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Abstract—To be considered for the 2016 IEEE Jack Keil Wolf
ISIT Student Paper Award. The problem of estimating the KL
divergence between two unknown distributions is studied. The
alphabet size k of the distributions can scale to infinity. The
estimation is based onm and n independent samples respectively
drawn from the two distributions. It is first shown that there does
not exist any consistent estimator to guarantee asymptoticsmall
worst-case quadratic risk over the set of all pairs of distributions.
A restricted set that contains pairs of distributions with bounded
ratio f(k) is further considered. An augmented plug-in estimator
is proposed, and is shown to be consistent if and only ifm = ω(k∨
log2(f(k)) and n = ω(kf(k)). Furthermore, if f(k) ≥ log2 k and
log2(f(k)) = o(k), it is shown that any consistent estimator must
satisfy the necessary conditions:m = ω( k

log k
∨ log2(f(k)) and

n = ω( kf(k)
log k

).

I. I NTRODUCTION

Consider estimation of Kullback-Leibler (KL) divergence
between the probability distributionsP andQ defined as

D(P‖Q) =
k
∑

i=1

Pi log
Pi

Qi

,

where P and Q are over a common alphabet set[k] ,

{1, . . . , k}, and P is absolutely continuous with respect to
Q, i.e., if Qi = 0, Pi = 0, for 1 ≤ i ≤ k. We useMk to
denote the collection of all such pairs of distributions.

SupposeP and Q are unknown. Instead,m independent
and identically distributed (i.i.d.) samplesX1, . . . , Xm

drawn from P and n i.i.d. samplesY1, . . . , Yn drawn
from Q are available for estimation. The sufficient statistics
for estimatingD(P‖Q) are the histograms of the samples
M , (M1, . . . ,Mk) andN , (N1, . . . , Nk), where

Mj =
m
∑

i=1

1{Xi=j} and Nj =
n
∑

i=1

1{Yi=j}

record the numbers of occurrences ofj ∈ [k] in samples drawn
from P andQ, respectively. ThenM ∼ Multinomial(m,P )
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and N ∼ Multinomial(n,Q). An estimatorD̂ of D(P‖Q)
is then a function of the histogramsM and N , denoted by
D̂(M,N).

We adopt the following worst-case quadratic risk to measure
the performance of estimators of the KL divergence:

R(D̂, k,m, n) , sup
P,Q∈Mk

E[(D̂(M,N)−D(P‖Q))2]. (1)

In this paper, we are interested in the large-alphabet regime
with k → ∞. In general, the numberm andn of samples are
functions ofk, which can scale withk to infinity.

Definition 1. A sequence of estimatorŝD is said to be
consistent under sample complexitym(k) andn(k) if

lim
k→∞

R(D̂, k,m, n) = 0.

We further define the minimax quadratic risk as:

R∗(k,m, n) , inf
D̂

R(D̂, k,m, n). (2)

We are also interested in the following set

Mk,f(k) =

{

(P,Q) : |P | = |Q| = k,
Pi

Qi

≤ f(k), ∀ 1 ≤ i ≤ k

}

,

(3)
which contains distributions(P,Q) with bounded ratio. We

define the worst-case quadratic risk overMk,f(k) as

R(D̂,k,m, n, f(k))

, sup
(P,Q)∈Mk,f(k)

E[(D̂(M,N) −D(P‖Q))2], (4)

and define the corresponding minimax quadratic risk as

R∗(k,m, n, f(k)) , inf
D̂

R(D̂, k,m, n, f(k)). (5)

A. Comparison to Related Problems

Several estimators of KL divergence whenP and Q are
continuoushave been proposed and shown to be consistent.
The estimator proposed in [1] is based on data-dependent
partition for density estimation, the estimator proposed in [2] is
based on a k-nearest neighbor approach for density estimation,
and the estimator developed in [3] utilizes a kernel-based
approach for estimating the density ratio. A more general
problem of estimating thef -divergence was studied in [4],
where an estimator based on a weighted ensemble of plug-in
estimators was proposed to trade bias with variance. All these
approaches exploit the smoothness of continuous densitiesor



density ratios, which guarantees that samples falling intoa
certain neighborhood area can be used to estimate the local
density or density ratio accurately. However, such a smooth-
ness property does not hold for discrete distributions, whose
probabilities over adjacent point masses can vary significantly.
In fact, [1] provides an example to show that estimation of KL
divergence can be difficult even for continuous distributions if
the density has sharp dips.

Estimation of KL divergence when the distributionsP and
Q are discrete has been studied in [5] for the regime withfixed
alphabet cardinalityk and large sample sizesm andn. Such
a regime is very different from the large-alphabet regime in
which we are interested, withk scaling to infinity. Clearly, as
k increases, the scaling of the sample sizesm andn must be
fast enough with respect tok in order to guarantee consistent
estimation.

In the large-alphabet regime, KL divergence estimation is
closely related to the entropy estimation with a large alphabet
recently studied in [6]–[8]. Compared to entropy estimation,
KL divergence estimation has one more dimension of uncer-
tainty, that about the distributionQ. Some distributionsQ can
contain very small point masses that contribute significantly to
the value of divergence, but are difficult to estimate because
samples of these point masses occur rarely. In fact, such dis-
tributions dominate the risk in (1), and make the construction
of consistent estimators challenging.

B. Our Contributions

Our contributions contain the following three results.
We first show, using Le Cam’s two-point method [9], that

there is no consistent estimator of KL divergence over the
distribution setMk. As described above, this is due to the
fact that the setMk contains distributionsQ, which have
arbitrarily small components that contribute significantly to
KL divergence but require arbitrarily large number of samples
to estimate accurately.

Thus, we further focus on the setMk,f(k) given in (3)
that contains distributions(P,Q) with their ratio bounded by
f(k). We construct an augmented plug-in estimator and show
that such an estimator is consistent overMk,f(k) if and only
if m = ω(k ∨ log2(f(k)) andn = ω(kf(k)). Our proof of
the sufficient conditions is based on evaluating the bias and
variance separately. Our proof of the necessary conditionm =
ω(log2(f(k)) is based on Le Cam’s two-point method with a
judiciously chosen pair of distributions. And our proof of the
necessary conditionsm = ω(k) andn = ω(kf(k)) is based on
analyzing the bias of the estimator and constructing different
pairs of “worst case” distributions for the cases when either the
bias caused by insufficient samples fromP or the bias caused
by insufficient samples fromQ dominates, respectively.

We further show that iff(k) ≥ log2 k and log2(f(k)) =
o(k), any consistent estimator of KL divergence overMk,f(k)

must satisfym = ω( k
log k

∨ log2(f(k)) andn = ω(kf(k)log k
). Our

proof is based on an extension of Le Cam’s two-point method
to composite hypotheses. Comparing to entropy estimation
problem [7], the challenge here that requires special technical

treatment is to construct prior distributions for(P,Q) that
satisfy the bounded ratio constraint.

II. M AIN RESULTS

In this section, we first show that there does not exist any
consistent estimator of KL divergence over the setMk. We
then focus on the setMk,f(k), and study the consistency of
an augmented plug-in estimator, and characterize necessary
conditions on the sample complexity for any consistent esti-
mator. Due to space limitations, we provide only outlines of
our proofs, with detailed proofs available in [10].

A. No Consistent Estimator overMk

In the following theorem, we show that the minimax risk
over the setMk is unbounded for arbitrary alphabet sizek
andm andn samples.

Theorem 1. For any k,m, n ∈ N, R∗(k,m, n) is infinite.
Therefore, there does not exist any consistent estimator ofKL
divergence over the setMk.

Outline of Proof.Theorem 1 follows from Le Cam’s two-
point method [9]: If two pairs of distributions(P1, Q1) and
(P2, Q2) are sufficiently close such that it is impossible to
reliably distinguish between them usingm samples from
P and n samples fromQ with error probability less than
some constant, then any estimator suffers a quadratic risk
proportional to the difference between the divergence values
|D(P1‖Q1) − D(P2‖Q2)|

2. The details of the proof can be
found in [10].

We next give an example for binary distributions, i.e.,
k = 2, to illustrate how distributions in the above proof can
be constructed. We letP1 = P2 = (12 ,

1
2 ), Q1 = (e−l, 1−e−l)

andQ2 = ( 1
2l , 1 −

1
2l ), wherel > 0. For anyn ∈ N, choose

l sufficiently large such thatD(Q1‖Q2) <
1
n

. Thus, the error
probability of distinguishingQ1 and Q2 with n samples is
greater than a constant. However,D(P1‖Q1) = Θ(l) and
D(P2‖Q2) = Θ(log l). Hence, the minimax risk, which is
lower bounded by the difference of the above divergences,
can be made arbitrarily large by lettingl → ∞.

B. Augmented Plug-in Estimator overMk,f(k)

As we have shown in Section II-A, there does not exist
any consistent estimator of KL divergence over the setMk.
In this subsection, we study the risk of an estimator over the
setMk,f(k), and characterize under what sample complexity
such an estimator is consistent.

In order to estimate the KL divergence between a pair
of distributions, a natural idea is the “plug-in” approach,
namely, first estimate the distributions and then substitute
these estimates into the divergence function. This leads tothe
following plug-in estimator, i.e., the empirical divergence

D̂plug−in(M,N) = D(P̂‖Q̂), (6)

where P̂ = (P̂1, . . . , P̂k) and Q̂ = (Q̂1, . . . , Q̂k) denote
the empirical distributions withP̂i = Mi

m
and Q̂i = Ni

n
,

respectively.



Unlike the entropy estimation problem, where the plug-in
estimatorĤplug−in is asymptotically efficient in the “fixedP
largen” regime, the direct plug-in estimator̂Dplug−in in (6)
of KL divergence has an infinite bias. This is because, with
non-zero probability,Nj = 0 andMj 6= 0 for somej ∈ [k],
leading to infiniteD̂A−plug−in.

We can get around the above issue associated with the direct
plug-in estimator, if we add one more sample to each mass
point of Q, and takeQ̂′

i =
Ni+1

n
as an estimate ofQi so that

Q̂′
i is non-zero for alli. We therefore propose the following

“augmented plug-in” estimator based on̂Q′
i

D̂A−plug−in(M,N) =

k
∑

i=1

Mi

m
log

Mi/m

(Ni + 1)/n
. (7)

Remark 1. For technical convenience,̂Q′
i is not normalized

after adding samples. It can be shown that normalization does
not provide order-level smaller risk for the plug-in estimator.
Furthermore, the so-called add-constant estimator [11] ofQ,
which adds a fraction sample to each mass point ofQ, can also
be used as an estimator of divergence. Although intuitively
such an estimator should not provide order-level improvement
in the risk, the analysis of the risk appears to be difficult.

We next characterize sufficient and necessary conditions
on the sample complexity to guarantee consistency of the
augmented plug-in estimator overMk,f(k). To this end,
we first provide upper and lower bounds, respectively, on
R(D̂A−plug−in, k,m, n, f(k)) in the following two proposi-
tions.

Proposition 1. For all k,m, n ∈ N

R(D̂A−plug−in, k,m, n, f(k))

= O

(

(

kf(k)

n
+ log

(

1 +
k − 1

m

)

)2

+
log2 f(k)

m
+

f(k)

n

)

.

Therefore, ifm = ω(k ∨ log2 f(k)) and n = ω(kf(k)),
R(D̂A−plug−in, k,m, n, f(k)) → 0 as k goes to infinity.

Outline of Proof.The proof consists of separately bounding
the bias and variance of the augmented plug-in estimator. The
details can be found in [10].

Proposition 2. If m = O(k ∨ log2 f(k)), or n = O(kf(k)),
then for sufficiently largek

R(D̂A−plug−in, k,m, n, f(k)) ≥ c′ (8)

wherec′ is a positive constant.

Outline of Proof. It can be shown that the bias of the aug-
mented plug-in estimator is upper and lower bounded as
follows:

(
k

m
∧ 1)−

kf(k)

n
(9a)

≤ sup
(P,Q)∈Mk,f(k)

E[D̂A−plug−in(m,n)−D(P‖Q)]

≤ log

(

1 +
k

m

)

−
k − 1

k
exp(−

2n

kf(k)
). (9b)

1) If m = O(k) andn = ω(kf(k)), the lower bound in (9a)
converges to1. Hence, the bias as well as the risk is lower
bounded by a positive constant.

2) If m = ω(k) andn = O(kf(k)), the upper bound in (9b)
converges to a negative constant. This implies that the risk
is lower bounded by a positive constant.

3) If m = O(k) and n = O(kf(k)), the lower bound (9a)
converges to−∞ and the upper bound (9b) converges to
+∞, which does not provide useful information. Hence,
we design another approach for this case as follows.

We now focus on the third case above. We chooseP to be
the uniform distribution. The bias of the augmented plug-in
estimator can be decomposed into: 1) bias due to estimating
∑k

i=1 Pi logPi; and 2) bias due to estimating
∑k

i=1 Pi logQi.
It can be shown that the first bias is always positive, because
the uniform distribution achieves the largest entropy for a
given alphabet sizek. The second bias is always negative for
any distributionQ. Hence, the two bias terms may cancel out
partially or even fully. Thus, to show the risk is bounded away
from zero, the idea is to first determine which bias dominates,
and then to construct a pair of distributions accordingly such
that the dominant bias is either lower bounded by a positive
constant or upper bounded by a negative constant.

If k
m

≥ (1 + ǫ)αkf(k)
n

, where ǫ > 0 and 0 < α < 1
are constants, and which implies that the number of samples
drawn fromP is relatively smaller than the number of samples
drawn fromQ, the first bias dominates. We construct(P,Q):

P is uniform andQ =
(

1
αkf(k) , · · · , 1

αkf(k) , 1− k−1
αkf(k)

)

.

It can be shown that for the above(P,Q), the bias (and hence
the risk) is lower bounded by a positive constantlog(1 + ǫ).

If k
m

< (1 + ǫ)αkf(k)
n

, which implies that the number of
samples drawn fromP is relatively larger than the number
of samples drawn fromQ, the second bias dominates. We
construct the following distributions(P,Q): P is uniform and

Q =
(

1
kf(k) , · · · , 1

kf(k) , 1− k−1
kf(k)

)

. It can be shown that

for the above(P,Q), the bias is upper bounded by a negative
constant. Hence, the risk is lower bounded by a positive
constant.

4) If m = O(log2 f(k)), we construct two pairs of distribu-
tions as follows:

P1 =

(

1

2(k − 1)
, · · · ,

1

2(k − 1)
,
2

3

)

,

P2 =

(

1 + ǫ′

2(k − 1)
, · · · ,

1 + ǫ′

2(k − 1)
,
2− ǫ′

3

)

,

Q1 = Q2 =

(

1

3(k − 1)f(k)
, · · · ,

1

3(k − 1)f(k)
, 1−

1

3f(k)

)

.

By Le Cam’s two-point method [9], it can be shown that if
m = O(log2 f(k)), no estimator can be consistent, which
implies that the augmented plug-in estimator is not consistent.

Combining Propositions 1 and 2, we have the following the-
orem on the consistency of the augmented plug-in estimator.



Theorem 2. The augmented plug-in estimator of KL diver-
gence is consistent over the setMk,f(k) if and only if

m = ω(k ∨ log2(f(k)) and n = ω(kf(k)). (10)

C. Minimax Lower Bound overMk,f(k)

In this subsection, we characterize necessary conditions on
the sample complexity that all consistent estimators of KL
divergence overMk,f(k) must satisfy. The general idea is to
apply generalized Le Cam’s two-point method [9] to develop
a lower bound on the minimax risk.

1) Poisson sampling:We first utilize thePoisson sampling
technique to handle the dependency of the multinomial distri-
bution, as is done in [7] for entropy estimation. We relax the
deterministic sample sizesm andn to Poisson random vari-
ablesm′ ∼ Poi(m) with meanm andn′ ∼ Poi(n) with mean
n, respectively. Under this model, we drawm′ and n′ i.i.d.
samples fromP andQ, respectively. The sufficient statistics
Mi ∼ Poi(nPi) andNi ∼ Poi(nQi) are independent, which
significantly simplifies the analysis.

Analogous to the minimax risk (5), we define its counterpart
under the Poisson sampling model as

R̃
∗(k,m, n, f(k)) , inf

D̂

sup
(P,Q)∈Mk,f(k)

E[(D̂(M,N) −D(P‖Q))2]

where the expectation is taken overMi ∼ Poi(nPi) and
Ni ∼ Poi(nQi) for i = 1, . . . , k. Since the Poissonized
sample sizes are concentrated near their meansm andn with
high probability, the minimax risk under Poisson sampling is
close to that with fixed sample sizes as stated in the following
lemma.

Lemma 1. There exists a constantc > 1
4 such that

R̃∗(k, 2m, 2n, f(k))− e−cm log f(k)− e−cn log f(k)

≤ R∗(k,m, n, f(k)) ≤ 4R̃∗(k,m/2, n/2, f(k)). (11)

All the results that we prove in this subsection are under
the Poisson sampling assumption.

2) Minimax lower bound:We lower bound the minimax
risk by the minimax risk withP or Q being known and
carefully chosen to tighten the bound. In both cases, we choose
the knownP orQ to be the uniform distribution. Such a choice
yields the following two propositions.

Proposition 3. For all k,m, n ∈ N and f(k) ≥ log2 k,

R̃∗(k,m, n, f(k)) ≥ R̃∗(k,m,Q, f(k)) = Θ

(

k

m log k

)2

,

where

R̃
∗(k,m,Q, f(k)) , inf

D̂

sup
P,Q∈Mk,f(k)

E[(D̂(M,Q)−D(P‖Q))2]

is the minimax risk under Poisson sampling withQ being
known.

Outline of Proof.SettingQ = Q0 to be uniform distribution
on [k], D(P‖Q0) =

∑k

i=1 Pi logPi + log k = H(P ) + log k,
and the problem reduces to entropy estimation under the mini-
max risk with(P,Q0) satisfying the bounded ratio constraint.

If f(k) ≥ log2 k, following steps similar to those in [7], it
can be shown thatR∗(k,m,Q, f(k)) is lower bounded by
(

k
m log k

)2

at the order level.

Proposition 4. If f(k) ≥ log2 k, log2(f(k)) = o(k) andn =

O(kf(k)log k
), then for sufficiently largek

R̃∗(k,m, n, f(k)) ≥ R̃∗(k, P, n, f(k)) ≥ c

wherec is a positive constant, and

R̃∗(k, P, n, f(k)) , inf
D̂

sup
P,Q∈Mk,f(k)

E[(D̂(P,N)−D(P‖Q))2]

is the minimax risk under Poisson sampling withP being
known.

Outline of Proof.The proof applies the generalized Le Cam’s
method [9] that involves the twocompositehypotheses to
lower bound the minimax risk and adapts techniques for
entropy estimation in [7]. The new challenge here arises dueto
the bounded ratio constraint on(P,Q), which requires special
technical treatments to construct prior distributions, aswell as
bounding various divergence related quantities.

Let P = P0 be uniform distribution. Then the minimax risk
can be bounded as

R̃∗(k, P, n, f(k))

≥ inf
D̂

sup
P0,Q∈Mk,f(k)

E[(D̂(P0, N)−D(P0‖Q))2].

To use the generalized Le Cam’s method [9], consider the
following two compositehypotheses:

H0 : D(P0‖Q) ≤ t versus H1 : D(P0‖Q) ≥ t+ d. (12)

If the optimal test cannot distinguish the two hypotheses
in (12) reliably, then the quadratic risk is lower bounded
by Θ(d2). Furthermore, the optimal probability of error for
composite hypotheses testing is given by the Bayesian risk
with respect to the least favorable prior.

In the following we construct tractable prior distributions.
Let V andV ′ be twoR+ valued random variables defined on
the interval[η, λ] and have equal meanE(V ) = E(V ′) = α.
We construct two random vectorsQ = 1

k
(V1, . . . .Vk−1, k −

(k− 1)α) andQ′ = 1
k
(V ′

1 , . . . .V
′
k−1, k− (k− 1)α) consisting

of k − 1 i.i.d. copies of V and V ′ and a deterministic
term 1 − (k−1)α

k
, respectively. Since we chooseP = P0

to be uniform distribution, and(P,Q) satisfy the bounded
ratio constraint,Qi must be greater than 1

kf(k) . This yields
a different construction from [7]. Note thatV, V ′ ∈ [η, λ]. To
satisfy the bounded ratio constraint, we assume thatη ≥ 1

f(k) .
Due to the law of large numbers, the vectorsQ and Q′

are approximately probability distributions. Furthermore, the
elements inQ and Q′ are independent, which significantly
simplifies the analysis.

Next we outline the main ingredients in Le Cam’s method
with priors Q and Q′. Note thatD(P0‖Q) converges to its
expectationE[D(P0‖Q)] ask goes to infinity. Then with high



probability, D(P0‖Q) and D(P0‖Q
′) are separated by the

difference of their means

d = E[D(P0‖Q)]− E[D(P0‖Q
′)] = E[logV ′]− E[logV ].

SinceQ is drawn from the prior distributionQ, the sufficient
statisticsN = (N1, . . . , Nk) are i.i.d. distributed according to
the Poisson mixtureE[Poi(n

k
V )]. To establish the impossibil-

ity of hypothesis testing (12), the total variation betweenthe
two k-product distributions should satisfy

TV(E[Poi(nV/k)],E[Poi(nV ′/k)]) ≤ c/k. (13)

In fact, the i.i.d. construction ofQ and Q′ fully exploits
independence imposed by Poisson sampling, and reduces the
problem to one dimension. What remains is to chooseV and
V ′ to maximizeE[log V ′]−E[log V ], subject to the constraint
(13). A commonly used proxy for bounding the total variation
is obtained viamoment matching, i.e., by solving the following
optimization problem with moment matching constraints

EL(η, λ) ,maxE[logV ′]− E[log V ]

s.t. E[V j ] = E[V ′j ], j = 1, . . . , L,

V, V ′ ∈ [η, λ],

for some appropriately chosenL ∈ N, η ≥ 1
f(k) and λ

depending onn andk.
As shown in [7], we have

EL(η, λ) = 2EL(log, [η/λ, 1]) (14)

whereEL(g, I) is the best uniform approximation error of a
function g over a finite intervalI by polynomials of degree
L. Due to the singularity of the logarithm at zero, the approx-
imation error can be made bounded away from zero ifη/λ
grows quadratically with the degreeL−1. Choosingη = 1

f(k) ,

λ = c1
log2 k

f(k) , c1 ≤ 1, L = log k and together with the

condition log2(f(k)) = o(k), the minimax risk can be shown
to be lower bounded away from zero ifn = O(kf(k)log k

).

Combining Propositions 3, 4 and the necessary condition
m = ω(log2 f(k)) from Le Cam’s two-point method (case (4)
in the proof of Proposition 2), we obtain the following theorem
on the necessary conditions for an estimator to be consistent.

Theorem 3. If log2(f(k)) = o(k) and f(k) ≥ log2 k, then
any consistent estimator of KL divergence overMk,f(k) must
satisfy

m = ω(
k

log k
∨ log2 f(k)) and n = ω(

kf(k)

log k
). (15)

Comparing Theorem 3 with Theorem 2 that characterizes
the sample complexity for consistent augmented plug-in esti-
mator, there is a gap of the orderlog k. A promising approach
to fill in this gap is to incorporate polynomial approximation
into estimator construction to trade bias with variance as in
entropy estimation. However, such an approach can be difficult
to develop for KL divergence (as a function of two distribu-
tions) due to the fact that the best polynomial approximation
to multi-variable functions is not well understood yet.

We also note that our proof of Proposition 4 may be
strengthened by designing a jointly distributed prior on(P,Q),
instead of treating them separately. This may help to relax or
remove the conditionslog2(f(k)) = o(k) andf(k) ≥ log2 k
in Proposition 3 and 4 and Theorem 3.

III. C ONCLUSION

We have shown that there exists no consistent estimator
for KL divergence under the worst-case quadratic risk over
the set of all pairs of distributions, and therefore focusedon
the set of pairs of distributions with bounded ratio. We have
proposed an augmented plug-in estimator, and characterized
tight sufficient and necessary conditions for such an estimator
to be consistent. We have also developed necessary conditions
on the sample complexity for any consistent estimator, which
is within a log k factor from the that of augmented plug-
in estimator. In future work, we hope to find an improved
estimator that has sample complexity that approaches our
lower bound.

ACKNOWLEDGMENT

The work of Y. Bu and V. V. Veeravalli was supported by
the Air Force Office of Scientific Research (AFOSR) under
the Grant FA9550-10-1-0458, and by the National Science
Foundation under Grant NSF 11-11342, through the University
of Illinois at Urbana-Champaign. The work of S. Zou and Y.
Liang was supported by an NSF CAREER Award under Grant
CCF-10-26565.

REFERENCES

[1] Q. Wang, S. R Kulkarni, and S. Verdú, “Divergence estimation of
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