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ABSTRACT to the case with no anomalous disk and the alternative hy-

) ) ) ~ pothesis corresponds to the case with existence of an anoma-
Nonparametric detection of existence of an anomalous dIS%US disk. The alternative hypothesis is composite becthese
over a lattice network is investigated. If an anomalous disky,omalous disk can be one of a number of candidate disks in
exists, then all nodes belonging to the disk observe samplgge network.
generated by a distribution whereas all other nodes observe  pgtecting existence of an anomalous geometric struc-
samples generated by a distributjptthat is distinct fromg. ;16 in large networks has been extensively studied in the
If there does not exist an anomalous disk, then all nodes Sterature. Most previous studies [1—10] have adopiath-
ceive samples generated py The distributiong andg are  agricor semiparametrienodels, which assume that samples
arbitrary and unknown. The goalis to design statisticalyC 56 generated by known distributions such as Gaussian or
sistent test as the network size becomes asymptoticalg lar gernoy|ii distributions, or the two distributions are know
Akernel-based testis proposed based on maximum mean dig; pe gifferent by a mean shift. However, such parametric
crepancy (MMD) which measures the distance between megfqels may not always hold in real applications because dis-
embeddings of distributions into a reproducing kernel iito i tions may not be known in advance, or even structures
space (RKHS). A sufficient condition on the minimum size of ¢ gistributions may not be learned. More recently, in [#],
candidate anomalous disks is characterized in order to-9ughonparametric problem of detecting existence of an interva
antee the consistency of the proposed test. A necessary congyer 4 line network was studied. Although it is assumed that
tion that any universally consistent test must satisfy ir  gistributions are unknown in [11], a reference sequence of
derived. Comparison of sufficient and necessary conditiongymples generated from the typical distribution is assumed
yields that the proposed test is order-level optimal. be available. The problem is easier with such an identified

Index Terms— Consistency, maximum mean discrep- reference sequence.

ancy, nonparametric detection, reproducing kernel Hilber In contrast to previous studies, we study tienparamet-
space. ric problem, in which not only distributions arnknown a

priori, but no reference samples are available either. We study
the problem of detecting the existence of a disk over a two-
1. INTRODUCTION dimensional network, and the network structure is more com-
plicated than the line network in [11]. Our study provides
We study the problem of detecting existence of an anomalougrther understanding of the impact of geometric structure
disk over a lattice network, in which each node observes getection performance.
random sample. If an anomalous disk exists, then all nodes |n our problem, the distributions are unknown, and only
belonging to the disk take samples generated by an anomgamples generated by the distributions are available.diis
lous distributiong. All other nodes in the network take sam- sjrable to find a way to measure the distance between distri-
ples generated by a typical distributipnitis assumed that  butions based on samples. Towards this end, mean embed-
andq are distinct. If there does not exist an anomalous diSkding of distributions into a reproducing kernel Hilbert spa
then all nodes receive samples generategh.byVe assume (RKHS) [12,13]is useful. The idea is to map probability dis-
that the distributiong andq areunknown a priorj and hence  tributions into an RKHS such that the distance between two
the problem is nonparametric. This is a composite hypotheprobability distributions can be measured by the distarese b
sis testing problem, in which the null hypothesis corres{son tween the corresponding mean embeddings in the RKHS. The
_ main advantage of such an approach is that the mean embed-
Awaerhir‘]’éc:rkg:aii é%“Ff‘lng_;ésLé%’l‘gT‘;]":SW i‘ﬁli’%?r}t_‘id\/%ggrQ‘Vi;;;ZEERding of a distribution can be easily estimated based on sam-
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discrepancy (MMDyvas used as a metric of distance between ceerreee
mean embeddings of two distributions. In [11], MMD was Anon_‘a'oug ct e
used to develop tests for detection of existence of anoma- Disk 9 : : :
lous intervals over a line network. In this paper, we further A s o o o
generalize the MMD-based approach to studying a more dif- ° o o o o
ficult anomaly detection problem without reference samples e 00000 00
and with a more complicated network structure. Our study o oo 0 0 0

necessarily involves new analysis of the performance due to

such generality beyond that in [11]. Fig. 1. A two dimensional network with an anomalous disk.
We assume that the network is anby-n lattice. We

are interested in the asymptotic scenario in which the net-

work size goes to infinity, i.,ep — oo, and the number of

c?ndgite anﬁmalous g'SkShsca:eS Wlt.hTh;]JS' thﬁ ngmbér _size of a diskD refers to the cardinality oD, and is denoted

of sub-hypotheses under the alternative hypothesis aiso I\ ) - consider the following set of candidate anomalous

creases, which causes the composite hypothesis testibg proyigys " \hich consists of all disks centered at a certain node
lem to be more difficult. As: becomes large, it is hecessary with integer radius:

that the numbers of samples within and outside of each can-

didate anomalous disk scale withfast enough in order to D@ = {D: Dyin < |D| < Dinax} (1)
provide more accurate information about both distribigion -

andq and guarantee asymptotically small probability of error\where | D| denotes the number of nodes within the disk
Thus, the problem amounts to characterizing how the minip_. = denotes the minimum number of nodes among the

mum and maximum sizes of all candidate anomalous diSkéandidate anomalous disks amlax denotes the maximum
should scale wit in order to accurately detect the existencenymber of nodes among the candidate anomalous disks.

We useD to denote a subset of nodes withidiak Here, the

to be the number of nodes contained in the disk. Y;, fori = 1,...,n2. Under thenull hypothesisH,, Y;
In this paper, we adopt the following notation to expressor ; = 1, ..., n2 are independent and identically distributed
asymptotic scaling of quantities with the network size (i.i.d.) following a distributionp. Under thealternative hy-
e f(n) = Q(g(n)): there existc,ng > 0 s.t.foralln > poihesis, | there exists a disk € D' over whichY; (with
no, f(n) > eg(n); i € D) are iid. following a distributiony # p, and oth-
e f(n) = O(g(n)): there existey, c2,ng > 0 s.t. forall  erwise,Y; are i.i.d. following the distributionp. Thus, the
n>mng, c1g(n) < f(n) < cag(n); alternative hypothesis is composite due to the fact gt
o f(n) =w(g(n)): forall c > 0, there exists:p > 0s.t.  contains multiple candidate anomalous disks, and theks dis
foralln > no, [f(n)| > c|g(n)]. differentiate from each other by their sizes and locatians i

Our main contribution lies in comprehensive analysis ofthe network. We further assume that under both hypotheses,
the performance guarantee for the MMD-based tests that Weach node observes only one sample.
propose to solve the problem. We show that @@es to infin- We assume that the distributiopandg arearbitrary and
ity (i.e., the network size becomes large), if the minimueesi nknown a priori For this problem, we are interested in the
Duin of candidate anomalous disks scalesiBgn), then  asymptotic scenario, in which the number of nodes goes to
the proposed test is consistent. There is no condition on thﬁﬁnity’ i.e., n — oo. The performance of a test for such
maximum sizeD,,., of candidate anomalous disks because, system is captured by two types of errors. Tyee | er-
even the largest disk cannot fully cover the entire latticé a or refers to the event that samples are generated from the
it can be shown that samples outside the largest disk are suffi|| hypothesis, but the detector determines that an anoma-
cient to provide information about the distributipnWe fur-  |oys disk exists. We denote the probability of such an event
ther derive a necessary condition BQ,;, that any test must as P(H,|H,). Thetype Il error refers to the case that an
satisfy in order to be universally consistent for arbitragnd  anomalous disk exists but the detector claims that there is n
q. Comparison of sufficient and necessary conditions yieldgnomalous disk. We denote the probability of such an event
that the MMD-based test is order-level optimal. as P(Ho|H,). We define the following risk to measure the

performance of a test:

2. PROBLEM STATEMENT AND PRELIMINARIES (n)
R’rn = P(H1|H()) + ma>(<a>P(H0|H17D). (2)
2.1. Problem statement pebn

We consider a two-dimensional lattice network (see Figyre 1Definition 1. A testis said to be consistent if the rigK;’ —
consisting of.? nodes placed at the corner points of a lattice 0, asn — oo.



2.2. Preliminaries of MMD

We provide a brief introduction of the idea of mean embed-
ding of distributions into an RKHS [12, 13] and the metric

of MMD. SupposeP includes a class of probability distribu-
tions, and supposH is the RKHS with an associated kernel
k(-,-). We define a mapping frorR to H such that each dis-

tributionp € P is mapped into an element # as follows:

/k(~,a:)dp(a:).

Here, 1, (+) is referred to as thenean embeddingf the dis-
tribution p into the Hilbert spacé{. Due to the reproducing
property oft, itis clear thatf, [ f] = (up, f)» forall f € H.

It is desirable that the embeddingiigective such that
eachp € P is mapped to a unique elememt € H. It has
been shown in [13] and [15-17] that for many RKHSs suc
as those associated with Gaussian and Laplacian kernels,

mean embedding is injective. In order to distinguish betwee

two distributiong andg, [14] introduced the following quan-
tity based on the mean embeddingsandy, of p andg in
the RKHS:

MMD [p, g] := [[1p — gl (3)
It is also shown that
MMD[p.q] = sup E,[f(x)] - E[f(x)].

Il <1

Due to the reproducing property of the kernel, it can be shown

that

MMD?[p, q] =E, ./[k(z,z')] — 2E,.

+ E%y' [k(yv yl)]a

ylk(z,y)]

wherez andz’ are independent but have the same distributiond”(Ho|H1,p) <exp
p, andy andy’ are independent but have the same distribution

¢q. An unbiased estimate of MMi)p, ¢] based om samples
of x andm samples ofj is given by

nn=1) ZZk Ti, )

i=1 j#i

MMD?[X,Y] = 4)

m m

m(m —1) sz ir )

i=1 j#i

n m

3> k).

Ll_]l

And it can be show thdE[MMD?[X, Y]] = MMD?[p, ¢].

3. MAIN RESULTS

3.1. Test and performance

disksD € D). Under the null hypothesi&, all samples
are generated from the distributipn Hence, for eaclD €
DL, MMD? ,,(Yp, Y5) yields an estimate of MMBjp, p],
which is zero. Under the alternative hypothelis there ex-
ists an anomalous diskR* in which the samples are generated
from distributiong. Hence, MM@D* (Yp+,Yp+) yields an
estimate of MMDB [p, ¢], which is bounded away from zero
due to the fact that # ¢. Based on the above understanding,
we build the following test:

> t,
<t

determineH; (5)

determineH,

max

wheret is a threshold parameter. It is anticipated that with
a sufficiently accurate estimate of MMD and an appropriate
choice of the threshold the test (5) should provide desired

’&géerformance. We can further reduce the complexity of the

st (5) by the fast multiscale methods in [1]. The following
theorem characterizes the performance of the proposed test

Theorem 1. Suppose the te¢b) is applied to the nonpara-
metric problem described in Section 2.1. Further assume tha
the kernel in the test satisfi@s< k(z,y) < K for all (z,y).
Then, the type | error is upper bounded as follows:

P(H{|Hy) < exp <31ogn

- t2 mil’l{Dmin(n2 - Dmin)a Dmax(n2

8n2K?

- Dmax)}) (6)

and the type Il error is upper bounded bounded as follows:
(7)

wheret is the threshold of the test that satisftes MMD?[p, q].
Furthermore, the teg) is consistent if

(MMD?[p, ¢] — t)?|D|(n* — |D|)
8n2K?
foranyD € D@

24K2(1+n)
t2

Dmin Z IOg n, (8)

wherer is any positive constant.

The proof of the above theorem is omitted due to space
limitations. The detailed proof can be found in [18].

The above theorem implies that to guarantee consistency
of the proposed test, the minimum si&g,;,, should scale on
the order of2(log n). In fact, it should also be required that
n? — Dpmax scale on the order d®(logn) for large enough

We construct a nonparametric test using the unbiased estima. However, the largest disk within a two-dimensional latic

tor in (4) and the scan statistics. For each digklet Yy
denote the samples in the disk andY5 denote the samples
outside the diskD. We compute MM ,,(Yp, Yz;) for all

network has radiu§ and area’f— ~ 0.79n2, which contains
atmostcn? nodes withe < 1for largen. Thisimplies that the
bound onD,,,.« is satisfied automatically whenis large. We



further note that the above theorem implies that the numiber d’roof. If D,,;, satisfies the condition (11), it also satisfies the
candidate anomalous disks in the 8f is on the order of conditions (8), (9) and (10) with, properly chosen for any

©(n?), which is the same as the number of all disks. Henceandg whenn is large enough. O
at the order level, not many disks are excluded from being
anomalous. 3.2. Necessary condition and optimality
Theorem 1 requires that the thresholioh the test (5) be ) . - -
less than MMB|p, ¢|. In fact, information of MM [p, ¢| In Section 3.1, we characterize a sufficient conditiorlgg,,

Jo guarantee that the proposed nonparametric test will be co

may or may not be available depending on specific applica-, In the followind th ) di
tions. In some cases, samples from anomalous events are aftorent- In the following theorem, we give a necessary cond

collected, and hence MMy, ¢] can be estimated reasonably tions onDr_nin that any test must satisfy in order to be univer-
well by (4). In such cases, the thresholcan be set as a con- Sally consistent for arbitrany andg.

stant smaller than MMBlp, ¢]. On the other hand, if samples Theorem 2. For the nonparametric detection problem de-
from ¢ are not available, then the thresholideeds to scale to  gc¢riped in Section 2.1, any test must satisfy the followorg c

zero as gets large in order to be asymptotically smaller thargition in order to be universally consistent for arbitrapand
MMD?[p, q]. We summarize these two cases in the followingq:

corollaries.

Corollary 1. If the value MM [p, q] is known a priori, we Duin = w(logn). (12)

set the threshold = (1 — §)MMD?[p,¢] for any0 < & < OQutline of the Proof.The idea of the proof is to first lower
1. The test(5) is consistent, ifDy;, satisfies the following hound the risk by the Bayes risk of a simpler problem. Then

condition: for such a problem, we show that there exisindg (in fact
24K2(1+17)) Gaussiarp andg) such that even the optimal parametric test
Dinin > MMD g logn, (9)  is not consistent if the condition (12) is not satisfied. This
’ thus implies that if (12) is not satisfied, no nonparameé&st t
wheren’ is any positive constant. is universally consistent for arbitragyandq. The detailed

Corollary 1 follows directly from Theorem 1 by setting proof can be found in [18]. =

n = (11_%”)2 -1 It can be seen that the necessary condition/qy, in
(12) matches the sufficient condition in (11) at the ordeelev
which implies that the proposed test is order-level optiasal
stated in the following theorem.

Corollary 2. If the value MMDB[p, ¢ is unknown, we set the
threshold t to scale with, such thatim,, ., ,, = 0. The test
(5) is consistent, iD,,,;,, satisfies the following condition:
Theorem 3 (Optimality). Consider the problem of nonpara-

2
Do > A4K%(1 +n) logn, (10)  metric detection described in Section 2.1. The MMD-based
t test (5) is order-level optimal in the terms of the minimum
wherer) is any positive constant. size of all candidate disks required to guarantee univetesst

consistency for arbitrary andg.
Corollary 2 follows directly from Theorem 1 by noting

thatt,, < MMD?[p, ¢| for largen.
We note that the above two corollaries demonstrate that

the prior knowledge about MMbp’_q] Is very important 0 \ne haye studied the nonparametric detection of the existenc
determlr;e the capability for identifying anomalous events ot a0 anomalous disk over a two dimensional lattice network,
If MMD “[p, g] is known, then an anomalous object at sizej, yhich hoth the typical and the anomalous distributions ca
€(logn) can be resolved over the network. However, if suChyg 4rhitrary and unknown. We have developed a nonparamet-
knowledge is unknown, only bigger anomalous objects at sizg test using the MMD to measure the distance between the
w(logn) can be resolved. - mean embeddings of distributions into an RKHS. We have an-
Moreover, we would like to study the conditions undergy;eq the performance of our test, and provided a sufficient
which our test (5) is universally consistent, i.e., comsisfor o ition on the minimum size of candidate anomalous disks
any arbitraryp andg. Such conditions should not depend onq gyarantee the consistency of our test. We have further de-
the underlying andg. rived a necessary condition on the minimum size of candidate
Corollary 3. Suppose the test i5) is applied to the non- anomalous disks, which matches the sufficient condition at
parametric prob'em described in Section 2.1. The (5$ts the Ol’der |eVe|. Th|S |mpl|eS that our test iS Ol’der-levdl-op
universally consistent for any arbitragyandg if mal. We believe that such an approach can be applied to study
other networks such as detecting the existence of an anoma-
Dyyin = w(logn). (11)  lous rectangle im-dimensional lattice networks, etc.

4. CONCLUSION
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