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Abstract—A K-receiver degraded broadcast channel with
layered decoding and secrecy constraints is investigated,in which
receivers are ordered by their channel quality. Each receiver is
required to decode one more message compared to the receiver
with one level worse channel quality, and this message should be
kept secure from all receivers with worse channel quality. For
both the discrete memoryless channel and the Gaussian channel,
the secrecy capacity region is characterized. The achievability
scheme is based on stochastic encoding and superposition coding
schemes. Novel generalization of the analysis of leakage rates
and of the proof of the converse is developed for theK-receiver
scenario.

I. I NTRODUCTION

Physical layer security emerges as an attracting and promis-
ing new technique, which exploits physical channel random-
ness for achieving secure communication. The basic idea
was proposed for the wiretap channel in the seminal paper
[1] by Wyner, in which a secure scheme is designed to
send messages reliably to a legitimate receiver and to keep
transmitted messages secure from an eavesdropper. Csiszár
and K̈orner further extended this approach to a more general
broadcast model [2], in which the transmitter also wishes to
send a common message to both the legitimate receiver and
the “eavesdropper” (which is also a receiver in the system) in
addition to the confidential message to the legitimate receiver.
Among the communication models that have been studied with
secrecy constraints (overviews of these studies can be found in
[3] and [4]), broadcast networks with secrecy constraints have
been studied intensively, e.g., [2], [5]–[7].

In this paper, we study a degraded broadcast channel model
with layered decoding and secrecy constraints, in which one
transmitter sends information toK receivers. The channel
outputs atK receivers satisfy a Markov chain condition, which
implies that receivers can be ordered such that the quality of
their channels gets worse gradually, say from receiverK to
receiver1. There areK messages intended for these receivers.
As the channel’s quality gets one level better, the receiveris
required to decode one more message, and this message should
be kept secure from the receivers with worse outputs (see
Fig. 1). Hence, receiverK is required to decode all messages.
This model generalizes a few models studied previously to the
generalK-user scenario including the model studied in [2], an
example studied in [8], and scenario 2 studied in [9] with all
groups having a single node.

Our motivation to study such a degraded broadcast channel
with layered decoding and secrecy constraints is due to its
potential applications to the problem of secret sharing, in
which a dealer distributes one or multiple secrets among a set
of participants in such a manner that only qualified sets of users
can recover the corresponding secrets by pooling their shares
together while non-qualified sets of users obtain no information
about the secrets even if they pool their shares together. It
has been shown recently in [10] that secret sharing can be
achieved via broadcast transmission of secret messages from
the dealer to all participants, and requiring that the messages
are decodable if any qualified set of participants share their
channel outputs, and messages are kept secure from any other
sets of participants even if they share their outputs. Suppose
now one dealer wishes to establishK shared secrets amongK
nodes, and it is required that starting from node 1, whenever
one node joins the group, one more secret should be recovered
and this new secret should not be recovered by the previous
group. This naturally leads to an equivalent degraded broadcast
channel model with layered decoding and secrecy constraints.
We note that in such a scenario, the original broadcast channel
can be general and the degradedness of the equivalent model
is due to the secret sharing requirements.

We also note that the model we study is different from
some previously studied broadcast models as follows. One
model (i.e., scenario 1) studied in [9] assumes that all broadcast
messages should be kept secure from one eavesdropper, which
does not expect any message from the transmitter, whereas here
all eavesdroppers expect their own messages. A fading wiretap
channel was studied in [11], in which the model is equivalent
to the broadcast channel with multiple receivers and eaves-
droppers. The difference also lies in that the eavesdroppers
do not expect messages from the transmitter in [11], although
layered decoding and secrecy appear in the work.

For the degraded broadcast channel with layered decoding
and secrecy constraints, we study both the discrete memoryless
channel (DMC) and the Gaussian channel, and obtain the
secrecy capacity region for both cases. The secrecy scheme
is based on the stochastic encoding (i.e., binning) and hetero-
geneous superposition. More specifically, for each message, we
create a new layer superposed on the codeword of the lower-
layer messages (intended for receivers with the worse channel
quality), and the codewords for this layer are divided into a
number of bins for stochastic encoding. The receivers with
better channel quality can tell which bin the codeword is in,



i.e., they can decode the message with a small probability of
error, while the receivers with the worse channel quality are
kept ignorant of the message.

Although the idea of the achievable scheme is simple, the
analysis of leakage rates is more involved than the cases with
two or three receivers. For the DMC, we develop a novel
generation of the analysis of the leakage rate provided in
[12] for one legitimate receiver to multiple receivers. Forthe
Gaussian channel, we provide an alternative analysis for the
leakage rate via an argument on the optimal input distribution
for the Gaussian channel with a fixed codebook, and generalize
such an argument to theK-receiver case. The two approaches
carry complimentary insights for analyzing the leakage rate
for scenarios with layered decoding and secrecy constraints.
The converse proofs for the DMC and Gaussian channel
require careful constructions of auxiliary random variables
contained in recursive terms, which also generalize the existing
techniques for two or three receivers.

This paper is organized as follows. In Section II, we intro-
duce our system model for both the DMC and the Gaussian
channel. In Sections III and IV, we present our main results
for the DMC and the Gaussian channel, respectively. Finally,
in Section V we conclude our paper.

II. CHANNEL MODEL
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Fig. 1. System Model

In this paper, we study the model of the degraded broadcast
channel with layered decoding and secrecy constraints (see
Fig. 1), in which a transmitter transmits toK receivers. The
channel transition probability function is given byPY1···YK |X ,
in which X ∈ X is the channel input andYk ∈ Yk is the
channel output of receiverk for k = 1, . . . ,K. It is assumed
that the receivers have degraded outputs, i.e.,Y1, · · · , YK

satisfy the following Markov chain condition:

X → YK → YK−1 → . . . → Y2 → Y1. (1)

Hence, the quality of channels gradually degrades from re-
ceiver K to receiver 1. The transmitter hasK messages
W1, · · · ,WK intended for theK receivers. The system is
required to satisfy the following layered decoding and secrecy
constraints. Fork = 1, . . . ,K, receiverk needs to decode the
messagesW1, · · · ,Wk, and to be kept ignorant of messages
Wk+1, · · · ,WK (see Fig. 1 for an illustration).

A (2nR1 , · · · , 2nRK , n) code for the channel consists of

• K message sets:Wk ∈ Wk = {1, · · · , 2nRk} for
k = 1, · · · ,K, which are independent from each other
and each message is uniformly distributed over the corre-
sponding message set;

• An (possibly stochastic) encoderfn: W1×· · ·×WK →
Xn;

• K decodersgnk : Yn
k → (W1, · · · ,Wk) for k =

1, · · · ,K.

Hence, a secrecy rate tuple(R1, · · · , RK) is said to be
achievable, if there exists a sequence of(2nR1 , · · · , 2nRK , n)
codes such that both the average error probability

Pn
e = Pr

(
∪K
k=1{(W1, · · · ,Wk) 6= gnk (Y

n
k )}

)
(2)

and the leakage rate at each receiverk for k = 1, . . . ,K

1

n
I(Wk+1, · · · ,WK ;Y n

k |W1, · · · ,Wk) (3)

approach zero asn goes to infinity.

Here, condition (2) implies that each receiverk is able to
decode messagesW1, . . . ,Wk, while (3) implies that receiver
k is kept ignorant of messagesWk+1, . . . ,WK . The secrecy
capacity region is defined as the set of all achievable rate
tuples.

We further consider theK-receiver degraded Gaussian
broadcast channel, in which

Yk = hkX + Zk, k = 1, · · · ,K, (4)

whereZk is a zero mean Gaussian noise variable with variance
N at receiverk, and hk is the real channel gain coefficient
from the transmitter to receiverk. Without loss of generality,
we assume thath1 < h2 < · · · < hK . The transmitter has an
average power constraintP . We useC(x) = 1

2 log(1+x). The
remainder of the model is the same as the DMC case discussed
above.

III. T HE DISCRETEMEMORYLESSCHANNEL

For the discrete memoryless degraded broadcast channel
with layered decoding and secrecy constraints, we characterize
the secrecy region in the following theorem.

Theorem 1. The secrecy capacity region of the degraded
broadcast channel with layered decoding and secrecy con-
straints as described in Section II contains rate tuples
(R1, · · · , RK) satisfying

R1 ≤ I(U1;Y1),

Rk ≤ I(Uk;Yk|Uk−1)− I(Uk;Yk−1|Uk−1),

for k = 2, . . . ,K − 1,

RK ≤ I(X ;YK |UK−1)− I(X ;YK−1|UK−1),

(5)

for some PU1U2...UK−1X such that the following Markov chain
holds

U1 → U2 → . . . → UK−1 → X → YK → . . . → Y1. (6)

Remark 1. By setting R1 = 0 and K = 3, Theorem 1 reduces
to the results for scenario 2 in [9] with each group having a
single user for the model in [13], and for the example in [8].

We next outline the proof of achievability and converse for
Theorem 1. The detailed proof will be provided in a journal
version of the work [14].

Proof of Achievability : In the following, we provide the
major steps in the proof and omit some detailed computations



in the analysis of error probability and leakage rates due tothe
space limitations. The achievability proof is based on stochas-
tic encoding and superposition coding. We use random codes
and fix a joint probability distributionPU1···UK−1X satisfying
the Markov chain in (6). LetT n

ǫ (PU1...UK−1XY1...YK
) denote

the strongly jointlyǫ-typical set based on the fixed distribution.

Random codebook generation: In the following achievabil-
ity proof, for notational convenience, we writeX asUK , i.e.,
PU1···UK−1X = PU1···UK

.

• Generate2nR1 independent identically distributed (i.i.d.)
un
1 with distribution

∏n

i=1 p(u1,i). Index these codewords
asun

1 (w1), w1 ∈ [1, 2nR1].
• For each un

k−1(w1, w2, l2, · · · , wk−1, lk−1), k =

2, · · · ,K, generate2nR̃k i.i.d. sequencesun
k with dis-

tribution
∏n

i=1 p(uk,i|uk−1,i). Partition these sequences
into 2nRk bins, each with2n(R̃k−Rk) sequences. We
use wk ∈ [1 : 2nRk ] to denote the bin index, and
lk ∈ [1 : 2n(R̃k−Rk)] to denote the index within each bin.
Hence eachun

k is indexed by(w1, w2, l2, · · · , wk, lk).

The chosen codebook is revealed to the transmitter and all
receivers.

Encoding: To send a message tuple(w1, w2, . . . , wK), for
each2 ≤ k ≤ K, the encoder randomly generatelk ∈ [1 :

2n(R̃k−Rk)] based on a uniform distribution. The transmitter
then sendsun

K(w1, w2, l2, · · · , wK , lK).

Decoding: For k = 1, . . . ,K, receiver k claims
that (ŵ1, · · · , ŵk) is sent, if there exists a unique tuple
(ŵ1, ŵ2, l̂2, · · · , ŵk, l̂k) such that

(un
1 (ŵ1), u

n
2 (ŵ1, ŵ2, l̂2), . . . , u

n
k(ŵ1, ŵ2, l̂2, · · · , ŵk, l̂k), y

n
k )

∈ T n
ǫ (PU1...UkYk

). (7)

Otherwise, it declares an error.

Analysis of error probability: By the law of large numbers
and the packing lemma, it can be shown that if the following
inequalities are satisfied, receiverk (for k = 1, . . . ,K)
can decode messagesw1, w2, . . . , wk with a vanishing error
probability:

R1 ≤ I(U1;Y1),

R̃k ≤ I(Uk;Yk|Uk−1), for 2 ≤ k ≤ K.
(8)

Analysis of leakage rate: We first compute an average
of the leakage rate over the random codebook ensemble
as follows. For convenience, we letW k = (W1, . . . ,Wk),
WK

k+1 = (Wk+1, . . . ,WK).

I(WK
k+1;Y

n
k |W k, C)

= I(WK , LK ;Y n
k |C)− I(W k, LK ;Y n

k |WK
k+1, C)

≤ I(Un
K ;Y n

k |C)− I(W k, LK ;Y n
k |WK

k+1, C)

= I(Un
K ;Y n

k |C)−H(W k, LK |WK
k+1, C)

+H(W k, LK |Y n
k ,WK

k+1, C).

(9)

We bound the above three terms one by one. For the first term,

we have

I(Un
K ;Y n

k |C)

= I(Un
k , U

n
K ;Y n

k |C)

= I(Un
k ;Y

n
k |C) + I(Un

K ;Y n
k |Un

k , C)

≤ H(Un
k |C) + I(Un

K ;Y n
k |Un

k , C)

≤ n

k∑

j=1

R̃j + nH(Yk|Uk)− nH(Yk|UK)

= n

k∑

j=1

R̃j + nI(UK ;Yk|Uk).

(10)

For the second term, due to the independence ofW1, · · · ,WK

andL1, · · · , LK , we have

H(W k, LK |WK
k+1, C)

=

k∑

j=1

nR̃j +

K∑

j=k+1

n(R̃j −Rj).
(11)

We bound the last term as follows

H(W k, LK |Y n
k ,WK

k+1, C)

≤ H(LK
k+1|Y

n
k ,WK , Lk, C) + nǫn

=

K∑

j=k+1

H(Lj |Y
n
k ,WK , Lj−1, C) + nǫn

≤

K∑

j=k+1

H(Lj |Y
n
k , Un

j−1,Wj) + nǫn.

(12)

It can be shown that ifR̃j − Rj ≥ I(Uj ;Yk|Uj−1) for
k + 1 ≤ j ≤ K, then

1

n
H(Lj |Y

n
k , Un

j−1,Wj) ≤ R̃j −Rj − I(Uj ;Yk|Uj−1) + ǫ′n.

Combining the analysis of the three terms together, we have
that 1

n
I(Wk+1, . . . ,WK ;Y n

k |W1, . . . ,Wk, C) → 0 asn → ∞
for 1 ≤ k ≤ K − 1, if the following inequalities are satisfied:

R̃k −Rk ≥ I(Uk;Yk−1|Uk−1), for 2 ≤ k ≤ K. (13)

Combining the bounds in (8) and (13), we obtain that the
rate tuple(R1, · · · , RK) is achievable if

R1 ≤ I(U1;Y1),

Rk ≤ I(Uk;Yk|Uk−1)− I(Uk;Yk−1|Uk−1),

for 2 ≤ k ≤ K.

(14)

We note that the above statement also involves an argument
that there exists the same codebook such that both the error
probability and secrecy constraints are satisfied.

Proof of Converse: By Fano’s inequality and the secrecy
requirements, we have the following inequalities

H(Wk|Y
n
k ) ≤ nǫn, for 1 ≤ k ≤ K

1

n
I(Wk+1, . . . ,WK ;Y n

k |W1, . . . ,Wk) ≤ ǫn

for 1 ≤ k ≤ K − 1.

(15)



We let Y i−1
k = (Yk,1, . . . , Yk,i−1), Y n

k−1,i+1 =

(Yk−1,i+1, . . . , Yk−1,n), Y i−1
k−1 = (Yk−1,1, . . . , Yk−1,i−1),

Y n
k−2,i+1 = (Yk−2,i+1, . . . , Yk−2,n). We set Uk,i :=

{W1, . . . ,Wk, Y
i−1
k , Y n

k−1,i+1} for k = 1, . . . ,K whereY n
0 =

φ. It is easy to verify that(U1,i, . . . , UK−1,i, Xi) satisfy the
Markov chain condition

U1 → U2 → . . . → UK−1 → X → YK → . . . → Y1. (16)

We first bound the rate for the first messageW1. Since
all receivers can decode messageW1, i.e. there is no secrecy
constraint forW1, following the standard steps, we obtain the
following bound:

nR1 = H(W1) ≤
n∑

i=1

I(W1, Y
i−1
1 ;Y1i) + nǫn

≤

n∑

i=1

I(U1i;Y1i) + nǫn.

(17)

For the messageWk, 2 ≤ k ≤ K, we derive the following
bound:

nRk = H(Wk|W
k−1)

≤I(Wk;Y
n
k |W k−1) + nǫn

≤I(Wk;Y
n
k |W k−1) + 2nǫn − I(Wk;Y

n
k−1|W

k−1)

=

n∑

i=1

I(Wk;Yk,i|W
k−1, Y i−1

k ) + 2nǫn

−

n∑

i=1

I(Wk;Yk−1,i|W
k−1, Y n

k−1,i+1)

=

n∑

i=1

I(Wk, Y
n
k−1,i+1;Yk,i|W

k−1, Y i−1
k )

− I(Wk, Y
i−1
k ;Yk−1,i|W

k−1, Y n
k−1,i+1)

− I(Y n
k−1,i+1;Yk,i|W

k, Y i−1
k )

+ I(Y i−1
k ;Yk−1,i|W

k, Y n
k−1,i+1) + 2nǫn

(a)
=

n∑

i=1

I(Y n
k−1,i+1;Yk,i|W

k−1, Y i−1
k )

+ I(Wk;Yk,i|W
k−1, Y i−1

k , Y n
k−1,i+1)

− I(Y i−1
k ;Yk−1,i|W

k−1, Y n
k−1,i+1)

− I(Wk;Yk−1,i|W
k−1, Y i−1

k , Y n
k−1,i+1) + 2nǫn

(b)
=

n∑

i=1

I(Wk;Yk,i|W
k−1, Y i−1

k , Y n
k−1,i+1)

− I(Wk;Yk−1,i|W
k−1, Y i−1

k , Y n
k−1,i+1) + 2nǫn

=

n∑

i=1

I(Wk, Y
i−1
k , Y n

k−1,i+1;Yk,i|W
k−1)

− I(Y i−1
k , Y n

k−1,i+1;Yk,i|W
k−1)

− I(Wk, Y
i−1
k , Y n

k−1,i+1;Yk−1,i|W
k−1)

+ I(Y i−1
k , Y n

k−1,i+1;Yk−1,i|W
k−1) + 2nǫn

=

n∑

i=1

I(Wk, Y
i−1
k , Y n

k−1,i+1, Y
i−1
k−1 , Y

n
k−2,i+1;Yk,i|W

k−1)

− I(Wk, Y
i−1
k , Y n

k−1,i+1, Y
i−1
k−1 , Y

n
k−2,i+1;Yk−1,i|W

k−1)

− I(Y i−1
k , Y n

k−1,i+1;Yk,i|W
k−1)

+ I(Y i−1
k , Y n

k−1,i+1;Yk−1,i|W
k−1) + 2nǫn

=

n∑

i=1

I(Wk, Y
i−1
k , Y n

k−1,i+1;Yk,i|W
k−1, Y i−1

k−1 , Y
n
k−2,i+1)

− I(Wk, Y
i−1
k , Y n

k−1,i+1;Yk−1,i|W
k−1, Y i−1

k−1 , Y
n
k−2,i+1)

+ I(Y i−1
k−1 , Y

n
k−2,i+1;Yk,i|W

k−1)

− I(Y i−1
k−1 , Y

n
k−2,i+1;Yk−1,i|W

k−1)

− I(Y i−1
k , Y n

k−1,i+1;Yk,i|W
k−1)

+ I(Y i−1
k , Y n

k−1,i+1;Yk−1,i|W
k−1) + 2nǫn

=

n∑

i=1

I(Wk, Y
i−1
k , Y n

k−1,i+1;Yk,i|W
k−1, Y i−1

k−1 , Y
n
k−2,i+1)

− I(Wk, Y
i−1
k , Y n

k−1,i+1;Yk−1,i|W
k−1, Y i−1

k−1 , Y
n
k−2,i+1)

− I(Y i−1
k , Y n

k−1,i+1;Yk,i|W
k−1, Y i−1

k−1 , Y
n
k−2,i+1)

+ I(Y i−1
k , Y n

k−1,i+1;Yk−1,i|W
k−1, Y i−1

k−1 , Y
n
k−2,i+1) + 2nǫn

≤
n∑

i=1

I(Wk, Y
i−1
k , Y n

k−1,i+1;Yk,i|W
k−1, Y i−1

k−1 , Y
n
k−2,i+1)

− I(Wk, Y
i−1
k , Y n

k−1,i+1;Yk−1,i|W
k−1, Y i−1

k−1 , Y
n
k−2,i+1)

+ 2nǫn

≤

n∑

i=1

I(Uk,i;Yk,i|Uk−1,i)− I(Uk,i;Yk−1,i|Uk−1,i) + 2nǫn

(18)

Where steps(a) and(b) follow from the sum identity property
in [2, Lemma 7]. Fork = K, we further derive (18),

nRK

≤
n∑

i=1

I(UK,i;YK,i|UK−1,i)− I(UK,i;YK−1,i|UK−1,i) + 2nǫn

=
n∑

i=1

I(UK,i, Xi;YK,i|UK−1,i)− I(UK,i, Xi;YK−1,i|UK−1,i)

− I(Xi;YK,i|UK,i) + I(Xi;YK−1,i|UK,i) + 2nǫn (19)

≤

n∑

i=1

I(Xi;YK,i|UK−1,i)− I(Xi;YK−1,i|UK−1,i) + 2nǫn

The proof of the converse is completed by defining a uniformly
distributed random variableQ ∈ {1, · · · , n}, and settingUk ,

(Q,Uk,Q), Yk , Yk,Q for k ∈ [1 : K] andX , (Q,XQ).

Remark 2. In the proof of achievability, we use the heteroge-
neous superposition scheme [15] which is optimal in the sense
of achieving the secrecy capacity region.

IV. T HE GAUSSIAN CHANNEL

In this section, we consider the Gaussian broadcast channel
with K degraded receivers specified by (4).

Theorem 2. The secrecy capacity region of a K-user Gaus-
sian broadcast channel with layered decoding and secrecy
constraints as described in Section II contains rate tuples



(R1, R2, . . . , RK) satisfying

R1 ≤ C

(
h2
1P1

N+h2
1

∑
K
j=2

Pj

)

Rk ≤ C

(
h2
kPk

N+h2
k

∑
K
j=k+1

Pj

)
− C

(
h2
k−1Pk

N+h2
k−1

∑
K
j=k+1

Pj

)

for 2 ≤ k ≤ K,
(20)

where the union is taken over all nonnegative variables
P1, P2, . . . , PK , such that

∑K

k=1 Pk ≤ P .

Remark 3. For the Gaussian channel, heterogeneous superpo-
sition [15] and homogeneous superposition [16] are equivalent
in achieving the secrecy capacity region. We note that the
equivalence of the two types of superposition schemes may
not always hold [17].

Outline of the Proof: The proof of achievability can
be based on Theorem 1 by setting(U1, . . . , UK , X) to be
jointly Gaussian distributed random variables. Alternatively,
the coding scheme can be developed as follows based on
stochastic encoding and superposition coding. Due to the space
limitations, we omit the details and the converse proof.

V. CONCLUSION

In this paper, we have studied the secrecy capacity re-
gion forK−receiver degraded broadcast channel with layered
secrecy for both the DMC and the Gaussian channel. For
the problem considered, messagesW1, . . . ,Wk needs to be
decoded by userk, while messagesWk+1, . . . ,WK need to
be kept secured from receiverk, for k = 1, . . . ,K. For both
the DMC and the Gaussian channels, we have characterized the
secrecy capacity region. Our next step is to apply the results
here to study the problem of secret sharing as we mention in
the introduction.
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