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ABSTRACT
We consider the problem of quickest detection of dynamic
events in sensor networks. After an event occurs, a number
of sensors are affected and undergo a change in the statistics
of their observations. We assume that the event is dynamic
and can propagate with time, i.e., different sensors perceive
the event at different times. The goal is to design a sequen-
tial algorithm that can detect when the event has affected no
less than η sensors as quickly as possible, subject to false
alarm constraints. We design a computationally efficient al-
gorithm that is adaptive to unknown propagation dynamics,
and demonstrate its asymptotic optimality as the false alarm
rate goes to zero. We also provide numerical simulations to
validate our theoretical results.

Index Terms— asymptotic optimality, dynamic event,
quickest change detection, spartan CuSum

1. INTRODUCTION
Suppose a system is monitored in real time by a set of L sen-
sors. At an unknown time, an event occurs in the system, and
causes a change in the observations of an arbitrary, unknown
subset of sensors. Moreover, if an event occurs, it can dy-
namically propagate over the sensor network with time, i.e.,
different sensors perceive the event at different times. We are
interested in detecting a “large” event, i.e., we would like to
raise an alarm if more than η ≥ 1 sensors are affected quickly
and reliably. Applications of this model can be found in epi-
demic detection [1, 2], remote sensing [3], etc.

The problem in this paper is closely related to the mul-
tichannel sequential change detection setup, in which one or
multiple unknown sensors perceive a change simultaneously
[4–8], or alternatively, at different times [9–11]. The major
differences from these previous works lie in that: (i) we are
interested in detecting when the event has affected as least
η sensors, whereas previous works focus on the special case
with η = 1; and (ii) instead of considering the worst case
of detection delay over all possible perceiving times of the
sensors [10] or taking a Bayesian approach [9,11], we are in-
terested in designing algorithms that are adaptive to unknown
propagation patterns.
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Our problem is also closely related to the problem of
quickest change detection (QCD) under transient dynam-
ics [12–15], in which the pre-change distribution does not
change to the persistent post-change distribution instanta-
neously, but after a number of transient phases, where each
of the transient phases is associated with a distribution that is
distinct from the pre-change and persistent post-change dis-
tributions. In this paper, as the event affects more and more
sensors over time, the system also goes through multiple
phases. However, the event propagation pattern is unknown
and has multiple possibilities.

In this paper, we reformulate this QCD problem as a dy-
namic hypothesis testing problem, i.e., one where we have to
distinguish between two hypotheses at each time instant. The
null hypothesis corresponds to the case with less than η af-
fected sensors, and the alternative hypothesis corresponds to
the case with no less than η affected sensors. We take the gen-
eralized log-likelihood ratio of the two composite hypotheses
as the detection statistic, and compare it to a threshold to make
a decision about the event. We show that such a test is equiv-
alent to one that compares the sum of the smallest L− η + 1
local Cumulative Sum (CuSum) statistics [16] to a threshold.
This test, which we call spartan CuSum (S-CuSum), is com-
putationally efficient with O(L) complexity. The S-CuSum
algorithm is shown to guarantee false alarm constraints for all
scenarios with less than η affected sensors, and to adapt to
unknown propagation patterns. We also establish the asymp-
totic optimality of the S-CuSum algorithm up to a first-order
approximation as the false alarm rate goes to zero.

2. PROBLEM MODEL

Consider a sensor network consisting of L sensors. Before
an event occurs, sensor i receives independent and identically
distributed (i.i.d.) samples from distribution fi, ∀1 ≤ i ≤ L.
If an event occurs, and sensor i is affected by the event at an
unknown time vi, then it starts to receive i.i.d. samples from
distribution gi. More specifically, if we denote the observa-
tion received by sensor i at time k by Xi[k], then

Xi[k] ∼
{
fi, if k < vi,
gi, if k ≥ vi.

(1)

We consider a centralized setting in which all the samples are
available to the fusion center. Note that we are only interested



in detecting a “large” event, i.e., if an alarm is triggered at a
time when less than η sensors are affected, it is considered as
a false alarm.

Let v = {v1, . . . , vL} denote the set of all change-points
which are unknown in advance. Without loss of generality,
we assume that v1 ≤ v2 ≤ · · · ≤ vL, with the ordering being
unknown in advance. Then, vη is the first time when at least η
sensors are affected. Thus, our problem is to detect the change
at vη as quickly as possible subject to false alarm constraints.

We let di = vi+1 − vi denote the time it takes the event
to propagate from i affected sensors to i+1 affected sensors,
and let d = {d1, . . . , dL−1}. Then, given v, vη and d are
known. We use Pv to denote the probability measure of the
samples with change-points being v, and let Ev denote the
corresponding expectation. It is clear that for a set of change-
points v, if

∑L
i=1 1{vi<∞} < η, i.e., vη = ∞, then there are

less than η affected sensors under Pv . We define the worst-
case average run length (WARL) to false alarm as follows:

WARL(τ) = inf
v:vη=∞

Ev[τ ]. (2)

For any fixed {dη, dη+1, . . . , dL−1}, we further define the
worst-case average detection delay (WADD) under Pollak’s
criterion [17] as follows:

JP[τ ] = sup
v:v1≤···≤vη<∞

Ev[τ − vη|τ ≥ vη]. (3)

In this paper, we assume for our asymptotic analysis that for
each i ≥ η, di is deterministic, unknown and either finite or
infinite. We note that even for a fixed {dη, dη+1, . . . , dL−1},
the distribution of the samples after vη is still composite, since
without the knowledge that v1 ≤ · · · ≤ vL, the order of af-
fected sensors after time vη is unknown.

We denote Fk as the σ-algebra generated by the observa-
tions of all the sensors up to time k, for k = 1, 2, . . .. We
wish to find a {Fk}k∈N-stopping time that achieves “small”
detection delay, while controlling the false alarm rate. More
specifically, the goal is to minimize JP[τ ] subject to a con-
straint on the WARL:

inf
τ :WARL(τ)≥γ

JP(τ). (4)

In this paper, we denote X[k] = {X1[k], . . . , XL[k]},
and X[k1, k2] = {X[k1], . . . ,X[k2]}. We further denote

Zi[k1, k2] =

k2∑
k=k1

log
gi(Xi[k])

fi(Xi[k])
. (5)

We define
∑k2
j=k1

Aj = 0 and
∏k2
j=k1

Aj = 1 if k1 > k2.
We use X+ to denote the positive part of X , i.e., X+ =
max{X, 0}. We denote the Kullback-Leibler (KL) diver-
gence between gi and fi as

Ii =

∫
gi log

gi
fi
, (6)

which is assumed to be positive and finite, for 1 ≤ i ≤ L.

3. THE S-CUSUM ALGORITHM

In this section, we present the design of the S-CuSum algo-
rithm, and show that it can be implemented efficiently with
complexity that is linear in L.

We reformulate the quickest detection problem in Sec-
tion 2 as a dynamic hypothesis testing problem, i.e., to dis-
tinguish the following two hypotheses at each time k:

H0[k] :

L∑
i=1

1{vi≤k} < η,

H1[k] :

L∑
i=1

1{vi≤k} ≥ η. (7)

It is clear that the null hypothesis corresponds to the scenario
in which there are less than η affected sensors at time k, the
alternative hypothesis corresponds to the scenario in which
there are no less than η affected sensors at time k, and both
the null and alternative hypotheses are composite.

This hypothesis testing procedure stops once a decision
in favor of the alternative hypothesis is reached; otherwise, it
takes a new sample from each sensor. We take the general-
ized log-likelihood ratio for this composite hypothesis testing
problem as the detection statistic for the S-CuSum algorithm:

W [k] = log

 max
v:

∑L
i=1 1{vi≤k}≥η

Pv(X[1, k])

max
v:

∑L
i=1 1{vi≤k}<η

Pv(X[1, k])

 . (8)

The corresponding stopping time is then given by comparing
W [k] against a pre-determined positive threshold:

τ̃(b) = inf{k ≥ 1 :W [k] > b}. (9)

Next, we will derive an equivalent but cleaner form for
(9), which can be computed efficiently.

Let P∞ denote the probability measure with vi = ∞, for
1 ≤ i ≤ L, i.e., none of the sensors will be ever affected. It is
easily shown that

W [k] = max
v:

∑L
i=1 1{vi≤k}≥η

log

(
Pv(X[1, k])

P∞(X[1, k])

)
− max

v:
∑L
i=1 1{vi≤k}<η

log

(
Pv(X[1, k])

P∞(X[1, k])

)
. (10)

Now, due to the fact that

log

(
Pv(X[1, k])

P∞(X[1, k])

)
= log

(
L∏
i=1

∏min{vi−1,k}
j=1 fi(Xi[j])

∏k
j=vi

gi(Xi[j])∏k
j=1 fi(Xi[j])

)

=

L∑
i=1

k∑
j=vi

log
gi(Xi[j])

fi(Xi[j])
, (11)



the first term in (10) is equivalent to

max
v:

∑L
i=1 1{vi≤k}≥η

L∑
i=1

k∑
j=vi

log
gi(Xi[j])

fi(Xi[j])
. (12)

Similarly, the second term in (10) is equivalent to

max
v:

∑L
i=1 1{vi≤k}<η

L∑
i=1

k∑
j=vi

log
gi(Xi[j])

fi(Xi[j])
. (13)

If we denote the individual CuSum [16] statistic at sensor i
(testing a change from fi to gi) at time k as

Wi[k] = max
1≤vi≤k

k∑
j=vi

log
gi(Xi[k])

fi(Xi[k])
, (14)

and define a permutation µ(·) such that

Wµ(1)[k] ≥Wµ(2)[k] ≥ · · · ≥Wµ(L)[k], (15)

then, τ̃(b) is equivalent to

τ̂(b) = inf

k ≥ 1 :

L∑
i=η

(
Wµ(i)[k]

)+ ≥ b
 . (16)

Such an equivalence can be established as follows.

1. If Wµ(η)[k] ≥ 0, then (12) is equal to
∑L
i=1

(
Wµ(i)[k]

)+
,

and (13) is equal to
∑η−1
i=1 Wµ(i)[k]. It then follows that

W [k] =
∑L
i=η

(
Wµ(i)[k]

)+
.

2. If Wµ(η)[k] < 0, then (12) is equal to
∑η
i=1Wµ(i)[k],

and (13) is equal to
∑η−1
i=1

(
Wµ(i)[k]

)+
. In this case,

W [k] is non-positive, and
∑L
i=η

(
Wµ(i)[k]

)+
= 0. Since

b is positive, the test in (9) is equivalent to comparing∑L
i=η

(
Wµ(i)[k]

)+
to b.

The test in (16) can be implemented efficiently. First of
all, for each i, Wi[k] can be updated recursively, i.e.,

Wi[k] = (Wi[k − 1])
+
+ log

gi(Xi[k])

fi(Xi[k])
. (17)

Second, finding the smallest L− η+1 numbers from L num-
bers can be solved in O(L) time using the algorithm in [18].
Then, the total computational cost at each time k is linear in
the number of sensors, i.e., O(L).

4. PERFORMANCE ANALYSIS

4.1. Universal Lower Bound on WADD

We first study the universal lower bound on the WADD for
any stopping rule with the WARL no less than γ.

For any v, denote C = {i : vi < ∞} as the set that
contains all the indices of the affected sensors, and define a
permutation λ(·) such that Iλ(1) ≤ Iλ(2) ≤ · · · ≤ Iλ(|C|).
Assume that |C| ≥ η. Let S = {λ(1), λ(2), . . . , λ(|C| − η +
1)}, i.e., S contains indices of those sensors with the smallest
|C| − η + 1 KL numbers in C, and set Ĩ =

∑
i∈S Ii.

Theorem 1. For any event with all affected sensors in set C,
and |C| ≥ η, as γ →∞,

inf
τ :WARL(τ)≥γ

JP(τ) ≥ (1− o(1)) log γ
Ĩ

. (18)

The proof is based on a change-of-measure argument and
the Law of Large Numbers for log-likelihood ratio statistics
similar to those in [19], which is omitted due to space limita-
tions. A major difference in the change-of-measure argument
relative to [19] is that the “pre-change” mode is composite,
i.e., there are multiple possible scenarios with less than η af-
fected sensors. Furthermore, the application of the Law of
Large Numbers requires a decomposition of the sum of the
log-likelihood ratio.

4.2. Upper Bound on the WADD

Theorem 2. For any event with all affected sensors in set C,
and |C| ≥ η, as b→∞,

JP[τ̂(b)] ≤ (1 + o(1))
b

Ĩ
. (19)

Proof. It is clear that

L∑
i=η

(
Wµ(i)[k]

)+
= min
D:|D|=L−η+1

∑
i∈D

(Wi[k])
+

(a)

≥ min
D⊆C:|D|=|C|−η+1

∑
i∈D

(Wi[k])
+

(b)

≥ min
D⊆C:|D|=|C|−η+1

∑
i∈D

Zi[v|C|, k], (20)

where Zi[v|C|, k] is defined in (5), (a) is obtained by the set-
ting Wi[k] = 0 for i /∈ C, since (Wi[k])

+ is always positive;
and (b) is due to the definition of Wi[k].

Define the stopping rule N(b):

N(b) = inf

{
k : min
D:|D|=L−η+1

∑
i∈D

Zi[v|C|, k] > b

}
. (21)

It then follows that τ̂(b) ≤ N(b). By [20, Theorem 3], as
b→∞, Ev[N(b)−v|C|] ≤ b/Ĩ(1+o(1)). By the assumption
that v|C| − vη is finite and the fact that N(b) is independent
from the event {τ̂(b) ≥ vη}, as b→∞,

Ev[N(b)− vη|τ̂(b) ≥ vη] ≤
b

Ĩ
(1 + o(1)). (22)



4.3. Lower Bound on the WARL

Theorem 3. For any v such that
∑L
i=1 1{vi≤k} < η,

Ev[τ̂(b)] ≥
eb

poly(b)
, (23)

where poly(b) denotes a polynomial in b.

Proof. For any t ∈ N and b > 0, it follows that

Pv(τ̂(b) ≤ t) = Pv

 max
1≤k≤t

L∑
i=η

(
Wµ(i)[k]

)+
> b


≤

t∑
k=1

Pv

 L∑
i=η

(
Wµ(i)[k]

)+
> b

 . (24)

Since
∑L
i=η

(
Wµ(i)[k]

)+ ≤∑L
i=η (Wi[k])

+
,

Pv

 L∑
i=η

(
Wµ(i)[k]

)+
> b

 ≤ Pv

 L∑
i=η

(Wi[k])
+
> b

 .

(25)

By [6, Lemma B1], it follows that

Pv

 L∑
i=η

(Wi[k])
+
> b

 ≤ poly(b)e−b. (26)

Therefore, Pv(τ̂(b) ≥ t) ≤ tpoly(b)e−b, which implies that

Ev[τ̂(b)] ≥
eb

poly(b)
. (27)

To guarantee that that WARL(τ̂(b)) ≥ γ, it then suffices
to choose b ∼ log γ.

Theorem 4 (Asymptotic Optimality). Let the threshold b ∼
log γ so that WARL(τ̂(b)) ≥ γ. Then for any event with all
affected sensors in set C, and |C| ≥ η,

JP[τ̂(b)] ∼
b

Ĩ
. (28)

Proof. This result follows from Theorems 1, 2 and 3.

5. NUMERICAL RESULTS

In this section, we provide some numerical results. We use a
simple example with L = 3 and η = 2.

In Fig. 1, we first plot the evolution path of the S-CuSum
algorithm. We assume that f1 = f2 = f3 = N (0, 1), and
g1 = g2 = g3 = N (1, 1). We set v = {1, 40, 80}. As we can
see from Fig. 1, when there is only one affected sensor, i.e.,
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Fig. 1. A sample evolution path of the S-CuSum algorithm.
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Fig. 2. Comparison between the S-CuSum and multichart
CuSum algorithms.

k < 40, the detection statistic of the S-CuSum algorithm stays
close to 0. Then, when there are two affected sensors, i.e.,
40 ≤ k < 80, and later when there are three affected sensors,
i.e., k ≥ 80, the detection statistic gradually grows but with
different drifts in these two scenarios. Thus, the S-CuSum
algorithm is adaptive to the unknown propagation dynamics.

We next study the performance of the S-CuSum algorithm
and compare it with a generalization of the multichart algo-
rithm in [21] which stops when at least η local CuSum algo-
rithms have crossed their individual thresholds. We assume
that f1 = f2 = f3 = N (0, 1), and g1 = g2 = g3 =
N (0.4, 1). We set v = {1, 1, 40}. Here, we consider the aver-
age detection delay (ADD) defined as Ev[τ̂−vη|τ̂ ≥ vη] with-
out taking sup over v1, . . . , vη . We plot ADD versus WARL
for the S-CuSum and multichart CuSum algorithms in Fig. 2.

As we can see from Fig. 2, the drift of the S-CuSum algo-
rithm gradually changes after ADD= v3 = 40, which demon-
strates that it is adaptive to the unknown v. Furthermore, the
S-CuSum algorithm has a better performance compared to
the multichart CuSum algorithm, especially when ADD≥ v3.
This is because when ADD≥ v3, the samples of sensor 3 also
contain information about whether there are no less than η af-
fected sensors (although the local CuSum statistic at sensor
3 is not large), and this information is used by the S-CuSum
algorithm but not the multichart CuSum algorithm.
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