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Abstract—A K-receiver degraded broadcast channel with Our motivation to study such a degraded broadcast channel

layered decoding and secrecy constraints is investigateth which with layered decoding and secrecy constraints is due to its
receivers are ordered by their channel quality. Each receier is potential applications to the problem of secret sharing, in
required to decode one more message compared to the receiver \hich a dealer distributes one or multiple secrets amongd a se
with one leve| worse channel quality, and this message shalibe  f harticipants in such a manner that only qualified sets efsis
kept secure from all receivers with worse channel quality. Br can recover the corresponding secrets by pooling theireshar

both the discrete memoryless channel and the Gaussian chagin ¢ th hil lified sets of btai infai
the secrecy capacity region is characterized. The achievaity ogether while non-gualiled Sets or users obtain no Intdrona

scheme is based on stochastic encoding and superpositiordz ~ @Pout the secrets even if they pool their shares together. It
schemes. Novel generalization of the analysis of leakagetea ~ has been shown recently in [10] that secret sharing can be
and of the proof of the converse is developed for thé<-receiver ~ achieved via broadcast transmission of secret messages fro
scenario. the dealer to all participants, and requiring that the negssa
are decodable if any qualified set of participants share thei
channel outputs, and messages are kept secure from any other
I. INTRODUCTION sets of participants even if they share their outputs. Ss@po

now one dealer wishes to establiBhshared secrets amotig

__ Physical layer security emerges as an attracting and promis, . yo “nq it is required that starting from node 1, whenever
ing new technique, which exploits physical channel random- ! !

ness for achieving secure communication. The basic iqeqne nqdejoms the group, one more secret should be recoyered
X N ; 8nd this new secret should not be recovered by the previous
was proposed for the wiretap channel in the seminal papgdroup. This naturally leads to an equivalent degraded lwastd
[1] by Wyner, in which a secure scheme is designed % hannel model with layered decoding and secrecy consiraint
send messages reliably to a legitimate receiver and 10 kegRy qte that in such a scenario, the original broadcast @ann
transmltted messages secure _from an eavesdropperacsis an be general and the degradedness of the equivalent model
and Korner further extended this approach to a more gener due to the secret sharing requirements
broadcast model [2], in which the transmitter also wishes to ’
send a common message to both the legitimate receiver and We also note that the model we study is different from
the “eavesdropper” (which is also a receiver in the system) i some previously studied broadcast models as follows. One
addition to the confidential message to the legitimate vecei model (i.e., scenario 1) studied in [9] assumes that alldcast
Among the communication models that have been studied witessages should be kept secure from one eavesdropper, which
secrecy constraints (overviews of these studies can belfoun does not expect any message from the transmitter, whereas he
[3] and [4]), broadcast networks with secrecy constrairtgeh all eavesdroppers expect their own messages. A fadingapiret
been studied intensively, e.g., [2], [5]-[7]. channel was studied in [11], in which the model is equivalent
the broadcast channel with multiple receivers and eaves-
oppers. The difference also lies in that the eavesdrapper
0 not expect messages from the transmitter in [11], althoug
layered decoding and secrecy appear in the work.

In this paper, we study a degraded broadcast channel modgil
with layered decoding and secrecy constraints, in which ong
transmitter sends information t& receivers. The channel
outputs atK receivers satisfy a Markov chain condition, which
implies that receivers can be ordered such that the qudlity o For the degraded broadcast channel with layered decoding
their channels gets worse gradually, say from receNeto  and secrecy constraints, we study both the discrete meessry!
receiverl. There areK messages intended for these receiverschannel (DMC) and the Gaussian channel, and obtain the
As the channel's quality gets one level better, the recawer secrecy capacity region for both cases. The secrecy scheme
required to decode one more message, and this message shaglthased on the stochastic encoding (i.e., binning) anddete
be kept secure from the receivers with worse outputs (segeneous superposition. More specifically, for each message
Fig. 1). Hence, receiveK is required to decode all messages.create a new layer superposed on the codeword of the lower-
This model generalizes a few models studied previouslyeo thlayer messages (intended for receivers with the worse @hann
generalK -user scenario including the model studied in [2], anquality), and the codewords for this layer are divided into a
example studied in [8], and scenario 2 studied in [9] with allnumber of bins for stochastic encoding. The receivers with
groups having a single node. better channel quality can tell which bin the codeword is in,



i.e., they can decode the message with a small probability of e An (possibly stochastic) encodér: Wy x - - - x Wi —
error, while the receivers with the worse channel quality ar X,
kept ignorant of the message. o K decodersgy : Yp — Wi, - , W) for kb =

Although the idea of the achievable scheme is simple, the Lo K
analysis of leakage rates is more involved than the casés wit Hence, a secrecy rate tup(&,,--- , Rx) is said to be
two or three receivers. For the DMC, we develop a novelchievable, if there exists a sequence @1, ... 2nfx p)
generation of the analysis of the leakage rate provided imodes such that both the average error probability
[12] for one legitimate receiver to multiple receivers. Foe

Gaussian channel, we provide an alternative analysis fr th Pl = Pr(Uszl{(Wla e Wi) # gg(ykn)}) (2)
leakage rate via an argument on the optimal input dist@outi and the leakage rate at each receivdor k = 1,..., K

for the Gaussian channel with a fixed codebook, and generaliz

such an argument to thE-receiver case. The two approaches lI(W]H»l Wi YW, W) 3)
carry complimentary insights for analyzing the leakage rat n o T

for scenarios with layered decoding and secrecy consstaintapproach zero as goes to infinity.
The converse proofs for the DMC and Gaussian channel

require careful constructions of auxiliary random varébl Here, condition (2) implies that each receivers able to
contained in recursive terms, which also generalize thetiegj ~ deécode messagé¥,, ..., Wi, while (3) implies that receiver
techniques for two or three receivers. k is kept ignorant of messagé$y.,1,..., Wx. The secrecy

capacity region is defined as the set of all achievable rate
This paper is organized as follows. In Section Il, we intro-tuples.
duce our system model for both the DMC and the Gaussian ) , .
channel. In Sections Il and IV, we present our main results We further consider the(-receiver degraded Gaussian
for the DMC and the Gaussian channel, respectively. Fipallyeroadcast channel, in which
in Section V we conclude our paper. Yi=hX+ 27, k=1,-- K, 4)

[I. CHANNEL MODEL whereZ;, is a zero mean Gaussian noise variable with variance
N at receiverk, and hy, is the real channel gain coefficient
from the transmitter to receivdr. Without loss of generality,
we assume thali; < hy < --- < hg. The transmitter has an

Y" .
w, 1> [ Decoder 1 | > W wawomw average power constraifit. We useC(z) = 3 log(1+z). The
w. n A remainder of the model is the same as the DMC case discussed
:2 __,| Encoder ’X>p(y1’y2 ''''' Y, [0 —2> [ Decoder 2 |- W,W =, above
w, '.n
K
> | DecoderK_|->w,w,w,..W, Ill. THE DISCRETEMEMORYLESSCHANNEL

For the discrete memoryless degraded broadcast channel
Fig. 1. System Model with layered decoding and secrecy constraints, we chaiaete
the secrecy region in the following theorem.

{heorem 1. The secrecy capacity region of the degraded
oadcast channel with layered decoding and secrecy con-
straints as described in Section Il contains rate tuples

In this paper, we study the model of the degraded broadca
channel with layered decoding and secrecy constraints (s
Fig. 1), in which a transmitter transmits & receivers. The

channel transition probability function is given B,..y, |y, ([ " fix) satislying
in which X € X is the channel input and;, € )y is the Ry < I(Uy; V1),
channel output of receivet for k£ = 1,..., K. It is assumed _
g ’ ’ < . ) = . B B
that the receivers have degraded outputs, 118,, -, Yk Ry < I{Us3 YelUp—1) = I(U; Yi-1|Ug—1), (5)
satisfy the following Markov chain condition: for k=2,....,K—1,

XY —>Yr1—...5Y, > Y. (1) Ric < I Yic|Ure 1) = HQXG Vi Uk ),
] for some Py, v, .. v, _,x such that the following Markov chain
Hence, the quality of channels gradually degrades from repg|ds
ceiver K to receiver1. The transmitter hagl messages
Wi,---,Wg intended for theK receivers. The system is Up=-Uy— ... 2 U1 =2 X=>Yrk—...=2Y. (6)

required to satisfy the following layered decoding and segr Remark 1. By setting R, = 0 and K = 3, Theorem 1 reduces

constraints. Fok = 1, ..., K, receiverk needs to decode the h Its f ; : ith each havi
messagedV,,--- , Wi, and to be kept ignorant of messagest(.)tle resu th orhscenfalglo.Z '23[9] V\gtf ea(r:] groupl aylngSa
Wit1, -+, Wk (see Fig. 1 for an illustration). single user for the model in [13], and for the example in [8].
A (2nfa ... 2nBx p) code for the channel consists of We next outline the proof of achievability and converse for
Theorem 1. The detailed proof will be provided in a journal

_ ... onRy :
e K message setsW, € W, = {1,---,2™%} for version of the work [14].

k = 1,---, K, which are independent from each other
and each message is uniformly distributed over the corre-  Proof of Achievability: In the following, we provide the
sponding message set; major steps in the proof and omit some detailed computations



in the analysis of error probability and leakage rates dubdo we have

space limitations. The achievability proof is based on lsase (U Y|C)

tic encoding and superposition coding. We use random codes K> n’“ . o

and fix a joint probability distributiorPy, ...;7, _, x satisfying = I(U, Ui Y3*(C)

the Markov chain in (6). Lef}(Py,..ux_,xv;..vx) denote =IULYC) + I(Ug; Y \UE,C)
the strongly jointlye-typical set based on the fixed distribution. < HUPIC) 4+ I({UE; YU, C)

Random codebook generation: In the following achievabil- b (10)
ity proof, for notational convenience, we wrifé asUg, i.e., < ”ZRJ' +nH(Yy|Uy) — nH(Yy|Uk)
PU1---UK71X = PU1~~~UK- le

e Generate"™ i_ndept;:;ndent identically distributed (i.i.d.) = ”Z R; +nl(Ug; Yi|Ug).

u} with distribution] ;" ; p(u1 ). Index these codewords =
asuf(wy), wy € [1,2"F], _
o For each uf_,(wy,wa,ly, -, wi1,lk1), k = Fo(rj'%\e seco]?d term,hdue to the independenddof- - - , Wi
2,---, K, generate2"f* ii.d. sequences:; with dis- andLa,---, Lk, We have
tribution [, p(ur,i|ux—1,;). Partition these sequences HWF LKIWE, ¢)
into 277 bins, each with2"(i*—fx) sequences. We k K (11)
use wy € [l : 28] to denote the bin index, and :Znéﬁ' Z n(R; — R;).
I, € [1: 2nF—F)] to denote the index within each bin. i=1 j=kt1
Hence each.} is indexed b lg, - k).
R 1S InNdex Y(wr,wa, o, - s wes L) We bound the last term as follows
The chosen codebook is revealed to the transmitter and all n
receivers. HW*, LY, Wiy, C)
S H(L£<+1|Ykn7 WKa Lka C) + ney

Encoding: To send a message tuple;, ws, ..., wk), for K
each2 < k < K, the encoder randomly generdie € [1 : _ n 17K Ti—

n(R 7R_) _ . _ yg e [ . - Z H(Lj|Yk7W , L7 lvc)+n€n (12)
2ntt—5w)] based on a uniform distribution. The transmitter ikt
then sendsu}, (w1, wa, lo, - -+, Wi, Ik). K

Decoding: For £ = 1,...,K, receiver k claims S Z H(L;|Yy, Uiy, Wy) + nep.
that (w1, -+ ,w,) is sent, if there exists a unique tuple g=k+1
(w1, e, lo, - -+ , g, ) such that _

A . . It can be shown that ilR; — R; > I(Uj;Yx|U;j—1) for
(uf (1), uy (W1, W2, l2), . . ., up (W1, W2, 2, - -+ Wk, I ), yg;) k+1<j<K,then
€ T€n(PU1~~~UkYk)' (7)

1 -
—H(Lj|ykn, Unfl, WJ) S Rj — Rj — I(Uj; YklUj—l) + 6;1.
Otherwise, it declares an error. " ! '

Analysis of error probability: By the law of large numbers Clombining the analysis of the three terms together, we have
and the packing lemma, it can be shown that if the followingthat ;- I (W1, ... . Wi Y [Wh, ..., W, C) — 0 asn — oo
inequalities are satisfied, receivér (for k = 1,...,K) for 1<k <K —1, if the following inequalities are satisfied:
can decode messages,ws, ..., w; With a vanishing error ~
probability: 2 Ry, — Ry, > I(Uy; Yk_1|Uk_1), for2 <k < K. (13)

Ry < I(Ur; Y1), ® Combining the bounds in (8) and (13), we obtain that the
Ry, < I(Up; Ye|Up—1),for 2 < k < K. rate tuple(Ry,--- , Rk) is achievable if
Ry < I(Up; Y1),

Analysis of leakage rate: We first compute an average Ry, < I(U; Yi|Ug—1) — I(Ug; Yie—1|Ug 1), (14)
of the leakage rate over the random codebook ensemble for2 <k < K.
as follows. For convenience, we l&v* = (Wy,..., W), -

W,ﬁl = Wit1,..., Wk). We note that the above statement also involves an argument
that there exists the same codebook such that both the error
I(Wklj—l; ykn|Wk,c) probability and secrecy constraints are satisfied. [ |
= I(WE L¥;vr|0) — 1wk, LK vir(wiE L, ) Proof of Converse By Fano’s inequality and the secrecy
< U Y[C) — I(W*, LK, v Wik | .C) (9) requirements, we have the following inequalities
= (U YC) — HWr, LKWk |, ¢) H(Wi|Y") < ney, for 1 <k <K
kE 1 K|yvn K 1
+HW?®, LHY,*, Wi, C). ~I(Wipr,oo Wi Y We . Wi) S (1)

We bound the above three terms one by one. For the first term, forl1<k<K-1.



We let ;7' = (Yea,ooo Yiic1), Y =
Victit1y- > Yieim)y Vi1 = (Yeei1,--o Yao1,i-1),
YanZJrl = (Yk 2,4+1-- - Yk 2n) We set Uk,i =
W, W, Y Y g fork =1, K whereYy' =

¢. It is easy to verlfy thal(Ul P
Markov chain condition

SUK- 1,1,Xi) satisfy the

Uy —-Upg—...5Ug 1+ X—>Yr—...—> Y. (16)

We first bound the rate for the first messagg. Since

all receivers can decode messdge, i.e. there is no secrecy
constraint forl//y, following the standard steps, we obtain the

following bound:

S

nRy=H(W1) <> T(W1, Y7 5 Y0) + ne,

=1

< ZI(UM’; Yii) + nen.

=1

(17)

For the messagl’;, 2 < k < K, we derive the following
bound:

nRy, = H(W|[Wk1)
<I(Wy; Y WE1) + ne,
<T(Wi; YR WHE) 4 2ne, — T(Wy; Y [WFTT)

n

= I(Wi; Yie s WF V1) + 2ne,
T(Wi; Yy o] WEL, ity i)

=1
=1
ZI(Wk,Ykzm;Yk,i|w’“*1,Y,§*1>
=1
I(Wie, Y Y1 WR L Y o)
_I(Yk—l,i-i—lvyk,i'kaYkZ 1)
+ 1Y Yo WE Y 1) + 2ney

@ S Iy YeaWEL Y
i=1
+ I(Wk§Yk,i|Wk_17YkiilaYknfl,iJrl)
— I(Yszl;Yk—1,i|Wk_1=Yknf1,z‘+1)
— I(Wi; Ve [WR L Y7L Y0 1) + 2ne,

b . — 71— n
(:)ZI(Wk;Yk,i|Wk LY lek—l,H—l)

i=1

— I(Wi; Vi1 4| WFL Y1§717 Yit1,i41) + 2ney,

:ZI(Wk’chiilvYkn—l,i+1§yk,i|Wk_1)
i=1
— 1YY s Yaed WETY
_I(kaYkl_laYkn—l,i+1;yk—1,i|Wk71)
+ I(Ykiilv Yknfl,i+1;Yk71,i|Wk71) + 2ne,,
-y i—1 yn i—1 yn ) k—1
_ZI(Wk,Yk Y YL Y Vi W

i=1

i—1 i—1 . k—1
- I(Wk7 Yk 7Ykn7171‘+17 Yk71 ) Ykn72,z‘+17 Yk—l,i|W )

I(Yl ! Yk 11+17Yk1|W 71)
+ I Yy Y1 WD) + 2ne,,

ZI(kayl ! Yt 11+1,Y,”|W’“ ! Ykl 11=Yk 2,i+1)
i=1
— (Wi, Y Y s YW Y Y 0 i00)
H 1Y Y i YieaWE )
I(Ykl 117Yk 21+17Y/€ 17,|Wk 1)
I(YZ ! Yk 11+1>Yk1|Wk 1)
+1(

+ 1YY i Yeend WD) + 2ne,,

n
i—1 yn . k—1 yi—1 yn
:ZI(VVka;C 7Yk71,i+17Yk7i|W 7Y]€_13Yk72,i+1)

I(kayl ! Yk 11+17Yk 1Z|Wk ! Y]gl %aYk 21+1)
I(Yl ! Yk 1z+17Ykz|Wk ! Ykz 117Yk 2z+1)
H I Y s Vel WET L YT Y ) 206y

'M=

i—1 n . . k—1 i—1 n
< (Wk,Yk ,Yk_l,i+17Yk,z|W 7Yk_1aYk—2,i+1)

=1

|
~

i—1 n . . k—1 i—1 n
(kaYk 7Yk—1,i+17Yk*111|W va—lek—2,i+1)
+ 2ne,,

< I(Uki; YeilUk-1.4)

i=1

—I(Ug,i; Yi—1,i|Uk—1,:) + 2ne,
(18)

Where stepga) and(b) follow from the sum identity property
in [2, Lemma 7]. Fork = K, we further derive (18),

nRx

<Y I(Uk;;Yk,ilUk-1,i) = I(Uk,i; Y —1,i| Uk —1,i) + 2nep

@.
i M:
)

N
Il
-

I(Uk,i, Xi; Y ilUk—1,i) = I(Uk i, Xi; Y —1,ilUk —1,4)

(X17YK1|UK1)+I(XZ7YK 11|UK1)+2n6n (19)

<Y I(Xi; Yr,ilUk-1:) — I(Xi; Yr—1,:|Uk—1,i) + 2ne,

The proof of the converse is completed by defining a uniformly

distributed random variabl@ € {1,--- ,n}, and setting/; =
(QUr), Vi Y g forke[l: KlandX £ (Q,Xg). ®

Remark 2. In the proof of achievability, we use the heteroge-
neous superposition scheme [15] which is optimal in the sense
of achieving the secrecy capacity region.

IV. THE GAUSSIAN CHANNEL

In this section, we consider the Gaussian broadcast channel

with K degraded receivers specified by (4).

Theorem 2. The secrecy capacity region of a K-user Gaus-
sian broadcast channel with layered decoding and secrecy
congtraints as described in Section 1l contains rate tuples



(R1, R, ..., Ri) satisfying [4]
hiP 5
m< 0 (vt ) ©
K2P, hy 4 P
< kik _ k—1
R, <C <N+hi K pj) c <N+hi1 P Pj) (6]
for2<k <K,

(20)

where the union is taken over all nonnegative variables
Py, Py, ..., Py, suchthat S5 P, < P. (71

Remark 3. For the Gaussian channel, heterogeneous superpo-
sition [ 15] and homogeneous superposition [ 16] are equivalent
in achieving the secrecy capacity region. We note that the (8]
equivalence of the two types of superposition schemes may
not always hold [17]. 9]
Outline of the Proof: The proof of achievability can
be based on Theorem 1 by settifgs,...,Ux,X) to be
jointly Gaussian distributed random variables. Alterveli,
the coding scheme can be developed as follows based on
stochastic encoding and superposition coding. Due to theesp [11]
limitations, we omit the details and the converse proof.

[10]

[ ] [12]

V. CONCLUSION [13]

In this paper, we have studied the secrecy capacity rei4]
gion for K —receiver degraded broadcast channel with layered
secrecy for both the DMC and the Gaussian channel. Fdi®!
the problem considered, messadés, ..., W, needs to be
decoded by usek, while message$Vy.1,..., Wk need to
be kept secured from receivér for k = 1,..., K. For both
the DMC and the Gaussian channels, we have characterized the,
secrecy capacity region. Our next step is to apply the ®esult
here to study the problem of secret sharing as we mention in
the introduction.

[16]
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