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ABSTRACT

The problem of transient quickest change detection (QCD)
is studied, in which the change from the initial to the final
phase does not happen instantaneously, but after a series of
cascading transient phases of finite durations, each one corre-
sponding to a different probability distribution. The goal is to
design a stopping rule to detect the change as quickly as pos-
sible, subject to false alarm constraints. In previous work, the
D-CuSum algorithm was proposed for such a QCD problem.
The D-CuSum does not incorporate any prior statistical infor-
mation about the durations of the transient periods. In this
work, we develop an algorithm, the D-S-R algorithm, which
incorporates geometric priors on the durations of the transient
periods. We compare the D-CuSum and D-S-R algorithms in
numerical examples to develop some insights about the role
of the prior on the transient durations on the performance.

Index Terms— Bayesian analysis, dynamic CuSum, dy-
namic Shiryaev-Roberts, quickest change detection, transient
dynamics.

1. INTRODUCTION

The theory of quickest change detection (QCD) has seen
numerous applications in systems where real-time decision
making is crucial, ranging from the detection of subtle faults
that may lead to catastrophic failures in large-scale systems
to applications in financial surveillance [1]–[8]. In these
applications, a change in the statistical properties of the ob-
servations will happen in response to an event in the system.
The goal of QCD is to detect this change as quickly as pos-
sible subject to a tolerable false alarm constraint. In the
classical QCD problem [9, 10], the statistical behavior of
the observed process is characterized by the pre-change and
the post-change distributions, that generate the data before
and after the change point, respectively. Two formulations
have been proposed for the classical single changepoint QCD
problem: i) the minimax setting [11]–[13], where the change-
point is modeled as unknown and deterministic and the goal
is to minimize a worst-case average detection delay (WADD)
subject to a lower bound on the mean time to false alarm;
ii) the Bayesian setting [14, 15], where the changepoint is

a random variable with a known distribution and the goal is
to minimize the average detection delay (ADD) subject to a
bound on the probability of false alarm.

In this work, we study the transient QCD problem where
the initial distribution does not change to the post-change dis-
tribution instantly but after a series of transient phases. Each
transient phase corresponds to a different distribution on the
observed data and each one starts from a respective change-
point. An algorithm for such a QCD problem was proposed
in [2] in the context of line outage detection in power systems
under transient dynamics. The proposed dynamic CuSum (D-
CuSum) algorithm does not incorporate any prior information
about the durations of the transient periods.

In practice, and in particular in the power system line
outage detection problem, it is reasonable to assume that
we have some prior statistical knowledge about the dura-
tions of the transient periods, even if it is not reasonable to
assume any prior on the change point. To incorporate this
prior knowledge, we formulate the transient QCD problem
under the Bayesian setting where the (first) changepoint and
the durations of the transient phases are modeled as inde-
pendent random variables with geometric distributions. By
studying the problem of minimizing the detection delay sub-
ject to false alarm constraints in a dynamic programming
framework, we obtain the structure of the optimal stopping
rule. We then propose a tractable dynamic Shiryaev-Roberts
(D-S-R) algorithm for the case where the parameter of the
geometric distribution of the changepoint approaches zero,
which corresponds to the case without any prior knowledge
of the changepoint.

2. PROBLEM FORMULATION AND THE DYNAMIC
CUSUM ALGORITHM

Consider a process {Zk}∞k=1 which is observed sequentially
by a centralized decision maker. At some time instant γ1 an
event causes the initial distribution f0 to undergo a change.
It is assumed that this change occurs in multiple phases, the
number of which is known, and is denoted by L. The first L−
1 phases correspond to transient intervals of finite durations,
after which a persistent phase occurs. Each phase ` starts from
a corresponding changepoint γ` and is connected to a distinct



density. In this work, we assume that the observations are
independent conditioned on the changepoints. The statistical
model is described as follows:

Zk ∼ f`, if γ` ≤ k < γ`+1, (1)

for ` ∈ {0, . . . , L}, where γ0 = 1, γL+1 = ∞ and the γ’s
are unknown but deterministic. The goal in this problem is to
detect the change that occurs at γ1 as quickly as possible ,sub-
ject to false alarm constraints. The performance of a stopping
rule τ is evaluated by the following delay metric:

WADD(τ) = sup
γ1≥1

ess supEγ1
[
(τ − γ1)+

∣∣∣∣X1, . . . , Xγ1−1

]
,

where Eγ1 is the expectation when the underlying distribu-
tion is the one induced on the observations when a change
occurs at γ1, and (x)+ , max{x, 0}. The frequency of the
false alarm events is controlled by imposing a constraint on
the mean time to false alarm. In particular we would like
E∞[τ ] ≥ β, for β > 0, where E∞ is the expectation under
the probability measure that no change has occurred.

The D-CuSum algorithm is a heuristic solution to the tran-
sient QCD problem with non-random changepoints. The test
is derived by treating this QCD problem as a dynamic com-
posite hypothesis testing problem. The algorithm’s structure
arises through the analysis of the likelihood ratio between two
hypothesis: i) the nominal hypothesis which corresponds to
the case that the change has not yet occured and ii) the alter-
native hypothesis corresponding to the case that a change has
already occurred. For the case of L post-change periods, the
test statistic is computed as follows:

Wk = max
{

Ω
(1)
k , . . . ,Ω

(L)
k , 0

}
, (2)

where Ω
(`)
k = max{Ω(`)

k−1,Ω
(`−1)
k−1 } + log f`(Zk)

f0(Zk)
, for ` ∈

{1, . . . , L}, Ω
(0)
k , 0 for all k ∈ Z and Ω

(`)
0 , 0 for all

`. The corresponding stopping time is given by comparing
Wk against a pre-determined positive threshold:

τ = min{k ≥ 1 : Wk > A}. (3)

3. BAYESIAN ANALYSIS

To incorporate prior knowledge of the statistics of the change-
points, we formulate the transient QCD problem under the
Bayesian setting, where the changepoints in (1) are modeled
as random with known statistics. We assume that the statistics
of the changepoint process Γ , [Γ1 . . .ΓL] are described by a
joint-geometric model [16]. The distributions of Γ1 and of the
duration of each transient phase are modeled as independent
random variables with geometric distributions. In particular,
we have

P(Γ1 = m) = ρ(1− ρ)m−1, m ∈ N

and

P(Γ` = m1 +m2|Γ`−1 = m2) = ρ`−1,`(1− ρ`−1,`)m1−1,

for m1 ∈ N and ` ∈ {2, . . . , L}.
At each time instant k, the information available to the

decision maker is summarized by the information vector Ik ,
{Z1, . . . Zk}, where I0 denotes the empty set. The goal is to
use this information to detect the change that occurs at Γ1 as
quickly as possible, subject to false alarm constraints. The
change is declared at a stopping time τ and the delay-false
alarm tradeoff is characterized by a Bayes risk as follows:

R(c) , PFA + cADD = E[1({τ < Γ1}) + c(τ − Γ1)+],

(4)

where PFA denotes the probability of false alarm, ADD de-
notes the average detection delay, c is used to model the cost
that we suffer for a delay of an extra time instant, and 1({E})
is the indicator function of the event {E}. The goal is to de-
sign a stopping rule τ that minimizes the Bayes risk.

3.1. Dynamic Programming Formulation and Optimal
Algorithm

In this subsection, we formulate the problem of minimization
of the Bayes risk in a dynamic programming framework fol-
lowing similar steps to [16]. In [15], it is shown that for a
stopping rule τ , the risk of (4) can be written as

R(c) = E({Γ1 > τ}) + cE
[ τ−1∑
k=0

P({Γ1 ≤ k})
]
. (5)

We first study the finite-horizon dynamic programming
case, i.e., we restrict the stages in which decisions are made in
the interval [0,T]. We then extend the problem to the infinite-
horizon case.

At each time instant k, we define the state of the system
Sk = `, if the current phase of the system is `. The state space
is given by S = {0, .., L, t}, where Sk = ` corresponds to the
case that Γ` ≤ k < Γ`+1, for ` ∈ {0, . . . , L}, and Sk = t
means that a change has already been declared. The state of
the system evolves according to the state evolution equation
Sk = f(Sk−1,Γ,1({τ ≤ k})), where f is given by

f(s, γ, α) =

{
`, if Γ` ≤ k < Γ`+1, α = 0,

t, if s = t or α = 1,
(6)

for ` ∈ {0, . . . , L}, Γ0 = 1 and ΓL+1 = ∞. Note that the
state information in the present setting is imperfect, i.e., at
each time instant we observe a noisy version of the state. The
observation equation is given by

Zk = V
(Sk)
k 1({Sk 6= t}) + ξ1({Sk = t}), (7)

where V (`)
k is drawn from f`, for ` ∈ {0, ..., L}, and ξ is a

dummy random variable. The Bayes risk of (4) can be written



as an expectation of an additive cost, thus, our problem fits
the general dynamic programming setting with termination
[17],[18]. The cost-to-go function is defined as follows:

JTT (IT ) = P({Γ1 > T}|IT )

JTk (Ik) = min

{
P({Γ1 > k}|Ik), cP({Γ1 ≤ k}|Ik)

+ E
[
JTk+1(Ik+1)|Ik

]}
, 0 ≤ k < T.

At each time k there are two possible actions: stop and suffer
a cost of stopping at time k, or continue sampling with an
expected cost-to-go at time k + 1. The minimum expected
cost for the finite-horizon optimization problem is JT0 (I0).

The sufficient statistic for the solution of this problem is
given by the conditional distribution of the state given Ik. The
sufficient statistic can be explicitly defined by the vector pk ,
[pk,0 . . . pk,L], where pk,` is defined as

pk,` , P({Sk = `}|Ik). (8)

We now show that pk can be obtained from pk−1 recursively.
By applying Bayes’s rule, it can be shown that

pk,` =
P(Sk = `|Ik−1, Zk)f(Zk|Ik−1)

f(Zk|Ik−1)

=
P(Sk = `|Ik−1)f(Zk|Sk = `, Ik−1)∑L

i=0 f(Zk, Sk = i|Ik−1)

=
P(Sk = `|Ik−1)f(Zk|Sk = `, Ik−1)∑L
i=0 P(Sk = i|Ik−1)f(Zk|Sk = i, Ik−1)

,
Ak,`∑L
i=0Ak,i

, (9)

where f(·|·) denotes the conditional probability density func-
tion of Zk and Ak,i , P(Sk = i|Ik−1)f(Zk|Sk = i, Ik−1).
By the assumption that the observations are independent con-
ditioned on the changepoints, i.e., Ik−1 → Sk → Zk,

f(Zk|Sk = i, Ik−1) = f(Zk|Sk = i) = fi(Zk).

We then compute Ak,i as follows:

Ak,i = P(Sk = i|Ik−1)f(Zk|Sk = i)

=

L∑
j=0

P(Sk = i, Sk−1 = j|Ik−1)fi(Zk)

=

L∑
j=0

P(Sk−1 = j|Ik−1)P(Sk = i|Sk−1 = j, Ik−1)fi(Zk)

= (pk−1,i−1ρi−1,i + pk−1,i(1− ρi,i+1)) fi(Zk), (10)

where the last step is due to the assumption that each phase
contains at least one sample, i.e., P(Sk = i|Sk−1 = j, Ik−1) =
0 if j 6= i or i − 1. We now study the optimal stopping rule
τopt for the infinite horizon case by letting T →∞.

Theorem 1. Let p = [p0 . . . pL] be an element in the L-
dimensional simplex P , {p :

∑L
j=0 pj = 1}. The infinite-

horizon cost-to-go for the DP has the following form

J(p) = min{p0, c(1− p0) +AJ(p)},

where the function AJ(p) is concave in p over P; is bounded
between 0 and 1; and satisfies AJ(p) = 0 over the hyper-
plane {p : p0 = 0}.

By Theorem 1, the optimal stopping time is

τopt = inf
k∈N
{k : pk,0(1 + c)− c < AJ(pk)}. (11)

3.2. The Dynamic Shiryaev-Roberts Algorithm

The form of AJ(p) is not explicit, thus, τopt can only be com-
puted numerically. We next construct a more simplified and
tractable stopping rule. Note that we are only interested in
detecting the change from phase 0 to phase 1 as quickly as
possible, which is equivalent to detecting whether the system
is still in state 0. Based on such an understanding, we com-
pute pk,0, which is the posteriori probability that the system
is at state 0 given current observations, and consider the fol-
lowing alternative stopping time:

τt = inf
k∈N
{k : pk,0 < t}, (12)

where t is an appropriate threshold. We are interested in the
regime in which ρ → 0, under which the stopping rule (12)
converges to a non-Bayesian rule with respect to Γ1, the D-S-
R algorithm. It should be noted that ρ→ 0 is equal to unifor-
malizing the changepoint Γ1. The algorithm is named after
the Shiryaev-Roberts test since the latter is the limit of the
Shiryaev algorithm for single changepoint Bayesian QCD as
the geometric parameter of the changepoint approaches zero
[9].

We define the following invertible mapping:

qk,` =
pk,`
ρpk,0

⇔ pk,` =
qk,`∑L
j=0 qk,j

. (13)

From the above, it is straightforward to show

pk,0 =
1

1 + ρ
∑L
j=1 qk,j

, (14)

and qk,` can be computed recursively by

qk,` =
(qk−1,`−1ρ`−1,` + qk−1,`(1− ρ`,`+1)) f`(Zk)

(1− ρ)f0(Zk)
,

(15)

with the following priors:

q0,0 =
1

ρ
, and q0,` = 0, ` ∈ {1, . . . , L}. (16)



We further define rk,` = limρ→0 qk,l, for ` ∈ {1, . . . , L}.
The recursive form of rk,l can be computed as follows:

rk,l =
(rk−1,`−1ρ`−1,` + rk−1,`(1− ρ`,`+1)) f`(Zk)

f0(Zk)
,

for ` ≥ 2, and

rk,1 =
(1 + rk−1,`(1− ρ`,`+1)) f`(Zk)

f0(Zk)
,

with the following priors:

r0,` = 0, for ` ∈ {1, . . . , L}.

Then, as ρ → 0, by (14) and the definition of rk,`, the stop-
ping time (12) reduces to the D-S-R algorithm as follows:

τA = inf
k∈N

{
k : Vk = log

(
L∑
`=1

rk,`

)
≥ A

}
, (17)

where A is an appropriately chosen threshold.

4. SIMULATION RESULTS AND DISCUSSION

In this section, we compare the performance of the D-CuSum
algorithm and the D-S-R algorithm numerically under a min-
imax setting with respect to Γ1. The performance of each test
is evaluated in terms of WADD and mean time to false alarm.
For both algorithms, the WADD is simulated by considering
the worst case in terms of delay, which corresponds to Γ1 = 1.
The mean time to false alarm is simulated by generating all
the samples from f0, which corresponds to Γ1 =∞. The two
evaluation metrics are computed through regular Monte Carlo
simulations for a variety of threshold values.

We first compare the two algorithms for the case of one
transient phase (L=2). The parameters of the changepoint
process are chosen to be ρ1,2 = 0.1. We choose the probabil-
ity distributions to be Gaussian distributions with mean shift:
f0 = N (0, 1), f1 = N (0.2, 1) and f2 = N (0.4, 1). In Fig. 1,
we plot the WADD as a function of the mean time to false
alarm for the two algorithms. It can be seen that in this case
the D-CuSum algorithm outperforms the D-S-R algorithm.

We next compare the two algorithms for the case of one
transient phase (L=2). We set a different ρ1,2 = 0.001, and
choose different probability distributions: f0 = N (0, 1),
f1 = N (3, 1) and f2 = N (0.1, 1). In Fig. 2, we plot the
WADD as a function of the mean time to false alarm for the
two algorithms. It can be seen that in this case the perfor-
mance of the D-S-R test is superior.

Next, we compare the two algorithms for the case of four
transient periods (L = 5). We set the parameters of the
changepoint process to be ρ1,2 = ρ2,3 = ρ3,4 = ρ4,5 =
ρtrans = 0.1. We choose the probability distributions to be
Gaussian distributions with mean shift: f0 = N (0, 1), f1 =
N (1, 1), f2 = N (2, 1), f3 = N (2.5, 1),f4 = N (3, 1) and

f5 = N (3.5, 1). In Fig. 3, we plot the WADD as a function
of mean time to false alarm for these two algorithms. It can
be seen that in this case the D-CuSum algorithm outperforms
the D-S-R algorithm.

From the three figures, we conclude that the two al-
gorithms have similar performance, even though the D-
CuSum algorithm does not exploit the prior information
of the changepoint process. The reason may be due to the
assumption of the geometric prior. It is therefore of interest
to study the problem with a different prior, for which the
Bayesian solution given will no longer be stationary in time.
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Fig. 1. WADD versus mean time to false alarm for L =
2, ρ1,2 = 0.1, f0 = N (0, 1), f1 = N (0.2, 1), f2 =
N (0.4, 1).
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Fig. 2. WADD versus mean time to false alarm for L =
2, ρ1,2 = 0.001, f0 = N (0, 1), f1 = N (3, 1), f2 =
N (0.1, 1).
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Fig. 3. WADD versus mean time to false alarm for L =
5, ρtrans = 0.1, f0 = N (0, 1), f1 = N (1, 1), f2 =
N (2, 1), f3 = N (2.5, 1), f4 = N (3, 1), f5 = N (3.5, 1).
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