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Abstract—In this paper, the degraded Gaussian Multiple-
Input-Multiple-Output (MIMO) broadcast channel with laye red
decoding and secrecy constraints is investigated. In this model,
there are in total K messages andK receivers that are ordered
by the channel quality. Each receiver is required to decode one
more message than the receiver with one level worse channel
quality. Furthermore, this message should be kept secure from
the receivers with worse channel qualities. The secrecy capacity
region for this model is fully characterized. The converse proof
relies on a novel construction of a series of covariance matrices.
An application of this model to the problem of sharing multiple
secrets, which is difficult to solve using number theoretic tools, is
investigated. The secret sharing capacity region is characterized
by reformulating the secret sharing problem as the secure
communication problem over theK-receiver degraded Gaussian
MIMO broadcast channel.

I. I NTRODUCTION

As a nature of wireless communications, broadcast causes
significant challenges to achieve secure communication, be-
cause eavesdroppers in networks can easily receive information
intended for other nodes. The basic physical layer communi-
cation model that includes secrecy constraints is the wiretap
channel introduced by Wyner [1], in which a transmitter
broadcasts to a legitimate receiver and an eavesdropper, and
wishes to transmit a private message to the legitimate receiver
and keep this message secure from the eavesdropper. This
model was further generalized by Csiszár and K̈orner in [2],
in which the transmitter further sends one common message
to both the legitimate receiver and the eavesdropper. Recently,
there have been extensive studies of broadcast channels with
secrecy constraints, e.g., [3]–[6] (see [7] and [8] for more
references of these studies).

More recently, a number of broadcast models with layered
decoding and secrecy requirements have been proposed and
studied. In particular, [9] studied a model (model 1) with two
legitimate receivers and one eavesdropper. It is required that
one message be decoded at both receivers and kept secure from
the eavesdropper, and that the second message be decoded at
one receiver and kept secure from the other receiver and the
eavesdropper. [9] studied one more model (model 2), in which
the second message does not need to be kept secure from the
other receiver. Both models were further generalized in [10] in
that each receiver and the eavesdropper in the above model was
replaced by a group of nodes. In [9], [10], the secrecy capacity
region was established for the multiple-input multiple-output
(MIMO) Gaussian channels.

Furthermore, [11] generalized model 1 in [9] toK receivers
(see Fig. 1). More specifically, the transmitter wishes to
transmitK messages toK receivers. Due to the degradedness
condition, from receiverK to receiver1, the quality of their
channels gets worse gradually. It is required that receiverk de-
codes one more message than receiverk−1 for k = 2, . . . ,K,
and this additional message should be kept secure from all
receivers with worse outputs, i.e., with lower indices. In [11],
the secrecy capacity region was characterized for the discrete
memoryless channel and the single-input single-output (SISO)
Gaussian channel.

In this paper, we extend the study in [11] to the degraded
MIMO Gaussian broadcast channel. Our main contribution
lies in establishing the secrecy capacity region for the MIMO
channel. Although an achievable region (i.e., an inner bound
on the secrecy capacity region) follows from the result in
[11] directly by properly choosing jointly Gaussian distributed
input and auxiliary random variables, the converse proof is
challenging. The techniques used for the converse proof in
[11] for scalar Gaussian variables are not applicable to vector
random variables. Furthermore, the layered secrecy constraints
on more than two receivers require the converse proof to
bound the secrecy rates in certain recursive structures for
three or more consecutive receivers. Consequently, techniques
used in [9], [10] for two receivers cannot be readily applied
here, although some properties on matrix manipulations are
useful in our proof. Our main technical development in the
converse proof lies in the construction of a series of covariance
matrices (representing input resources for messages) suchthat
the secrecy rates can be upper bounded as the desired recursive
forms in terms of these covariance matrices.

We further apply our result to studying a secret sharing
problem, in which a dealer wishes to distributeK secrets to
K participants by broadcasting over a wireless channel. It is
required that participant 1 recover the first secret, and as one
more participant joins the group to share its output, one more
secret should be recovered by the group. Moreover, the new
secret should be kept secure from any smaller groups. This
problem involves sharing multiple secrets in a layered fashion,
and can be very challenging to solve using the traditional
number theoretic tools. In this paper, by designing virtual
receivers for each sharing group of receivers, we show that this
secret sharing problem is equivalent to the degraded Gaussian
MIMO broadcast channel with layered decoding and secrecy
constraints that we study. Moreover, the channel outputs at



those virtual receivers naturally satisfy the degradedness con-
dition. We thus establish the secret sharing capacity region
by applying the secrecy capacity region we obtain for the
degraded Gaussian MIMO broadcast channel. Furthermore,
the secure encoding scheme that achieves the secret capacity
region provides an information theoretic scheme for sharing
the secrets.

In this paper, we useA ≺ B and A � B to denote
the fact thatB − A is positive definite and semi-positive
definite, respectively. This paper is organized as follows.In
Section II, we introduce the system model we study. In
Section III, we present our characterization of the secrecy
capacity region. In Section IV, we further apply our result to a
secret sharing problem, and present the secret sharing capacity
region. Finally, in Section V, we conclude our paper.

II. CHANNEL MODEL

Decoder 2

Decoder 1

Decoder K

 

 
p(y

1
,y

2
,...,y

k
|x)

W
1

W
2

W
K

Encoder Xn

Y
1
n

Y
2
n

Y
K
n

W
1
W

2
W

3
...W

K

W
1
W

2
W

3
...W

K

W
1
W

2
W

3
...W

K

Fig. 1. The broadcast channel with layered decoding and secrecy.

In this paper, we study the degraded Gaussian MIMO
broadcast channel with layered decoding and secrecy con-
straints (see Fig. 1). In this model, the received signal at
receiverk for one channel use is given by

Yk = X+Nk, k = 1, . . . ,K, (1)

where the channel inputX, the channel outputYk and the
noiseNk are r-dimensional vectors. Furthermore, the noise
variablesNk are zero-mean Gaussian random vectors with
covariance matricesΣk for k = 1, . . . ,K that satisfy the
following order:

0 ≺ ΣK � ΣK−1 � · · · � Σ1. (2)

The channel inputX is subject to a covariance constraint

E[XX
⊤] � S (3)

where S ≻ 0. Since the secrecy capacity region does not
depend on the correlation across the channel outputs, we can
adjust the correlation between the noise vectors such that
the channel inputs and channel outputs satisfy the following
Markov chain:

X → YK → YK−1 → . . . → Y2 → Y1. (4)

Hence, the quality of channels gradually degrades from re-
ceiverK to receiver1.

The transmitter hasK messagesW1, · · · ,WK intended for
theK receivers. The system is required to satisfy the following
layered decoding and secrecy constraints. Fork = 1, . . . ,K,
receiverk needs to decode the messagesW1, · · · ,Wk, and to
be kept ignorant of messagesWk+1, · · · ,WK (see Fig. 1 for
an illustration).

A secrecy rate tuple(R1, · · · , RK) is said to beachievable,
if there exists a sequence of encoders at the transmitter and
decoders at each receiver such that both the average error
probability

Pn
e = Pr

(
∪K
k=1{(W1, · · · ,Wk) 6= gnk (Y

n
k )}

)
(5)

and the leakage rate at each receiverk for k = 1, . . . ,K

1

n
I(Wk+1, · · · ,WK ;Yn

k |W1, · · · ,Wk) (6)

approach zero asn goes to infinity.

Here, the asymptotically small error probability as in (5)
implies that each receiverk is able to decode messages
W1, . . . ,Wk, and asymptotically small leakage rate as in (6)
for each receiverk implies that receiverk is kept ignorant
of messagesWk+1, . . . ,WK . Our goal is to characterize the
secrecy capacity region that consists of all achievable rate
tuples.

III. M AIN RESULT

We first note that the corresponding discrete memoryless
model has been studied in [11], which characterizes the secrecy
capacity region as follows:

Lemma 1. [11, Theorem 1] The secrecy capacity region of the
discrete memoryless degraded broadcast channel with layered
decoding and secrecy constraints as described in Section II
contains rate tuples(R1, · · · , RK) satisfying

R1 ≤ I(U1;Y1),

Rk ≤ I(Uk;Yk|Uk−1)− I(Uk;Yk−1|Uk−1),

for k = 2, . . . ,K − 1,

RK ≤ I(X ;YK |UK−1)− I(X ;YK−1|UK−1),

(7)

for somePU1U2...UK−1X such that the following Markov chain
holds

U1 → U2 → . . . → UK−1 → X → YK → . . . → Y1. (8)

In this paper, we characterize the secrecy capacity region
for the degraded Gaussian MIMO channel with layered decod-
ing and secrecy constraints in the following theorem.

Theorem 1. The secrecy capacity region of the degraded
Gaussian MIMO broadcast channel with layered decoding and
secrecy constraints as described in Section II contains allrate
tuples(R1, . . . , RK) that satisfy the following inequalities:

R1 ≤
1

2
log

|Σ1 + S|

|Σ1 + S1|

Rk ≤
1

2
log

|Σk + Sk−1|

|Σk + Sk|
−

1

2
log

|Σk−1 + Sk−1|

|Σk−1 + Sk|
,

for 2 ≤ k ≤ K − 1,

RK ≤
1

2
log

|ΣK + SK−1|

|ΣK |
−

1

2
log

|ΣK−1 + SK−1|

|ΣK−1|
, (9)

for some0 � SK−1 � SK−2 � . . . � S2 � S1 � S.

Proof of Achievability : The achievability of region
(9) follows by choosing the auxiliary random variables



U1, . . . ,UK−1,X to be jointly Gaussian distributed and sat-
isfy the following Markov chain condition:

U1 → U2 → . . . → UK−1 → X, (10)

where the covariance ofUk is set to beS − Sk for k =
1, . . . ,K − 1, and the covariance ofX is set to beS.

Proof of Converse (Outline): Due to the space limita-
tions, we provide only an outline of key steps of the converse
proof. The reader can refer to [12] for the full proof. We note
that the proof applied some techniques in the converse proof
in [13] with new developments for our problem.

Following the converse proof of Lemma 1 for the discrete
memoryless channel in [11], we have the inequalities as
follows.

R1 ≤ I(U1;Y1),

Rk ≤ I(Uk;Yk|Uk−1)− I(Uk;Yk−1|Uk−1),

for 2 ≤ k ≤ K, (11)

where the random variables satisfy the following Markov chain
condition:

U1 → . . . → UK−1 → X → YK → . . . → Y1. (12)

We first derive the bounds onR2 andR3 in (9) in order to
show that the bounding techniques can be extended to prove
the bounds onR4, . . . , RK . We then derive the bound onR1.

To boundR2, we start with (11), and we have,

R2 ≤ (h(Y2|U1)− h(Y1|U1))− (h(Y2|U2)− h(Y1|U2)),
(13)

where we use the Markov chain condition (12).

Using techniques in [13], we have the following upper and
lower bounds onh(Y2|U1)− h(Y1|U1),

−r(0) ≤ h(Y2|U1)− h(Y1|U1) ≤ −r(1), (14)

where

r(t) =
1

2
log

|A+B+ t∆|

|A+ t∆|
. (15)

In above equation (15),

A = J(X+N2|U1)
−1

B = Σ1 −Σ2

∆ = J(X+N1|U1)
−1 +Σ2 −Σ1 − J(X +N2|U1)

−1.

More specifically,J(X|U) is the conditional Fisher informa-
tion matrix ofX givenU for an arbitrarily correlated random
vector pair with well defined densities, and is defined as

J(X|U) = E[ρ(X|U)ρ(X|U)T ], (16)

where the expectation is taken over the joint densityf(u,x),
and the conditional score functionρ(x|u) is given by

ρ(x|u) = ∇ log f(x|u)

=

[
∂ log f(x|u)

∂x1

· · ·
∂ log f(x|u)

∂xn

]T
.

(17)

It can be verified thatA ≻ 0, B � 0, ∆ � 0, and r(t)
is a continuous and monotonically decreasing function oft.
Hence, there must exist0 ≤ t1 ≤ 1 such that

h(Y2|U1)− h(Y1|U1) = −r(t1). (18)

We defineS1 := A+ t1∆−Σ2. Therefore,

h(Y2|U1)− h(Y1|U1) = −r(t1) =
1

2
log

|S1 +Σ2|

|S1 +Σ1|
. (19)

It can be seen that,S1 satisfiesA−Σ2 � S1 � A+∆−Σ2,
and can be shown that

0 � S1 � S. (20)

We can also show that

1

2
log

|J(X+N2|U2)
−1|

|J(X+N2|U2)−1 +Σ1 −Σ2|

≤ h(Y2|U2)− h(Y1|U2) ≤
1

2
log

|S1 +Σ2|

|S1 +Σ1|
. (21)

Combining (21) with the fact thatJ(X+N2|U2)
−1 −Σ2 �

S1, we have

−r(0) ≤ h(Y2|U2)− h(Y1|U2) ≤ −r(1), (22)

wherer(t) is given in (15) withA, B and∆ being defined
as,

A = J(X +N2|U2)
−1,

B = Σ1 −Σ2,

∆ = S1 +Σ2 − J(X+N2|U2)
−1,

which satisfyA ≻ 0, B � 0, and ∆ � 0. Since r(t) is
monotone and continuous, there exists0 ≤ t2 ≤ 1 such that

h(Y2|U2)− h(Y1|U2) = −r(t2).

Let S2 = A+ t2∆−Σ2. Hence,

h(Y2|U2)− h(Y1|U2) = −r(t2) =
1

2
log

|S2 +Σ2|

|S2 +Σ1|
(23)

and
J(X+N2|U2)

−1 −Σ2 � S2 � S1. (24)

Therefore, substituting (19) and (23) into (13), we have

R2 ≤
1

2
log

|S1 +Σ2|

|S2 +Σ2|
−

1

2
log

|S1 +Σ1|

|S2 +Σ1|
. (25)

We next derive an upper bound onR3, which is a necessary
step to show that the proof techniques can be iteratively
extended to boundR4, . . . , RK . Following from (11), we have

R3 ≤ h(Y3|U2)− h(Y2|U2)− (h(Y3|U3)− h(Y2|U3)).
(26)

Then using [10, Theorem 11] and (23), we have

h(Y3|U2)− h(Y2|U2) ≤
1

2
log

|S2 +Σ3|

|S2 +Σ2|
. (27)



Following from the arguments similar to those for deriving
(23) and (24), we can show that there existsS3 such that
0 � S3 � S2 � S1 � S and

h(Y3|U3)− h(Y2|U3) =
1

2
log

|S3 +Σ3|

|S3 +Σ2|
. (28)

Therefore, substituting (27) and (28) to (26), we have

R3 ≤
1

2
log

|S2 +Σ3|

|S3 +Σ3|
−

1

2
log

|S2 +Σ2|

|S3 +Σ2|
. (29)

Using techniques similar to those for boundingR2 and R3,
we can derive the desired bounds onR4, . . . , RK iteratively.

Finally, we bound the rateR1. We introduce a virtual
receiverY0 = X+N0, where the covariance matrix ofN0 is
given byΣ0 = tΣ1, with t ≥ 1. Hence,Σ0 � Σ1. Following
[10, Theorem 1] and (19), we have

h(Y0|U1)− h(Y1|U1) ≤
1

2
log

|S1 +Σ0|

|S1 +Σ1|
, (30)

for any t ≥ 1. On the other hand, we have

1

2
log |Σ0| = h(N0) ≤ h(Y0|U1) ≤ h(Y0) ≤

1

2
log |S+Σ0|,

(31)
which implies

1

2
log

|Σ0|

|S1 +Σ0|
≤ h(Y0|U1)−

1

2
log |S1 +Σ0|

≤
1

2
log

|S+Σ0|

|S1 +Σ0|
. (32)

If t → ∞, 1

2
log |Σ0|

|S1+Σ0|
→ 0 and 1

2
log |S+Σ0|

|S1+Σ0|
→ 0. Hence,

h(Y0|U1)−
1

2
log |S1+Σ0| → 0 ast → ∞. Since (30) holds

for any t ≥ 1, we haveh(Y1|U1) ≥
1

2
log |S1 +Σ1|.

Following from (11), we have

R1 ≤ I(U1;Y1) = h(Y1)− h(Y1|U1)

≤
1

2
log |S+N1| −

1

2
log |S1 +Σ1| =

1

2
log

|S+Σ1|

|S1 +Σ1|
,

(33)

which completes the converse proof.

IV. A PPLICATION TO SECRETSHARING

In this section, we apply our result obtained in Section III
to study a secret sharing problem, in which a dealer wishes
to shareK secretsW1,W2, . . . ,WK with K participants via
a broadcast channel (see Fig. 2). The channel input sent by
the dealer is denoted byX and the channel output received at
participantk is denoted byYk for k = 1, . . . ,K. It is required
that participant 1 decodesW1, and participant1 and2 decode
W1 andW2 by sharing their outputs(Y1, Y2), but W2 should
be kept secure from participant1. Such requirements extend to
k participants fork = 1, . . . ,K in the sense that participants1
to k can recover the firstk messagesW1, . . . ,Wk by sharing
their outputs(Y1, . . . , Yk), but the new messageWk should be
secure from the firstk − 1 participants. Hence, as one more
participant joins the group, one more secret can be recovered,
and this new secret is secure from (and hence cannot be
recovered by) a smaller group. The goal is to characterize

the secret sharing capacity region, which contains all possible
achievable rate tuples(R1, R2, . . . , RK) for K secrets.

This secret sharing problem involves sharing multiple se-
crets in a layered fashion, and is challenging to solve using
the classical approach based on number theory. Here, we solve
this problem by constructing an equivalent broadcast model
described in Section II.

Fig. 2. The model of secret sharing via a broadcast channel.

We assume that the dealer communicates to the participants
via a Gaussian multiple input single output (MISO) broadcast
channel corrupted by additive Gaussian noise variables. The
dealer hasK antennas and each receiver has one antenna.
The relationship of the channel input from the dealer and the
channel outputs at all participants is characterized as




Y1

...
YK


 = H




X1

...
XK


+




Z1

...
ZK


 (34)

whereH is the K × K channel matrix, which is assumed
to be invertible,(Y1, . . . , YK) are channel outputs at theK
participants,(X1, . . .XK) are the channel inputs from theK
antennas of the dealer, and(Z1, . . . , ZK) is a random Gaussian
vector with the covariance matrixΣ with each entryΣij =
E[ZiZj] = σ2

ij . We assume that the dealer’s input is subject
to a resource constraint,E[XX

T ] � S.

We note that it is reasonable to assume thatH is invertible
in order to guarantee that each participant’s output contains
new information compared to other participants so that new
secret can be recovered when this participant joins a group.

We reformulate the above secret sharing model into a
degraded MIMO broadcast communication system by design-
ing a virtual receiver for each sharing group of participants.
More specifically, we design a virtual receiverVk for the
group of the firstk participants, i.e.,Vk = (Y1, . . . , Yk), for
1 ≤ k ≤ K. For technical convenience, we addK−k outputs
Ỹk+1, . . . , ỸK to Vk so that it containsK components, i.e.,
the virtual receiverVk hasK antennas. The channel outputs
at thoseK antennas are given by,

Vk =




Y1

...
Yk

Ỹk+1

...
ỸK




= H




X1

...
XK


+




Z1

...
Zk

Zk+1 + tZ̃k+1

...
ZK + tZ̃K




(35)



where Z̃k, 2 ≤ k ≤ K, is random Gaussian noise variables
with mean zero and variancẽσ2

kk > 0, andZ̃k is independent
from all other random variables. Here,t is a large enough
constant (i.e.,t → ∞), so that Ỹk+1, . . . , ỸK are fully
corrupted by the noise. We define a new random Gaussian
vectorZV (k) = (Z1, . . . , Zk, Zk+1+tZ̃k+1, . . . , ZK+tZ̃K)T

and rewrite (35) as

Vk = HX+ ZV (k), for k = 1, . . . ,K. (36)

Since the channel matrixH is invertible, we have

H
−1

Vk = X+H
−1

ZV (k). (37)

By treatingH−1
Vk as the new channel outputV′

k at virtual
receiverVk, and define a new random Gaussian noise vector
Z
′
V (k) = H

−1
ZV (k), we have

V
′
k = X+ Z

′
V (k), (38)

which is equivalent to the model in (36).

We now state a lemma that provides the order of the covari-
ance matrices ofZ′

V (k), denoted byΣ′
V (k), for 1 ≤ k ≤ K.

Lemma 2. Let Z′
V (k), 1 ≤ k ≤ K, be random Gaussian

vectors defined as above. The covariance matrices ofZ
′
V (k)

satisfy the following ordering property:

Σ
′
V (1) � Σ

′
V (2) � . . . � Σ

′
V (K). (39)

The proof of Lemma 2 is omitted due to the space
limitations.

Therefore, by designing virtual receivers, we reformulate
the problem of secret sharing via the MISO broadcast channel
into the problem of secure communication over the degraded
MIMO broadcast channel described in Section II. It can also
be seen that the requirements of the secret sharing problem is
equivalent to the layered decoding and secrecy requirements
for the communication problem. Thus, the secret sharing
capacity region equals the secrecy capacity region of the
degraded MIMO broadcast channel. Thus applying Theorem
1 we obtain the following secret sharing capacity region.

Corollary 1. The capacity region for the secret sharing prob-
lem described above contains rate tuples(R1, R2, . . . , RK)
satisfying

R1 ≤
1

2
log

|Σ′

V
(1) + S|

|Σ′

V
(1) + S1|

Rk ≤ lim
t→∞

1

2
log

|Σ′

V
(k) + Sk−1|

|Σ′

V
(k) + Sk|

−
1

2
log

|Σ′

V
(k − 1) + Sk−1|

|Σ′

V
(k − 1) + Sk |

,

for 2 ≤ k ≤ K − 1,

RK ≤ lim
t→∞

1

2
log

|Σ′

V
(K) + SK−1|

|Σ′

V
(K)|

−
1

2
log

|Σ′

V
(K − 1) + SK−1|

|Σ′

V
(K − 1)|

,

(40)

for some0 � SK−1 � SK−2 � . . . � S2 � S1 � S.

V. CONCLUSION

In this paper, we have studied theK-receiver degraded
Gaussian MIMO broadcast channel with layered decoding
and secrecy constraints. For this problem, fork = 1, . . . ,K,
receiverk needs to decode messagesW1,W2, . . . ,Wk, while
messagesWk+1, . . . ,WK need to be kept secured from re-
ceiver k. We have fully characterized the secrecy capacity
region of this channel. We have also introduced an application

of this model to a secret sharing problem, which is difficult
to solve using number theoretic tools. We have characterized
the secret sharing capacity region by reformulating the secret
sharing problem into the problem of the degraded Gaussian
MIMO broadcast channel. It is also of great interest to study
the general (non-degraded) MIMO broadcast channel in the
future.
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