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Abstract—In this paper, the degraded Gaussian Multiple- Furthermore, [11] generalized model 1 in [9]Abreceivers

Input-Multiple-Output (MIMO) broadcast channel with laye red (see Fig. 1). More specifically, the transmitter wishes to
decoding and secrecy constraints is investigated. In this adel,  transmitK’ messages t& receivers. Due to the degradedness
there are in total X' messages and" receivers that are ordered  condition, from receiver to receiverl, the quality of their

by the channel quality. Each receiver is required to decode ree channels gets worse gradually. It is required that recdiwe-
more message than the receiver with one level worse channel codes one more message than receivet for k — 2 K

quality. Furthermore, this message should be kept secure ém . o
the receivers with worse channel qualities. The secrecy capity and this additional message should be kept secure from all

region for this model is fully characterized. The converse pof ~ Feceivers with worse outputs, i.e., with lower indices. 1]
relies on a novel construction of a series of covariance mates.  the secrecy capacity region was characterized for theedescr
An application of this model to the problem of sharing multiple ~ memoryless channel and the single-input single-outp %I
secrets, which is difficult to solve using number theoreticdols, is  Gaussian channel.

investigated. The secret sharing capacity region is charaéerized

by reformulating the secret sharing problem as the secure In this paper, we extend the study in [11] to the degraded

communication problem over the K-receiver degraded Gaussian MIMO Gaussian broadcast channel. Our main contribution
MIMO broadcast channel. lies in establishing the secrecy capacity region for the @IM

channel. Although an achievable region (i.e., an inner doun

|. INTRODUCTION on the secrecy capacity region) follows from the result in

As a nature of wireless communications, broadcast causd41] directly by properly choosing jointly Gaussian dibtrted
significant challenges to achieve secure communication, bd"Put and auxiliary random variables, the converse proof is
cause eavesdroppers in networks can easily receive infiaima ¢hallenging. The techniques used for the converse proof in
intended for other nodes. The basic physical layer communit1] for scalar Gaussian variables are not applicable tdovec
cation model that includes secrecy constraints is the apret fandom variables. Furthermore, the layered secrecy ontstr
channel introduced by Wyner [1], in which a transmitterON more than two receivers require the converse proof to
broadcasts to a legitimate receiver and an eavesdropper, aRound the secrecy rates in certain recursive structures for
wishes to transmit a private message to the legitimatevecei three or more consecutive receivers. Consequently, tgubasi
and keep this message secure from the eavesdropper. THged in [9], [10] for two receivers cannot be readily applied
model was further generalized by Csiszand Korner in [2], here, although some properties on matrix manipulations are
in which the transmitter further sends one common messagéseful in our proof. Our main technical development in the
to both the legitimate receiver and the eavesdropper. Rigcen converse proof lies in th.e construction of a series of cavene
there have been extensive studies of broadcast channéls wihatrices (representing input resources for messages)tsath

secrecy constraints, e.g., [3]-[6] (see [7] and [8] for morethe secrecy rates can be upper bounded as the desired vecursi
references of these studies). forms in terms of these covariance matrices.

More recently, a number of broadcast models with layered We further apply our result to studying a secret sharing
decoding and secrecy requirements have been proposed ameblem, in which a dealer wishes to distribuié secrets to
studied. In particular, [9] studied a model (model 1) withotw K participants by broadcasting over a wireless channel. It is
legitimate receivers and one eavesdropper. It is requitatl t required that participant 1 recover the first secret, andnas o
one message be decoded at both receivers and kept secure frorare participant joins the group to share its output, oneemor
the eavesdropper, and that the second message be decodedestret should be recovered by the group. Moreover, the new
one receiver and kept secure from the other receiver and theecret should be kept secure from any smaller groups. This
eavesdropper. [9] studied one more model (model 2), in whiclproblem involves sharing multiple secrets in a layereditash
the second message does not need to be kept secure from #ed can be very challenging to solve using the traditional
other receiver. Both models were further generalized il 0 number theoretic tools. In this paper, by designing virtual
that each receiver and the eavesdropper in the above model waeceivers for each sharing group of receivers, we show it t
replaced by a group of nodes. In [9], [10], the secrecy capaci secret sharing problem is equivalent to the degraded Gaussi
region was established for the multiple-input multiplegad ~ MIMO broadcast channel with layered decoding and secrecy
(MIMO) Gaussian channels. constraints that we study. Moreover, the channel outputs at



those virtual receivers naturally satisfy the degradesices- A secrecy rate tupléRy, - - - , Rk ) is said to beachievable
dition. We thus establish the secret sharing capacity regioif there exists a sequence of encoders at the transmitter and
by applying the secrecy capacity region we obtain for thedecoders at each receiver such that both the average error
degraded Gaussian MIMO broadcast channel. Furthermorgrobability

the secure encoding scheme that achieves the secret gapacit . X s

region provides an information theoretic scheme for shgrin Pl =Pr(Up_ {(Wh, -, W) # gr(Yi)}) (5)

the secrets. and the leakage rate at each receivdor k =1,..., K

In this paper, we us&A < B and A < B to denote 1
the fact thatB — A is positive definite and semi-positive “T(Wigr, - Wi YW, -+, Wy) (6)
definite, respectively. This paper is organized as follolms. n
Section Il, we introduce the system model we study. Inapproach zero as goes to infinity.

Section lll, we present our characterization of the secrecy ) . ,

capacity region. In Section IV, we further apply our resalet . ere, the asymptotically small error probability as in (5)

secret sharing problem, and present the secret sharingigapa MPlies that each receivek is able to decode messages

region. Finally, in Section V, we conclude our paper. Wi,..., Wi, and asymptotically small leakage rate as in (6)
for each receivelk implies that receiver: is kept ignorant

. CHANNEL MODEL of messageWk_H, s Wig. Our goal is to characpenze the

secrecy capacity region that consists of all achievable rat
tuples.

Yﬂ
1> [ Decoder 1 |- W,wowmw, I

Encoder | X" Y?
] T X 0 [Dacoders | > e

M AIN RESULT

==

. : We first note that the corresponding discrete memoryless
Wy b ' : model has been studied in [11], which characterizes theesgcr
—*> [ Decoder K |->w,w,w,..w, capacity region as follows:

Lemma 1. [11, Theorem 1] The secrecy capacity region of the
discrete memoryless degraded broadcast channel with éalyer
decoding and secrecy constraints as described in Section Il
contains rate tuplesR,,--- , Rx) satisfying

In this paper, we study the degraded Gaussian MIMO
broadcast channel with layered decoding and secrecy con- Ry < I(Un; Y1),
straints (see Fig. 1). In this model, the received signal at Ri < I(U;Yi|Ur—1) — I(Uk; Ye-1|Ur-1), 7
receiverk for one channel use is given by fork=2,...,K —1, (7)

Y, =X+Ny, k=1,... K, (1) R < I(X;Yk|Uk-1) = I(X; Yk -1|Uk -1),

where the channel inpuX, the channel outpulY, and the for somePy,u,. v, _,x such that the following Markov chain
noise N, are r-dimensional vectors. Furthermore, the noiseholds
variablesN;, are zero-mean Gaussian random vectors with

Fig. 1. The broadcast channel with layered decoding andesgcr

Uy—-Us—...5Ug 1> X—>Yr—...—>Y. (8)

covariance matriceX;, for £k = 1,..., K that satisfy the
following order:
In this paper, we characterize the secrecy capacity region
0<Sx<Sg_1 < < Ty ) bap y capacity reg

for the degraded Gaussian MIMO channel with layered decod-
The channel inpuK is subject to a covariance constraint ~ ing and secrecy constraints in the following theorem.

E[XXT] <s 3) Theore_m 1. The secrecy capacity r.egion of the degraded
Gaussian MIMO broadcast channel with layered decoding and
where S > 0. Since the secrecy capacity region does noisecrecy constraints as described in Section Il containsaati
depend on the correlation across the channel outputs, we camples (R, ..., Rx) that satisfy the following inequalities:
adjust the correlation between the noise vectors such that

the channel inputs and channel outputs satisfy the follgwin llo |21 + S|
-~ 1= g
Markov chain: 2 7%+ S
1, |38p+Se-1] 1, [|Zp—1+Sk—1]
X—=>Yr—>Yx 1—...25Ys > Y. 4 Ry < —log == =02l gl T PRl
_ PR S 2 P E + 8
Hence, the quality of channels gradually degrades from re- foro<k<k—1
ceiver K to receiverl. - ’
. . Re <1 |Xx +Sk-1| 1 1 Xk 1+ Sk_1 9
The transmitter ha& message#ly, - - - , W intended for K = 5108 7|2K| ~ 58 —|2K71| , (9)
the K receivers. The system is required to satisfy the following
layered decoding and secrecy constraints. Fer 1,..., K, forsome0 <Sx ; XSk 2=...X8;=8S; <8S.
receiverk needs to decode the messagEs --- , Wy, and to
be kept ignorant of messagé;.1,--- , Wk (see Fig. 1 for Proof of Achievability: The achievability of region

an illustration). (9) follows by choosing the auxiliary random variables



Uy,...,Ug_1,X to be jointly Gaussian distributed and sat- It can be verified thatA > 0, B > 0, A > 0, andr(t)
isfy the following Markov chain condition: is a continuous and monotonically decreasing functiort.of
Hence, there must exist< ¢; < 1 such that

U —-Uy—...>Ug_ 1 > X, (20)
where the covariance b, is set to beS — S, for k = h(Y2|U1) — h(Y1|Uy) = —r(ty). (18)
1,...,K — 1, and the covariance & is set to beS. [ ]

Proof of Converse (Outline) Due to the space limita- We defineS; := A + 1 A — Xip. Therefore,
tions, we provide only an outline of key steps of the converse 1 [S1 + 25|
proof. The reader can refer to [12] for the full proof. We note MY2[U1) = h(Y1|Uy) = —r(t1) = 3 log 1S; + 3| (19)
that the proof applied some techniques in the converse proof
in [13] with new developments for our problem. It can be seen tha§; satisfiesA — ¥, <S; < A+ A — 3,

_ ) and can be shown that
Following the converse proof of Lemma 1 for the discrete

memoryless channel in [11], we have the inequalities as 0<8S;<8S. (20)
follows.
Ry < I(U1;Y), We can also show that
Ry < I(Up; Yi|Ug-1) = I(Ug; Y—1|Ug-1), 1. |J(X 4 N3|Uz) ™
for2<k<k, (11 2 P 1IX + No[Us)— + 3 —
where the random variables satisfy the following Markovicha < h(Y2|Usz) — h(Y1]|Usz) < 1log w (21)
condition: 2 7S+ 3|
U .. Uk 15X >Yr—...> YL (12) Combining (21) with the fact thal(X + N,|Uz) " — 5 <
S1, we have
We first derive the bounds aR; and R3 in (9) in order to —7(0) < h(Y32|Uy) — h(Y1|Uz) < —7(1), (22)

show that the bounding techniques can be extended to prove o _ _ _ _
the bounds orRy, ..., Rx. We then derive the bound aR;,.  wherer(t) is given in (15) withA, B and A being defined

as,
To boundR,, we start with (11), and we have,

Ry < (h(Y2[U1) = A(Y1[U1)) — (h(Y2|Uz) — h(Y1[Uy)),
(13)

A = J(X + N,|Uy) ™,
B= Z:1 - 227
. - A =8+ - J(X+NyUs) ™,
where we use the Markov chain condition (12).
which satisfyA >~ 0, B = 0, and A > 0. Sincer(t) is

Using techniques in [13], we have the following upper andmgnotone and continuous, there exigts. ¢, < 1 such that
lower bounds orh(Y2|U;) — h(Y1|Uy), -

—r(0) < h(Ya[Ur) = h(Y1[Uy) < —r(1),  (14) h(Y2[U2) = h(Y1[Uz2) = —r(tz).

Let So = A +t, A — Xs. Hence,

where
1 |SQ + Z:2|
1. |JA+B+tA h(Y2|Us) = h(Y1|Uz) = —r(ts) = 5 log i< (23)
t)=-log—— — 15
r(t) = ; log AT (15) 2 Sy + 34|
In above equation (15), and
J(X+N3Uy) ' =3, <S8, < Sy (24)

A =J(X 4+ Ny|U;)!
B=X, -3,
A=JX+N{U) '+ -3 - J(X+NyUy)~ L

Therefore, substituting (19) and (23) into (13), we have

1 S1+X% 1 S1+X%
s TR L s .
More specifically,J(X|U) is the conditional Fisher informa- ? 2 ? !

tion matrix of X givenU for an arbitrarily correlated random

vector pair with well defined densities, and is defined as We next derive an upper bound @&, which is a necessary

step to show that the proof techniques can be iteratively
J(X|U) = E[p(X|U)p(X|U)T], (16)  extended to boundy, ..., Rk. Following from (11), we have

where the expectation is taken over the joint dengity, x), R3 < h(Y3|Uz) — h(Y2|Uz) — (h(Y3|Us) — h(Y2|Us)).
and the conditional score functigrix|u) is given by (26)

p(x|u) = Vlog f(x|u) Then using [10, Theorem 11] and (23), we have
dlog f(xju)  dlog f(xjw)]" (A7) 1. [Sy+ 23]
= e . — < — - =
02, oz, h(Y5|Usz) — h(Y2|Usz) < 210g|82+22| 27)



Following from the arguments similar to those for deriving the secret sharing capacity region, which contains all iptess
(23) and (24), we can show that there exiSts such that achievable rate tupleky, Rs, ..., Ri) for K secrets.

0=<S3=<8S,=<8S; %S and _ . . . :
=T =R This secret sharing problem involves sharing multiple se-

1 S+ X i i ' i '
h(Y3[Us) — h(Ys|Us) = 510g| 3 3 (28) crets in a layered fashion, and is challenging to solve using

[S3 + o the classical approach based on number theory. Here, we solv
. this problem by constructing an equivalent broadcast model
Therefore, substituting (27) and (28) to (26), we have described in Section II.
|Sz+23| |Sg+22|

1
2T g2 2L
S5+ 35~ 2 °8S; + 3

Using techniques similar to those for boundiRg and Rs,

1
R3 < 3 log (29)

we can derive the desired bounds Bn, ..., Rx iteratively. WiW W Wy
Finally, we bound the rate?;. We introduce a virtual E
receiverY, = X + Ny, where the covariance matrix ™ is
given by X, = tX;, with ¢t > 1. Hence, 3 = X;. Following WiW5Ws.. Wy
[10, Theorem 1] and (19), we have
1 |Sl + 20| Fig. 2. The model of secret sharing via a broadcast channel.
h(Yo|Uyp) — h(Y1|Uy) < = log 30
( 0| 1) ( 1| 1)—2 g|S1+21| ( )
for anyt > 1. On the other hand, we have We assume that the dealer communicates to the participants

) ) via a Gaussian multiple input single output (MISO) broaticas
Zloe I1Bal = AN < A(YalU:) < h(Ya) < =1log 1S+ 3 channel corrupted by additive Gaussian noise variables. Th
2 og | %ol (No) = h(Yo[Us) = h(Yo) < 5 log[S+2a], dealer hask' antennas and each receiver has one antenna.

S Bl The relationship of the channel input from the dealer and the
which implies channel outputs at all participants is characterized as
1 by 1
§logﬁ < h(Yo[Uy) — 5 log S + 2| v X, Z
! 0 : =H : + : (34)
< 110 1S + 30| (32) : ' s
=288, 12| Vi Xk Zx
If ¢ — oo, %log |S|1§:-(%o\ 50 and%log ‘\Ssiéo[}‘ —+ 0. Hence, where H is the K x K channel matrix, which is assumed

to be invertible,(Y1,...,Yx) are channel outputs at th&

) .
h(Yo[Us) = 3 log|S1 + %[ — 0 ast — co. Since (30) holds  participants (X1, ... Xx) are the channel inputs from the

for anyt > 1, we haveh(Y,[U;) > $1log|[S; + 34| antennas of the dealer, af,, . . ., Z) is a random Gaussian
Following from (11), we have vector with the covariance matriX with each .entryZ.)ij =
E[Z:Z;] = o};. We assume that the dealer’s input is subject
Ry < I(Uy; Y1) = h(Y1) — h(Y1[Uy) to a resource constrain[XX7”] < S.

< 1log IS+ Ni| — llog [S1+ 34| = 11og M, We note that it is reasonable to assume Ha invertible
2 2 2 S1 + 34| in order to guarantee that each participant’s output coatai
(33) new information compared to other participants so that new
which completes the converse proof. m  secret can be recovered when this participant joins a group.

We reformulate the above secret sharing model into a
IV.  APPLICATION TO SECRET SHARING degraded MIMO broadcast communication system by design-
(ing a virtual receiver for each sharing group of particigant
More specifically, we design a virtual receivaf, for the
group of the firstk participants, i.e.V; = (Y3,...,Y}), for

In this section, we apply our result obtained in Section Il
to study a secret sharing problem, in which a dealer wishe

to shareK secretsi;, Whs, ..., W with K participants via . :

a broadcast channel (see Fig. 2). The chgnnel Fi)nput sent by= k = K. For technical convenience, we add— k outputs
the dealer is denoted BX and the channel output received at Yx+1,---» Yx 10 V}, s0 that it containsk’ components, i.e.,
participantk is denoted by, for k = 1, ..., K. It is required the virtual receiveiVy, has_K antennas. The channel outputs
that participant 1 decodd®;, and participant and2 decode at thosek antennas are given by,

W1 and W by sharing their output§Y;, Y3), but W5 should Y 7

be kept secure from participaht Such requirements extend to

k participants fork = 1, ..., K in the sense that participants : X :

to k can recover the first message$Vy, ..., Wy by sharing Yy ! Z

their outputs(Ys . .., Y4), but the new messagé}, shouldbe Vi = Ve | = H : T Zior +tZ1a
secure from the firsk — 1 participants. Hence, as one more i XK )

participant joins the group, one more secret can be recdyvere R -

and this new secret is secure from (and hence cannot be Yi Zy +tZ

recovered by) a smaller group. The goal is to characterize 35)



where Z;, 2 < k < K, is random Gaussian noise variablesof this model to a secret sharing problem, which is difficult
with mean zero and varianég, > 0, and Z, is independent to solve using number theoretic tools. We have charactérize
from all other random variables. Here,is a large enough the secret sharing capacity region by reformulating theetec
constant (i.e.,t — o0), so that ?kﬂ,,,,,f/K are fully  sharing problem into the problem of the degraded Gaussian
corrupted by the noise. We define a new random GaussiaMIMO broadcast channel. It is also of great interest to study
vectorZy (k) = (Z1, ..., Zi, Zogr +tZps1, . .., Zx+tZx)T  the general (non-degraded) MIMO broadcast channel in the

and rewrite (35) as future.
Vi, =HX+Zy(k), fork=1,..., K. (36) ACKNOWLEDGMENT
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We now state a lemma that provides the order of the covariNEWCOM#.

ance matrices oF{, (k), denoted by>, (k), for 1 < k < K.

Lemma 2. Let Zi,(k), 1 < k < K, be random Gaussian
vectors defined as above. The covariance matrice®;ofk) [1
satisfy the following ordering property:

L) = 3L2) = .= (K. e

(39)

The proof of Lemma 2 is omitted due to the space [3]
limitations.

Therefore, by designing virtual receivers, we reformulate
the problem of secret sharing via the MISO broadcast channel4]
into the problem of secure communication over the degraded
MIMO broadcast channel described in Section Il. It can also
be seen that the requirements of the secret sharing problem i
equivalent to the layered decoding and secrecy requirement;s;
for the communication problem. Thus, the secret sharing
capacity region equals the secrecy capacity region of the
degraded MIMO broadcast channel. Thus applying Theorem
1 we obtain the following secret sharing capacity region. [l

Corollary 1. The capacity region for the secret sharing prob-

lem described above contains rate tupl@®, Rs, ..., Rx) 7]
satisfying
1 =, (1)+8
Ry < Liog [BL +S
2 7By + 8 8]
3y (k) + Sk— S (k—1) + Sk
Ry < lim =1 M_ll I V,( )+ kl"
t—o02 |3, (k) 4 Skl 2 |39, (k — 1) 4+ S| [9]
for2<k<K-1,
=Y (K) + Sk =4 (K —1) + Sk
Ry < limllog‘ v(K) + Sk 1‘_11 1=y ( ) + 8k 1|’ (10]
tmo02 1=y (Kl 2 |2, (K — 1)
(40)
for some0 < Sig_; < Sg_2=... <8, <8 <8S. [11]

V. CONCLUSION

In this paper, we have studied th€-receiver degraded
Gaussian MIMO broadcast channel with layered decodinélz]
and secrecy constraints. For this problem, foe 1,..., K,
receiverk needs to decode messadés, s, ..., Wi, while
messagedVi11,..., Wk need to be kept secured from re- [13]
ceiver k. We have fully characterized the secrecy capacity
region of this channel. We have also introduced an apptinati
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