, any rate below this threshold
can be achieved by sending certain amount of information
independent ofW2.

Rate sharing: It can be observed thatW32 satisfies the same
decoding and secrecy requirements asW4, and hence its rate
can be counted towardsR4 by subtracting the same rate from
R3. Thus, we defineR3 = R31, andR4 = R32+R4. By adding
these two rates to the above achievable region, and performing
the Fourier-Motzkin elimination to removeR31, R32, andR̄4,
we obtain the achievable region given in Theorem 1.

2) Case 2: I(U3;Y3|U2) ≤ I(X ;Y2|U2).

Randomly generate the codebook as in case 1, and set
R32 = 0, R31 = R3, and R4 = R4. The encoding and
decoding procedures are similar to those of case 1.

Following steps similar to those in case 1 to analyze the
decoding error probability and the leakage rate, we obtain the
achievable region characterized by the following bounds:

R1 ≤ I(U1;Y1),

R2 ≤ I(U2;Y2|U1),

R3 ≤ I(U3;Y3|U2),

R4 ≤ I(X ;Y4|U3),

R3 ≤ I(U2;Y2|U1) + I(U3;Y3|U2)

− I(U3;Y1|U1),

R3 +R4 ≤ I(U2;Y2|U1) + I(U3;Y3|U2)

+ I(X ;Y4|U3)− I(X ;Y1|U1),

R4 ≤ I(U3;Y3|U2) + I(X ;Y4|U3)

− I(X ;Y2|U2). (13)

Comparing the two bounds onR4 in the above region, the
boundR4 ≤ I(X ;Y4|U3) is redundant and can be removed
due to the assumption of case 2, which isI(U3;Y3|U2) ≤
I(X ;Y2|U2). Thus, we obtain an achievable region that is the
same as the capacity region characterized in Theorem 1.

B. Proof of Converse (Outline)

Here we provide our main insight for proving the converse
with the details omitted due to the space limitation. The full
proof can be found in [14].



To prove the converse, a natural construction of auxiliary
random variables is as follows:

U1,i = (W1, Y
i−1
1 ),

U2,i = (W1,W2, Y
i−1
2 ),

U3,i = (W1,W2,W3, Y
i−1
3 , Y n

1,i+1),

U4,i = (W1, . . . ,W4, Y
i−1
4 , Y n

2,i+1), (14)

which satisfy the following Markov chain:

U1,i → U2,i → U3,i → U4,i → Xi

→ Y4,i → Y3,i → Y2,i → Y1,i, (15)

for i = 1, . . . , n.

As we comment in Section III, without rate splitting of
R3 and rate sharing betweenR3 andR4, we have the bound
R4 ≤ I(X ;Y4|U3) in the achievable region (7). However, it
is very challenging to derive this bound for the given choice
of auxiliary random variableU3,i in (14). More specifically, it
is difficult to justify insertingY n

1,i+1 into the conditioning of
the mutual information. But such a choice ofU3 appears to be
necessary for showing other bounds in the achievable region.
Such dilemma motivates us to come up with the scheme of
rate splitting and sharing in the achievable scheme to replace
this bound by bound onR3 + R4 so that the converse proof
can be established.

V. CONCLUSION

In this paper, we have studied a four-receiver discrete
memoryless degraded broadcast channel with secrecy outside
a bounded range. We have characterized the secrecy capacity
region of this model. We have designed an achievable scheme
based on superposition, joint embedded coding and binning,
and rate splitting and sharing. Among the techniques, rate
splitting and sharing is critical for deriving a potentially larger
achievable region, for which the converse can be established.

In the future, we plan to extend our results to the case
with an arbitrary number of receivers. For such a more general
model, it is anticipated that rate splitting and sharing is more
involved because one layer’s message can be split into multiple
components in order to be shared by rates corresponding to
higher layers. The procedure of Fourier Motzkin elimination
to obtain the resulting achievable region will also become
more complex. This suggests that new techniques need to be
developed to simplify the mathematical manipulations, as well
as capturing the essence of the problem.
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