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Abstract—To be considered for the 2016 IEEE Jack Keil Wolf
ISIT Student Paper Award. The problem of estimating the KL
divergence between two unknown distributions is studied. e
alphabet size k of the distributions can scale to infinity. The
estimation is based onn and n independent samples respectively
drawn from the two distributions. It is first shown that there does
not exist any consistent estimator to guarantee asymptotismall
worst-case quadratic risk over the set of all pairs of distrbutions.
A restricted set that contains pairs of distributions with bounded
ratio f(k) is further considered. An augmented plug-in estimator
is proposed, and is shown to be consistent if and only ifi = w(kV
log?(f(k)) and n = w(kf(k)). Furthermore, if f(k) > log? k and
log?(f(k)) = o(k), it is shown that any consistent estimator must
satisfy the necessary conditionsm = w(—- v log?(f(k)) and

log k
Ef)y *

n:w( log k

|. INTRODUCTION

Consider estimation of Kullback-Leibler (KL) divergence

between the probability distribution8 and Q defined as
k P,
Dﬁ@zzﬂmﬁv
i=1 v

where P and ) are over a common alphabet sgf =

and N ~ Multinomial(n, Q). An estimatorD of D(P|Q)
is then a function of the histogram¥% and N, denoted by
D(M,N).

We adopt the following worst-case quadratic risk to measure
the performance of estimators of the KL divergence:

R(f)7 k,m,n) £

sup E[(D(M,N) — D(P||Q))?].
P,QeM;

In this paper, we are interested in the large-alphabet regim
with & — oo. In general, the numben andn of samples are
functions ofk, which can scale wittk to infinity.

1)

Definition 1. A sequence of estimator® is said to be
consistent under sample complexit(k) and n(k) if

lim R(ﬁ&,m,n) =0.
k— o0
We further define the minimax quadratic risk as:

R*(k,m,n) & iqu(ﬁ,k,m,n). (2)
D

We are also interested in the following set
P;

{r@:p=ie=1g

M, s k) = < f(k), Vléiﬁk},

{1,...,k}, and P is absolutely continuous with respect to (3)

Q,ie.,ifQ;, =0, P, =0, forl <i< k. We useM,; to
denote the collection of all such pairs of distributions.
SupposeP and () are unknown. Insteady independent
and identically distributed (i.i.d.) sampleX, s Xom
drawn from P and n i.i.d. samplesYy, Y, drawn

which contains distribution$P, ) with bounded ratio. We
define the worst-case quadratic risk ovet;, ;) as
R(D.k,m, n, (k)

£ sup  E[(D(M,N) — D(P||Q))?],
(P,Q)EMy, ¢(1)

(4)

from @ are available for estimation. The sufficient statistics

for estimating D(P||Q) are the histograms of the samples

M = (My,..., M) andN = (Ny,..., N;), where

Mj=3 lix—jy and Nj=3) Ty

i=1 i=1
record the numbers of occurrencesjaf [k] in samples drawn
from P and @, respectively. Thed/ ~ Multinomial(m, P)

The first two student authors have contributed equally te wWork.
We adopt the following notations to express asymptoticisgalf quantities
with n: f(n) = O(g(n)) represents that there exigtng > 0 s.t. for all

n > no, |f(n)| < klg(n)]; f(n) = Q(g(n)) represents that there exist

¢,ng > 0 s.t. for alln > ng, f(n) > cg(n); f(n) = ©(g(n)) represents
that there exist, c2,ng > 0 s.t. foralln > ng, cig(n) < f(n) < cag(n);
f(n) = w(g(n)) represents that for att > 0, there existsng > 0 s.t. for
all n > no, [f(n)| > clg(n)|; and f(n) = o(g(n)) represents that for all
¢ > 0, there existsig > 0 s.t. for alln > ng, |f(n)| < cg(n).

and define the corresponding minimax quadratic risk as

R*(k,m,n, f(k)) £ inf R(D, k,m,n, f(k)).  (5)
D

A. Comparison to Related Problems

Several estimators of KL divergence whéhand Q are
continuoushave been proposed and shown to be consistent.
The estimator proposed in [1] is based on data-dependent
partition for density estimation, the estimator proposef®] is
based on a k-nearest neighbor approach for density estimati
and the estimator developed in [3] utilizes a kernel-based
approach for estimating the density ratio. A more general
problem of estimating thef-divergence was studied in [4],
where an estimator based on a weighted ensemble of plug-in
estimators was proposed to trade bias with variance. Afiehe
approaches exploit the smoothness of continuous densities



density ratios, which guarantees that samples falling mtotreatment is to construct prior distributions foP, Q) that
certain neighborhood area can be used to estimate the Iaatisfy the bounded ratio constraint.

density or density ratio accurately. However, such a smooth
ness property does not hold for discrete distributions, seho
probabi“ties over adjacent point masses can Vary Signmma In this SeCtion, we first show that there does not exist any
In fact, [1] provides an example to show that estimation of KEonsistent estimator of KL divergence over the sef,. We
divergence can be difficult even for continuous distribugisf ~ then focus on the set1;, ;(;), and study the consistency of
the density has sharp dips. an augmented plug-in estimator, and characterize negessar

Estimation of KL divergence when the distributiofsand ~conditions on the sample complexity for any consistent esti
Q are discrete has been studied in [5] for the regime Viiad Mator. Due to space limitations, we provide only outlines of
alphabet cardinality: and large sample sizes andn. Such our proofs, with detailed proofs available in [10].

a r_egime is very different f_rom thg Iargg—a}lphabet regime IR No Consistent Estimator ovevl),

which we are interested, with scaling to infinity. Clearly, as
k increases, the scaling of the sample sizeandn must be
fast enough with respect toin order to guarantee consisten
estimation.

In the large-alphabet regime, KL divergence estimation Fheorem 1. For any k,m,n € N, R*(k,m,n) is infinite.
closely related to the entropy estimation with a large aigha Therefore, there does not exist any consistent estimatsitof
recently studied in [6]-[8]. Compared to entropy estim@tio divergence over the set;..

KL divergence estimation has one more dimension of uncer- . ,
tainty, that about the distributio. Some distributiong) can Oqtllne of Proof. Theorem 1 follows f.“’”? Le Cam’s two-
contain very small point masses that contribute signifigant point method [9]:. l.f two pairs of d|str|but|pq$Bl7Q1) "?‘”d
the value of divergence, but are difficult to estimate beeaul 2 (02) are sufficiently close such that it is impossible to
samples of these point masses occur rarely. In fact, sueh d@'ably distinguish between them using samples from

tributions dominate the risk in (1), and make the constaurcti £ and n sa;mriletsh from@) W'”:. errtor pr(])cfbablhty Iesz tr:_an isk
of consistent estimators challenging. some constant, then any estimator suffers a quadratic ris

proportional to the difference between the divergenceeslu
B. Our Contributions |D(P1||Q1) — D(P||Q2)|*. The details of the proof can be

Our contributions contain the following three results. ~ found in [10]. O
We first show, using Le Cam’s two-point method [9], that \we next give an example for binary distributions, i.e.,

there is no consistent estimator of KL divergence over the_ o to jllustrate how distributions in the above proof can
distribution setM,,. As described above, this is due to thgge constructed. We lgt, = P, = (L1, Q= (el 1-e)

fact that the setM, contains distributiong), which have anq(, — (4.1 - 2), wherel > 5.’ I2:0r anyn € N, choose

arbitrarily small components that contribute significanib ; syfficiently large such thab(Q;[|Q2) < 1. Thus, the error

KL divergence but require arbitrarily large number of saespl ropapility of distinguishing@; and Q- with n samples is

to estimate accurately. o greater than a constant. Howeved(P,[|Q;) = ©(l) and
Thus, we further focus on the sel; ;) given in (3) p(p,||Q,) = O(logl). Hence, the minimax risk, which is

that contains distribution&P, Q) with their ratio bounded by |ower bounded by the difference of the above divergences,

(k). We construct an augmented plug-in estimator and shy pe made arbitrarily large by lettiig— .
that such an estimator is consistent o, ¢, if and only

if m = w(k Vlog?(f(k)) andn = w(kf(k)). Our proof of B. Augmented Plug-in Estimator ovesly, s ()

the sufficient conditions is based on evaluating the bias andAs we have shown in Section II-A, there does not exist

variance separately. Our proof of the necessary conditich any consistent estimator of KL divergence over the &¢f.

w(log®(f(k)) is based on Le Cam’s two-point method with dn this subsection, we study the risk of an estimator over the

judiciously chosen pair of distributions. And our proof bt setM;, ¢, and characterize under what sample complexity

necessary conditions = w(k) andn = w(kf(k)) is based on such an estimator is consistent.

analyzing the bias of the estimator and constructing differ  In order to estimate the KL divergence between a pair

pairs of “worst case” distributions for the cases when eithe of distributions, a natural idea is the “plug-in” approach,

bias caused by insufficient samples fr@hor the bias caused namely, first estimate the distributions and then substitut

by insufficient samples from) dominates, respectively. these estimates into the divergence function. This leadseto
We further show that iff (k) > log® k andlog®(f(k)) = following plug-in estimator, i.e., the empirical divergen

o(k), any consistent estimator of KL divergence oyt ;)

II. MAIN RESULTS

In the following theorem, we show that the minimax risk
pver the setM,, is unbounded for arbitrary alphabet sikze
andm andn samples.

must satisfym = w( kg Vlog?(f(k)) andn = w(’i{g(';) ). Our A f)pl“g_i’f(M’ ) f D(PHAQ)’ ) ©
proof is based on an extension of Le Cam'’s two-point methathere P = (Py,...,P;) and Q@ = (Q1,...,Qr) denote

to composite hypotheses. Comparing to entropy estimatitve empirical distributions with?, = % and Q; = NT
problem [7], the challenge here that requires special eehn respectively.



Unlike the entropy estimation problem, where the plug-it) If m = O(k) andn = w(kf(k)), the lower bound in (9a)
estimatorl@lplug_in is asymptotically efficient in the “fixed® converges td. Hence, the bias as well as the risk is lower
largen” regime, the direct plug-in estimatd?)plug,in in (6) bounded by a positive constant.
of KL divergence has an infinite bias. This is because, wi) If m = w(k) andn = O(kf(k)), the upper bound in (9b)
non-zero probabilityN; = 0 and M; # 0 for somej € [k], converges to a negative constant. This implies that the risk
leading to infinitef)A_plug_in. is lower bounded by a positive constant.

We can get around the above issue associated with the di®ctf m = O(k) andn = O(kf(k)), the lower bound (9a)
plug-in estimator, if we add one more sample to each mass converges to-co and the upper bound (9b) converges to
point of @, and takeQ); = Nitl as an estimate af); so that +00, which does not provide useful information. Hence,
Qj is non-zero for alli. We therefore propose the following ~we design another approach for this case as follows.
‘augmented plug-in” estimator based O We now focus on the third case above. We choBs® be

A Ly M;/m the uniform distribution. The bias of the augmented plug-in
Da_plug—in(M,N) = Z —log ﬁ (7) estimator can be decomposed into: 1) bias due to estimating
o m (Nt 1)/n S | Pilog P;; and 2) bias due to estimating"_, P; log Q;.

Remark 1. For technical convenience), is not normalized It can t_)e shOV\_/n t_hat_the flrst_ bias is always positive, because
after adding samples. It can be shown that normalizatiorsdof'e uniform distribution achieves the largest entropy for a
not provide order-level smaller risk for the plug-in estiima 9iven alphabet sizé. The second bias is always negative for
Furthermore, the so-called add-constant estimator [11}nf any distribution@. Hence, the two bias terms may cancel out
which adds a fraction sample to each mass poirptan also partially or even fully. Thu_s, to show_the nsk is b_ounded_ylwa
be used as an estimator of divergence. Although intuitiveliP™ 2€ro, the idea is to first determine which bias dominates

such an estimator should not provide order-level improwemend then to construct a pair of distributions accordinglghsu
in the risk, the analysis of the risk appears to be difficult. that the dominant bias is either lower bounded by a positive

) o ~constant or upper bounded by a negative constant.
We next characterize sufficient and necessary conditiongs » (1+ e ak{L(k)’ wheree > 0 and0 < a < 1

. : el
on the sample cpmple)_qty to guarantee c0n5|ste_ncy of the constants, and which implies that the number of samples
augmented plug-in estimator ovek1,, ;). To this end

' drawn fromP is relatively smaller than the number of samples

we first provide upper and lower bounds, respectively, Qffayn from(, the first bias dominates. We constriét Q):
R(DA—plug—in, &, m,n, f(k)) in the following two proposi- P is uniform andQ — 1 1 1 k=1
- \akf(k)’ ’akf(k)? akf(k) )"

tions.
It can be shown that for the aboy®, ), the bias (and hence

Proposition 1. For all k,m,n € N
R(ﬁA—plug—inv ka m,n, f(k))

2 2
~0 <(%(k)+log(l+%)) L log SR

m n

Therefore, ifm = w(k V log® f(k)) and n = w(kf(k)),

R(DA_plug—in, k,m,n, f(k)) — 0 ask goes to infinity.

Outline of Proof. The proof consists of separately boundin
the bias and variance of the augmented plug-in estimata.

details can be found in [10].

Proposition 2. If m = O(k V log” f(k)), or n = O(kf(k)),

then for sufficiently large:
R(DAfplugfinv ka ma TL, f(k)) Z C/

wherec’ is a positive constant.

f)

the risk) is lower bounded by a positive constésg(1 + ¢).

If £ < (14 )22 H) which implies that the number of
samples drawn fronP is relatively larger than the number
of samples drawn fron@), the second bias dominates. We
construct the following distribution&P, @): P is uniform and
Q = (#(k), e ﬁ(k), 1— %) It can be shown that
for the above P, @), the bias is upper bounded by a negative

onstant.

4) If m = O(log® f(k)), we construct two pairs of distribu-
tions as follows:

1 12
Pl_(z(k;—n’”"2(k—1)’§>’
P, — 14+¢ 14+ 2-¢€
T\2k-1) 2k-1 3 )

7éh‘onstant. Hence, the risk is lower bounded by a positive

i i = = 1 .. 1 - 1
Outline of Propf.lt can be §h0wn that the bias of the aug- Q1 =0Q2= (3(k Ok 3k - DR 1 3f(k)) .
mented plug-in estimator is upper and lower bounded as

follows:

(& - HE

k

— A

m n

< sup E[DAfplugfin(ma n) - D(P”Q)]
(P,Q)EMy, £ (k)

k k-1 2n
<log (1—!— E) - eXp(_kf(k))'

(9a)

By Le Cam’s two-point method [9], it can be shown that if

m = O(log® f(k)), no estimator can be consistent, which

implies that the augmented plug-in estimator is not coestst
O

Combining Propositions 1 and 2, we have the following the-

(9b) orem on the consistency of the augmented plug-in estimator.



Theorem 2. The augmented plug-in estimator of KL diverif f(k) > log” k, following steps similar to those in [7], it

gence is consistent over the set;, ;) if and only if can be thown thaRR*(k,m, @, f(k)) is lower bounded by
m=w(kViog®(f(k)) and n=uw(kf(k). (10) (ﬁgk) at the order level. O
C. Minimax Lower Bound oveM,, ) Proposition 4. If f(k) > log® k, log?(f(k)) = o(k) andn =
In this subsection, we characterize necessary conditinns(ﬁ(’icf)g(? ), then for sufficiently large:

the sample complexity that all consistent estimators of KL N .
divergence overV;, ;) must satisfy. The general idea is to R*(k,m,n, f(k)) = R*(k, P,n, f(k)) = ¢
apply generalized Le Cam'’s two-point method [9] to devel
a lower bound on the minimax risk.

1) Poisson samplingWe first utilize thePoisson sampling R*(k’P’n7f(k)) £ inf sup E[(f)(p,N)_D(pHQ))?]
technique to handle the dependency of the multinomialidistr D P.QEMy 1)
bution,_a_s i_s done in [7_] for entropy esti_mation. We relax _thg the minimax risk under Poisson sampling with being
deterministic sample sizes andn to Poisson random vari- | nown.
ablesm’ ~ Poi(m) with meanm andn’ ~ Poi(n) with mean
n, respectively. Under this model, we draw andn»’ i.i.d. Outline of Proof. The proof applies the generalized Le Cam’s
samples fromP and Q, respectively. The sufficient statisticsmethod [9] that involves the twaompositehypotheses to
M; ~ Poi(nP;) and N; ~ Poi(nQ;) are independent, which lower bound the minimax risk and adapts techniques for

Rherec is a positive constant, and

significantly simplifies the analysis. entropy estimation in [7]. The new challenge here arisesadue
Analogous to the minimax risk (5), we define its counterpattie bounded ratio constraint ¢#, ), which requires special
under the Poisson sampling model as technical treatments to construct prior distributionswed as
R (kym,n, f(k)) 2 inf sup E[(D(M,N) — D(P||@))*] bounding various di_vergen_ce _relgted quantities. N _
D (P,Q)eMy (k) Let P = P, be uniform distribution. Then the minimax risk

where the expectation is taken ovéf; ~ Poi(nP;) and can be bounded as

N; ~ Poi(nQ;) for i = 1,... k. Since the Poissonized R*(k,P,n,f(k))
sample sizes are concentrated near their meaasdn with
high probability, the minimax risk under Poisson sampliag i
close to that with fixed sample sizes as stated in the follgwin
lemma. To use the generalized Le Cam’s method [9], consider the
following two compositehypotheses:

>inf  sup  E[(D(Py,N) - D(R|Q))]-
D Py, QeEMy f(x)

Lemma 1. There exists a constaat> ; such that
~ Hy: D(P <t sus Hy @ D(F, >t+d. (12
R (k,2m, 20, £ () ~ =™ og F(K) — =" o F () o PRIy = versus M DTQ) = - (32
< R*(k,m,n, f(k)) < AR*(k,m/2,n/2, f(k)). (11) !f the optimal test cannot disting_uish th_e two hypotheses
_ ] ) in (12) reliably, then the quadratic risk is lower bounded
All the results th_at we prove in this subsection are undgf, ©(42). Furthermore, the optimal probability of error for
the P0|_ss_on sampling assumption. o composite hypotheses testing is given by the Bayesian risk
2) Minimax lower bound:We lower bound the minimax ith respect to the least favorable prior.
risk by the minimax risk withP or @ being known and | the following we construct tractable prior distributgn
carefully chosen to tighten the bound. In both cases, wes#09 ot 1/ and 1’ be twoR+ valued random variables defined on
the knownP or @ to be the uniform distribution. Such a choic&ne interval[y, A] and have equal medi(V) = E(V') = a.
yields the following two propositions. We construct two random vecto® = +(V4,....Vi_1,k —

Proposition 3. For all k,m,n € N and f(k) > log” k, (k—1)a) andQ’ = £(V{,....V{_;,k— (k- 1)a) consisting
) of k — 1 i].ci.gi. copies of V and V' and a deterministic
R (kymyn, f(B) > B (k,m, Q, f(k)) = @< k ) : term 1 —% rgspgctlvely. Since we choose = Py
mlogk to be uniform distribution, andP, Q) satisfy the bounded
where ratio constraint,(); must be greater tha@fl—k. This yields
- ) . a different construction from [7]. Note th&t V' € [n, A]. To
R (k,m, Q, f(R)) £ inf P.QeMy 1) E[(D(M, Q) = D(PIQ))’] satisfy the bounded ratio constraint, we assumer[thgt]f%k).
’ Due to the law of large numbers, the vectd@sand Q'
are approximately probability distributions. Furthermothe
elements inQ and Q' are independent, which significantly
Outline of Proof. Setting@ = @, to be uniform distribution simplifies the analysis.
on [k], D(P||Qo) = Zle P;log P, +logk = H(P) + logk, Next we outline the main ingredients in Le Cam’s method
and the problem reduces to entropy estimation under the miwith priors Q and Q’. Note thatD(F||/Q) converges to its
max risk with (P, Q) satisfying the bounded ratio constraintexpectatiorf[D(F,||Q)] ask goes to infinity. Then with high

is the minimax risk under Poisson sampling with being
known.



probability, D(P,||Q) and D(FP,||Q’) are separated by the We also note that our proof of Proposition 4 may be
difference of their means strengthened by designing a jointly distributed prior(éhQ),
, , instead of treating them separately. This may help to refax o
d=E[DR[Q] - E[D(R[Q)] = Eflog V] = Ellog VI. - 1o rve the condition®g?(f(k)) = o(k) and f(k) > log? k
SinceQ is drawn from the prior distributiof, the sufficient in Proposition 3 and 4 and Theorem 3.
statisticsN = (N, ..., Ny) are i.i.d. distributed according to
the Poisson mixtur&[Poi(V')]. To establish the impossibil-
ity of hypothesis testing (12), the total variation betweka

two k-product distributions should satisfy
TV (E[Poi(nV/k)], E[Poi(nV'/k)]) < ¢/k.

IIl. CONCLUSION

We have shown that there exists no consistent estimator
for KL divergence under the worst-case quadratic risk over
the set of all pairs of distributions, and therefore focused
(13)  the set of pairs of distributions with bounded ratio. We have

In fact, the i.i.d. construction 0§ and @ fully exploits proposed an augmented plug-in estimator, and charaaerize

independence imposed by Poisson sampling, and reduces!i@t sufficient and necessary conditions for such an estima
problem to one dimension. What remains is to chosend 0 be consistent. We have also developed necessary corgitio

V' to maximizeE[log V'] — E[log V], subject to the constraint ©n the sample complexity for any consistent estimator, tvhic

(13). A commonly used proxy for bounding the total variatiof® Within alogk factor from the that of augmented plug-
is obtained vianoment matching.e., by solving the following N €stimator. In future work, we hope to find an improved

optimization problem with moment matching constraints
Er(n,\) ZmaxE[log V'] — E[log V]
st. E[VI]=E[VY], j=1,...,L,
V,V' e n, A,

for some appropriately choseh € N, n > ﬁ and \
depending om andk.
As shown in [7], we have

where £, (g, I) is the best uniform approximation error of a

function ¢ over a finite intervall by polynomials of degree

L. Due to the singularity of the logarithm at zero, the approx!]

imation error can be made bounded away from zerg/ik
grows quadratically with the degrde !. Choosingy = ++

FOK
A = cl%, 1 < 1, L = logk and together with the
conditionlog®(f(k)) = o(k), the minimax risk can be shown

to be lower bounded away from zerorif= O(%2%)). O

Combining Propositions 3, 4 and the necessary conditio[n]

m = w(log® f(k)) from Le Cam’s two-point method (case (4)
in the proof of Proposition 2), we obtain the following theor

on the necessary conditions for an estimator to be consisten

Theorem 3. If log?(f(k)) = o(k) and f(k) > log”k, then
any consistent estimator of KL divergence owp, ;) must
satisfy

kf(k)

and
log

m:w(é Vlog? f(k)) n=w( ). (15)

Comparing Theorem 3 with Theorem 2 that characterizel§)
the sample complexity for consistent augmented plug-iR esfg)

mator, there is a gap of the ordeg k. A promising approach
to fill in this gap is to incorporate polynomial approximatio
into estimator construction to trade bias with varianceras
entropy estimation. However, such an approach can be diffic
to develop for KL divergence (as a function of two distribu

estimator that has sample complexity that approaches our
lower bound.
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