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ABSTRACT 

 
The concept of spatial disparity is so familiar that we often don’t recognize the problems 

implicit in referencing the “wrong side of town” in casual conversation. But for communities 

expanding in area while shrinking or stagnating in population, this problem becomes even more 

obvious in the dichotomy between “new” and “old” or “rich” and “poor” parts of town. And the 

“wrong side of town” becomes even easier to avoid. While this problem of disparity is not new, 

neighborhoods in flux still struggle to avoid a fate of either deterioration or displacement. 

In research on spatial disparity, the relationship between social ties and location remains 

open territory. While local interactions have been studied, they have not been linked to aggregate 

patterns of community cohesiveness or fragmentation. Recent developments in computer 

simulation techniques now enable explicit representation of local community ties as they evolve 

over time. These developments allow systematic exploration of relationships between individual 

choices about where to live and social network structure, and between neighborhood and 

community networks. 

Following an overview of enabling theories and developments, I develop a spatial 

dynamic simulation model that enables virtual experimentation with both friendship and location 

choice. In the model, individuals interact over space and time in an agent-based framework, and 

neighborhood networks emerge from these simulated interactions. I calibrate the model to the 

community of Danville, Illinois, which has experienced an increase in fringe development in the 

absence of population growth. Heuristics for modeling individual choices draw upon field 

interviews with residents of a rapidly changing Danville neighborhood. Model parameters for 

moving behavior, individual attributes, and network structure are estimated from a variety of 

empirical sources. Alternative model structures are calibrated to observed migration patterns to 

discern the relative role of social influence on neighborhood choice. With the calibrated model, 

policy scenarios may be explored to help communities avoid a fate of fragmentation. 

The significance of this project is at once substantive, in addressing the persistence of 

spatial disparity in fragmenting communities, and also methodological, in bridging research 

domains that have not yet been functionally linked. 
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CHAPTER 1.  INTRODUCTION 

 

This thesis applies novel simulation techniques to the persistent problem of spatial 

socioeconomic disparity. This chapter introduces the problem and the research design. The 

following chapters then outline the enabling theoretical developments for this work, the 

empirical context, and the model development and calibration results. By using observed 

migration patterns to compare with simulation results, this research tests alternative model 

structures of the recursive influence of social networks on neighborhood choice. In short, this 

research steps through one full iteration of the modeling cycle and provides a foundation for 

future work on operationalizing social theories of spatial disparity. 

 

1.1 Motivation 

The initial conception of this project began to take shape when I started research at the 

University of Illinois in the late spring of 2003. I was hired as a research assistant for the Land-

use Evolution and impact Assessment Model (LEAM), a multidisciplinary and multi-year grant 

to simulate the drivers and impacts of urban sprawl. At its core, LEAM draws on economic 

drivers to project population growth for the region and distributes the population spatially by 

travel time proximity to attractors, such as city amenities, major roads, and recreational areas. 

For the St. Louis region, if undeveloped land exists close to the city, it would have a high 

probability of being developed in the model. The principals at LEAM were concerned that this 

did not capture the realities of abandoned structures and spaces in some of these areas.  

Particularly notorious was East St. Louis, just across the Mississippi river in the floodplain.  Its 

history has been marked by industrial investment and subsequent abandonment, and its residents 

today are nearly all African-American. 

At a May 2003 workshop in the case study region of St. Louis, over 100 stakeholders 

(e.g., planners, activists, ministers, mayors) brainstormed drivers and impacts of urban sprawl. 

Social factors were frequently mentioned as drivers – such as school quality, fear of crime, 

safety, lifestyle, class and race segregation – with 27% of stakeholder votes of significance, but 

social factors were rarely mentioned as scenarios, garnering only 5% of stakeholder votes for 

consideration. Recognition of social phenomena was key to understanding regional development, 

but appeared to be outside the domain of leverage for most stakeholder participants. This gap in 



 2

representation of social dilemmas, alongside the model’s inability to simulate sprawl alongside 

population decline, suggested that the dynamics of urban decline would benefit from testing the 

underlying social dynamics. I wanted to understand how it was that some places became 

“undesirable” over time. My intuition was that social influences shape individual perceptions and 

choices of where to live, and could therefore reinforce outmigration tendencies such as “white 

flight.”1 

My hypothesis of social influence on neighborhood development begins with my own 

experience. Growing up less than two hours from St. Louis, the spatial wisdom conveyed to me 

was “Never get lost in East St. Louis.” I do not recall which parent, teacher or peer first 

conveyed this to me, but family and friends reinforced the message on trips to St. Louis 

(especially once I reached driving age). And so I avoided East St. Louis – until 2003 as part of 

the East St. Louis Action Research Project (ESLARP). Instead of the fear and danger I 

anticipated, what I experienced was a sense of loss, struggle, and abandonment. In many ways, 

East St. Louis felt similar to many places in my own hometown of Jacksonville, Illinois. 

Jacksonville had its own “wrong side of town” that was to be avoided, and it’s remarkable to me 

in hindsight how well segregated along socioeconomic and starkly racial lines a relatively small 

town could be. Even more amazing to me is recognizing my own role in perpetuating such 

segregation via my own avoidance of undesirable places. My shock is not around the legitimacy 

of fear, but around the lack of concern that perpetual avoidance can produce. I grew up 

essentially ignorant of two undesirable places: East St. Louis and the wrong side of the tracks in 

my own hometown. But it’s not just these particular places; it’s the individual acceptance of 

places as off-limits that I find problematic for coming toward any semblance of tolerance or 

equity in our society. 

 

1.2 Problem Statement 

Even in the absence of population growth, many communities continue to experience 

urban sprawl, or low-density fringe development (Downs 2000). Since a household’s ability to 

move to a new home usually requires an income well above the poverty level, new development 

serves to separate those who can afford to choose from those who cannot. In this way, sprawl 

                                                 
1 “White flight” is the phrase ascribed to the neighborhood succession that manifested racially beginning in the 
1950s, in which whites moved out of middle-class neighborhoods as blacks moved in. 
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dynamics exacerbate spatial disparity between socioeconomic classes. But underlying the 

aggregate phenomenon of sprawl is the individual choice of where to live. For a current resident, 

this is a choice of whether to stay or leave a neighborhood in favor of another neighborhood or 

another community altogether. For a newcomer, this is a choice of where to settle upon arrival. 

In aggregate these choices shape the spatial and temporal dimensions of urban dynamics such as 

sprawl and its corollary, spatial disparity. 

The central problem of this research project is the social dilemma of spatial disparity 

exhibited in urban areas. Spatial disparity, measured by broad income differences between 

distinct neighborhoods, is evidenced and reinforced by the phenomenon of urban sprawl (Downs 

1999). This research project develops dynamics of spatial disparity from household decisions of 

where to live.  

Choosing to move to a new neighborhood necessarily involves the decision to leave one’s 

current neighborhood. The question of where we move to may be studied in terms of 

attractiveness due to proximity to amenities, aesthetics, and the like. However, the role of social 

ties in determining neighborhood desirability remains largely unaddressed. Moreover, these ties 

influence perceptions of places as undesirable. Addressing the role of these apparent intangibles 

may shed light on the mechanisms of phenomena such as “white flight,” which remain opaque 

relative to standard models of neighborhood utility. While “white flight” may be an extreme 

dynamic ignited by racism, it highlights the importance of social influence on perceptions that in 

turn relate to neighborhood choice. 

To systematically assess the role of social influence in neighborhood choice, this research 

simulates these facets of neighborhood choice with computerized representations of dynamic 

social networks. A social network is an abstraction of the interactions between people that define 

relationships (a.k.a. “social ties”). Functionally, these relationships create trusted channels for 

communication. In the community context, social networks encompass family, friends, and 

advisors.  

The hypothesized recursive effect of social networks on neighborhood choice becomes 

difficult to test due to the inherent impracticality of experimenting with policies on a real 

community. Virtual experimentation via computer models is therefore a logical if not essential 

way to explore the effects of social networks on neighborhood choice over time. While a 

computer model will not predict the future of a real community, it is the only practical means of 
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testing alternative assumptions and policies in an internally consistent framework. And it is this 

process of modeling and testing, this virtual experimentation, which offers opportunities for 

insight or surprise relative to expectations. 

 

1.3 Research Hypothesis 

The dynamics of spatial disparity between socioeconomic groups are not adequately 

understood. Available theories have not explained this phenomenon sufficiently to help guide 

community policy to stabilize neighborhood dynamics. Therefore, more operational theories are 

needed for systematic analysis of spatial disparity. By operationalizing hypothesized 

relationships between driving forces in a simulation model, this research breaks ground for a 

theoretical framework to be built on transparent and internally consistent assumptions of 

spatiotemporal household choice. 

Centered on the question of neighborhood choice, this study hypothesizes that social 

networks influence migration patterns that reinforce spatial disparity in urban communities. This 

general hypothesis may be stated in the following specific forms: 

 H1. Social ties influence households’ choice of whether to stay in, leave, or move to a 

neighborhood. 

 H2. Social networks evolve over time as opportunities for interaction change (through 

proximity, income parity, and other factors). 

 H3. The influence of social networks on neighborhood choice contributes to spatial 

disparity of socioeconomic status. 

This research focuses on the explicit testing of H1, while providing a simulation 

framework to enable testing of H2 and H3. To test the H1 hypothesis of social influence on 

neighborhood choice, I develop a computer simulation tool for integrating the recursive 

influence of social networks on neighborhood choice over time. The community of Danville, 

Illinois is used as a study site to provide real-world relevance, through both qualitative 

interviews and quantitative empirical data. Such an integrated and applied simulation offers 

insight into the long-studied but still open dilemma of persistent inequality as evidenced through 

spatial disparity.   

The purpose of this research is to create a more complete understanding of the role that 

social networks can play in shaping community structure through neighborhood choice. Figure 1 
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below illustrates the recursive relationship between social networks and neighborhood choice. 

Social networks influence individuals’ choice of neighborhoods through communication of what 

is desirable, as well as opportunities to visit different neighborhoods. The presence of friends or 

family in one neighborhood may make such a neighborhood more appealing, whereas the 

absence of such social ties may discourage a move to a new location. In turn, neighborhoods 

create spaces for interaction and thus adjustment of social ties due to proximity. This simple 

feedback diagram illustrates how social networks shape neighborhood choice and are in turn 

shaped by such choice, insofar as the social network depends in part on neighborhood proximity. 

Additional influences may be represented as exogenous to the relationships shown. 

 
Figure 1. Relationships between Social Networks and Neighborhood Choice 

 

It is worth noting that this research does not attempt to capture complete social networks 

for a community. Rather, the influence of these networks will be indirectly estimated from 

observed migration patterns. And while the symptom of sprawl has motivated the study, this 

research does not simulate sprawl per se. The research intent is simply to determine whether the 

sheer presence of social networks can inform understanding of neighborhood change and 

community fragmentation. 
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1.4 Project Significance 

Increased community fragmentation is a concern for community efficacy in establishing 

new economic opportunities, and for potential conflict between sub-communities. A further 

concern is that fragmented communities reinforce their exclusive biases through intra-group 

communication. It is through such communication that social influence on neighborhood choice 

may create potent reinforcing dynamics of disparity. This research addresses the question of 

community fragmentation through the use of simulated spatial social networks calibrated to the 

case of Danville, Illinois. This simulation framework enables systematic evaluation of policies 

that affect the trajectory of community fragmentation. 

In addition to the central contribution of a coherent tool for policy evaluation, this study 

bridges a variety of specific research gaps:  

 Explicit connections between social networks and neighborhood choice 

 Evolution of social networks in spatially-explicit environments  

 Calibration and evaluation of dynamic model structures using GIS data 

 Integration of qualitatively elicited interviews with quantitative simulation techniques 

The merit of the research consists of its integration of diverse approaches to social 

science, combining fieldwork and computer simulation to better understand how social networks 

evolve in the community context, and to visualize how such evolution may play out in terms of 

neighborhood choice over time. The broader impact of the project is that it addresses the 

persistence of spatial disparity that plagues policy makers and researchers. This research is 

expected to provide insight into areas of leverage for improving conditions of disparity in 

fragmenting urban areas. 

 

1.5 Research Design  

The design for this project involved data collection, model development, and calibration. 

Data collection methods for the city of Danville included participant observation and in-depth 

interviews with residents of a new neighborhood association in a low-to-middle income part of 

town that has been going through rapid changes in occupancy. The interviews were used to guide 

assumptions and provide ground-truth for the model, revealing the limitations of its scope. 

Geographic data were also obtained both from the city of Danville and the census at various 
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scales. Owner address data for the years 2001, 2003, and 2005 were obtained from the city and 

used to derive migration patterns.  

Alongside data collection was the model development, beginning with conceptualization 

and development of dynamic algorithms for household choice of social networks and 

neighborhoods. Model calibration brought these activities together to make the model relevant to 

the case of Danville. Calibration included identification of specific parameters based directly 

upon data, as well as indirect estimation of unobserved effects using broad migration patterns. 

These methods link together disparate modeling paradigms. Geographic information 

systems (GIS), used to integrate the spatial data at various scales, are powerful but primarily 

static tools for spatial analysis. Social network analysis, used to measure properties of the 

simulated networks to assess cohesiveness, involves structural analysis of networks as different 

kinds of spaces, but does little to inform the dynamics. The third paradigm is agent-based 

modeling, the engine used to evolve the neighborhood networks. Agent-based modeling starts 

with the idea of an agent that may be mobile and updates its state (and perhaps the state of other 

entities) based upon decision rules or algorithms. Agents are thus discrete decision entities. The 

agent-based approach enables one-to-one mapping of the model to the system of interest, without 

requiring aggregation. 

 
Table 1. Outline of Research Protocol 
Data Collection: Model Development: 
1. Fieldwork  1. Prototype template 

a. Participant Selection a. Abstract neighborhoods 
b. In-depth Interviews b. Spatial selection preferences 
c. Content Analysis c. Socioeconomic selection 

2. GIS analysis d. Update network as people move 
a. Parcel identification 2. Initial sensitivity testing 
b. Census blocks and blockgroups 3. Alternative structure articulation 

  
Calibration: 
1. Application of model template to Danville case 

a. Parcel location; block-level occupancy and distance 
b. Income distribution at blockgroup level 
c. Choice heuristics from interviews 

2. Determination of model structures that best fit observed patterns 
3. Sensitivity testing and analysis of best fit structures 
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The research protocol is outlined in Table 1. As indicated in the protocol, data collection 

and initial model development activities were conducted in parallel. Such parallel development 

enabled transfer of insights between activities prior to integration. The data collection began with 

qualitative fieldwork for the case of Danville, Illinois. Such fieldwork served both to “ground 

truth” the simulation and also provide possible heuristics for social influence on neighborhood 

choice. In addition, GIS analysis was conducted for available parcel data juxtaposed with census 

area attributes at the block and blockgroup level. In parallel, the model development began with 

an abstract two-neighborhood template, with internalized probability of “rewiring” social 

connections based upon spatial and socioeconomic proximity. Sensitivity testing of the prototype 

model examined the effect of varying move probabilities (between neighborhoods and into or out 

of the community altogether) on overall community coherence, to what tipping points may exist 

in triggering fragmentation.   

After testing the prototype and assimilating empirical data, alternative model structures 

were articulated to explore distinct effects on social networks and neighborhood choice. Where 

possible, such structures were achieved by constraining appropriate parameters in the utility 

formulations that govern choice. This model template was then applied to the Danville case, 

where individuals were allocated in space according to housing locations derived from GIS data. 

Household attributes were calibrated based upon census distributions at the block and 

blockgroup level. Moreover, choice heuristics were checked with interview insights for validity 

of assumptions. With the revised model template, alternative model structures were tested for the 

best fist to observed migration patterns in the city of Danville. Sensitivity testing and policy 

analysis of best fit structures provided the concluding insights of this project. 

 

1.5.1 Study Site 

Critical to the testing of the models applied to a real-world community was the inclusion 

of relevant data, both to directly calibrate and also to serve as a broader check on the underlying 

assumptions. This study utilized both qualitative interviews and quantitative GIS data derived 

from the census and the city of Danville. While far from isolated, the town of Danville, Illinois 

provided a coherent study site for fieldwork. Danville is a post-industrial community of about 

34,000 people that has experienced population decline and stagnation, but still experiences 

sprawl in the form of new fringe development. As described in Chapter 3, Danville offers a 
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glimpse of coherent community dynamics in both designating and dealing with undesirable 

spaces. The utility of the model for virtual experimentation may also be examined with scenarios 

relevant to decisions and concerns faced by the Danville community. 

 

1.5.2 Model Development 

During model development, alternative social network constructions were produced using 

different preferences for friendship formation. These networks then evolved with neighborhood 

and community migration, and may be tested for tipping points of fragmentation in the face of 

alternative migration probabilities. These social networks were spatially explicit, where one’s 

location in two-dimensional Euclidean space connotes one’s place of residence. The probability 

of “rewiring” one’s social connections as inspired by small world dynamics (Watts 1999a) 

became endogenous to the system, depending on socioeconomic status similarity and 

neighborhood proximity as well as a fair degree of probability. Sensitivity testing was conducted 

with varying migration probabilities under this endogenous rewiring to explore the relative 

cohesiveness of the emergent community networks. The development of this abstract model was 

then extended to the real-world case community of Danville, Illinois.   

The socioeconomic and spatial assumptions underlying network connectivity were 

derived from census data as integrated into the model with Geographic Information Systems 

(GIS). While GIS census attributes were available for areas such as census blocks and 

blockgroups, such data were disaggregated via probability distributions to correspond to 

individual households. Locations of individual households were determined by parcel data, 

which was available in GIS form by the city of Danville. A significant part of model 

development was the integration of data from diverse sources, as described in Chapters 3 and 4.  

 

1.5.3 Model Calibration 

As individual household objects were located in space via parcel data, they retained 

identification with census blocks and block groups. Such identification enabled heterogeneous 

parameterization of attributes based upon distribution of counts recorded in the census (e.g., 10 

households with income less than $20,000, 5 houses unoccupied, etc.). Regardless of exact point 

location, accuracy of assignment was achieved only at the broader level of census area. But such 

accuracy was not of primary concern – rather the range of heterogeneity was considered to be of 
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greater importance in structuring social networks. The translation into networks was guided by 

techniques of indirect estimation using socioeconomic data as developed by Conley and Topa 

(2003). In analyzing unemployment, Conley and Topa (2003) used broad spatial proximity to 

structure the social network of local interactions, with the majority occurring within and adjacent 

to the tract in question. While this strictly spatial algorithm was highly simplified, they 

demonstrated that it works better for anticipating shifts in unemployment than an aggregate black 

box approach would. In addition to the spatial considerations of social network structure, I 

incorporated social connections also based upon broad socioeconomic status. The specific 

attributes and algorithms for such connections were then varied for scenario analysis. 

Development of the calibrated and applied model structures involved extensive testing – 

evaluating a range of parameters to investigate the effect on observed migration patterns. These 

calibration techniques are described in Chapter 5. In addition, the model was informally 

calibrated with insights gleaned from interviews with residents. Such interviews informed as 

well as revealed the limitations of the model relative to individual experience. 

 

1.6 Virtual Experimentation 

The goal of this research was not to produce one defining model but rather to provide an 

integrative simulation tool for considering alternative assumptions and theories about social 

networks as they relate to neighborhood choice. The importance of virtual experimentation with 

computer simulation models was central to the research design. Figure 2 highlights the role that 

such experimentation plays in influencing researchers’ own mental models of the problem at 

hand. Alternative model structures are constructed and tested for insight. It is through the process 

of iteration in model design that generates insight about the question at hand. As emphasized in 

the problem statement, virtual experimentation enables studies of human behavior to be tested in 

ways that are not feasible or ethical in real communities. As a corollary, virtual experimentation 

offers a range of simulated realities that may or may not emerge in the “real world.”  

In Figure 2, this learning from virtual experimentation is illustrated as embedded as an 

iterative modeling process within learning from the real world. Observations of this perceived 

reality help to shape our mental models, in turn affecting the decision rules by which we operate, 

thereby influencing decisions themselves that feed back to actions in our reality. With virtual 

experimentation, observations and decision rules may be input as data and assumptions into our 
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models, and our output may inform policies for making decisions. But the most critical aspect of 

virtual experimentation is learning from the reflexive relationship between such experimentation 

and our own mental models. The diagram in Figure 2 is adapted from Sterman (2000). 

 
Figure 2. Learning from the Virtual Experiments of Modeling. 2 

 

This research thus outlines not only the development of abstract models, but also their 

calibration to qualitative and quantitative observations for Danville, Illinois. In addition to the in-

depth interviews, I spent a significant amount of time engaged in participant observation and 

conversations with residents living in and around Danville. In the context of virtual 

experimentation (Figure 2), such real world observations served to guide model development 

through the adjustment of my own mental models. 

 

                                                 
2 Adapted from Sterman (2000). 
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CHAPTER 2.  THEORY 

 

As introduced in the previous chapter, the problem of spatial disparity is not new. Indeed, 

in the taxonomy of Rittel and Webber (1973), these urban inequities constitute a “wicked” 

problem that defies definitive formulation, let alone a definitive answer. In contrast to “benign” 

problems such as logistics and infrastructure concerns, wicked problems are not readily 

addressed with formal modeling tools. The formulation of a wicked problem biases the solutions 

that may emerge. Indeed, inquiry into such problems may produce a refined and revisited 

problem formulation, rather than a solution per se. 

A variety of classic ethnographic inquiries have demonstrated the persistence and 

wickedness of the problem of spatial disparity (Hollingshead 1949, Rainwater 1970, and Ley 

1974). Hollingshead (1949) focused on how class and kinship ties exacerbated stratification in a 

Midwestern community, recognizing the intergenerational perpetuation of social economic 

inequities. Rainwater (1970) set out to report on the Pruitt-Igoe project in St. Louis, but emerged 

with still deeper questions about the embeddedness of the urban underclass. Ley (1974) also 

experienced a shift in understanding of the problem as he spent more time with an inner-city 

neighborhood in Philadelphia. For Ley (1974), this shift went from seeing the community’s role 

in perpetuating stereotypes, to the role of individual defensive behaviors under uncertainty. This 

emphasis on the individual contrasts sharply with interpretations of urban inequities as largely 

resulting from macroeconomic structural forces (e.g., Wilson 1987). 

While not recognized by Rittel and Webber (1973), modeling methods that recognize the 

autonomy, heterogeneity, and stochasticity of individual actions can assist the process of iterative 

inquiry into wicked problems. Moreover, such methods can also bridge the gap between macro 

and micro interpretations of persistent social dilemmas (Schelling 1978). As described in the 

next secion, the use of agent-based models for virtual experimentation provides a rigorous engine 

for accelerating the cycle of inquiry into the wicked problem of spatial disparity. 

 

2.1 Agent-Based Modeling 

Agent based models (ABMs) may be particularly helpful in developing sense of place 

theory through operational models that represent individual, subjective behavior as well as 

aggregate, objective aspects of sense of place. Indeed, Henrickson and McKelvey (2002) 
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advocate the use of ABMs to develop social theory congruent with new understandings of 

complexity science as highly contextual. Several enthusiastic authors have helped to situate 

agent-based modeling at the forefront of a new social science based upon complex system 

dynamics (Axelrod 1997, Holland 1998, and Schweitzer 2003). The term “agent” is only a minor 

modification of “individual-based modeling” as more widely practiced and established in the 

field of ecology (Grimm and Railsback 2005). 

An agent is a software object that operates independently and interactively with the rest 

of the simulated system. The capabilities of a software agent range from simple stimulus-

response behavior to more complex evaluation of potential actions. An agent may be mobile or 

stationary, with uniquely defined attributes and behaviors. Figure 3 illustrates relationships and 

structures in an agent-based modeling framework. 

 
Figure 3. Agent-Based Modeling Framework. 3 

 
The above visualization reveals that each agent may contain structure (as indicated by the 

“statechart” of life stages at left), attributes and rules governing its behavior. The center and 

images reveals how an agent may interact with other agents as well as with the surrounding 

environment, respectively. A visual overview of the use of agent-based models in the java-based 

AnyLogic simulation environment is provided by Borshchev and Popkov (2006). 

                                                 
3 This depiction of the agent-based modeling framework was developed for visualization purposes by AnyLogic. 
http://www.xjtek.com  
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2.1.1 An Emerging Methodology 

Agent-based modeling has emerged in a major way with the advent of object-oriented 

programming techniques that enable individual agents or decision-making units to operate 

independently and interact with each other. Agents utilize rules for decision-making, they may 

have memory and may be mobile and interact in non-Euclidean space such as along social or 

structural networks. The flexibility of the agent-based framework has triggered a broad interest 

in the social sciences. While cybernetics and artificial intelligence allowed us to think about 

abstract representations of the mind, agent-based frameworks allow us to think about 

representing entire societies (e.g., Epstein and Axtell 1996). The computational load of spatially 

explicit agent based modeling is generally higher than other modeling approaches due to the 

“massively parallel microworlds” (to borrow from Resnick 1994) of spatial units or individuals. 

The advantages of agent-based approaches lie in their flexible framework, ability to 

accommodate a variety of scales, and to capture a wide array of diverse individual behavior. 

Such heterogeneity and flexibility appeals more broadly to the humanistic side of social sciences 

that has historically been reluctant to embrace highly aggregate and generalized statistical or 

analytical approaches. Moreover, the flexibility does allow for a variety of theory development – 

theories do not need to be based on equations; rather, they can incorporate individual everyday 

heuristics and examine how such individual behavior produces aggregate patterns. 

Critics of agent-based modeling emphasize the computational and conceptual challenges 

of trying to represent too much detail. The choice of the level of detail, model scope, decision-

making parameters, etc., has always been a challenge for modelers. Opening the door to greater 

flexibility puts greater onus on the part of the modeler to fully think through the problem at hand 

and abstract accordingly. Because agent-based approaches are still in development, limited 

guidance is available in the form of established methodologies for model building and 

verification (Grimm and Railsback 2005, Grimm et al. 2005). 

Agent-based modeling differs significantly from a continuous differential equation-based 

modeling. It is common in the field of system dynamics (Sterman 2000) to model a problem as a 

set of differential equations, represented as stocks of accumulation (boxes) and flows of change 

over time (arrows). Excellent introductions to system dynamics are available that also 

demonstrate the user-friendly Vensim (Sterman 2000) and STELLA (Hannon and Ruth 2001) 
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icon-based software. In advocating an integral-based system representation, the father of system 

dynamics has observed that “nature only integrates” (Forrester 1996).4 

 
Figure 4. Conceptualizing Agents as Part of Stocks and Flows5 

 

In contrast to the stock and flow representation, the agent-based (AB) framework 

presents a view of the problem universe as a hierarchy of decision rules. Figure 4 illustrates a 

system dynamics (SD) conception of problems as stocks and flows guided by decision rules 

using information feedback. The agent may be conceived as a discrete element within the 

aggregate stock. Therefore, instead of representing decision rules at an aggregate level, agent 

behaviors may be represented as a sequence of internal states represented by the flow diagram at 

right in Figure 4. In this way, agent-based modeling is essentially algorithm based modeling, 

where an algorithm refers to a set of instructions (a.k.a. rules, heuristics) guiding agent behavior. 

                                                 
4 The more complete context for Forrester (1996, p. 27)’s assertion is as follows: “One might ask how it is possible 
to teach behavior of complex dynamic systems in K-12 when the subject has usually been reserved for college and 
graduate schools. The answer lies in having realized that the mathematics of differential equations has been standing 
in the way.” ... “Differential equations are difficult, weak, confusing, and unrealistic. They often mislead students as 
to the nature of systems. Mathematicians have had difficulty defining a derivative and there is a reason. Derivatives 
do not exist except in a mathematician’s imagination. Nowhere in nature does nature take a derivative. Nature only 
integrates, that is, accumulates. Casting behavior in terms of differential equations leaves many students with an 
ambiguous or even reversed sense of the direction of causality. I have had MIT students argue that water flows out 
of the faucet because the level of water in the glass is rising; that seems natural to them if the flow has been defined 
as the derivative of the water level in the glass.” 
5 This diagram was presented in Borshchev and Popkov (2006) from AnyLogic (http://www.xjtek.com).  
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For the purpose of understanding the social influence on neighborhood choice, an agent-

based framework is practically imperative. While certain aspects of social processes could be 

represented with alternative, aggregate methods, the ability to model social interactions in a 

spatial context necessitates the object-oriented agent-based framework. 

Models are abstractions of reality, regardless of how intricately represented. Much 

insight may therefore be gleaned from parsimony, the art of leaving things out. Deciding what to 

put in and what to leave out is the choice that defines a modeler. The discipline of modeling 

encourages transparency and consistency of assumptions, but still relies on assumptions to be 

made. For this reason, modeling is best understood as an iterative process of formulating, testing, 

and refining hypotheses about system behavior. 

 

2.1.2 Feedback and Iteration 

Because wicked problems warrant an orientation to process (Rittel and Webber 1973), 

the modeling methodology may be considered an iterative cycle of virtual experimentation that is 

itself embedded in the larger context of learning and acting as social agents in the real world (see 

Figure 2 in the previous chapter). While the latter context is particularly relevant for considering 

the reflexive relationship between subject and object for a social system modeler, the modeling 

cycle itself enables iterative inquiry into wicked problems to build better theories of the 

underlying dynamics. 

1. Formulate the Question

2. Assemble Hypotheses

3.  Choose Model Structure4.  Implement the Model

5. Analyze the Model

Patterns!

Patterns!

 
Figure 5. The Iterative Process of Pattern-Oriented Modeling. 6 

                                                 
6 Adapted from Grimm and Railsback (2005). 
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Figure 5 illustrates a modeling cycle (from Grimm and Railsback 2005) analogous to the 

cycle shown in Figure 2 (from Sterman 2000), with special emphasis on the use of patterns to 

guide model development as well as analysis. Such a pattern-oriented approach was adopted for 

this research project. According to Grimm and Railsback (2005, p.40), a pattern is “any display 

of order above random variation.” The use of observed patterns to guide model development as 

well to analyze model output enables decoding of essential system information (Wiegand et al. 

2003). 

Grimm and Railsback (2005) have written a thorough text outlining methodology for this 

type of modeling, using the synonymous phrase “Individual-Based Models.” In this text, they 

provide examples of the calibration process for agent-based models, which is still emerging. 

Most examples of agent-based models have been theoretical, pedadogical “toy models” (e.g., 

Resnick 1994, Epstein and Axtell 1996) illustrating how collective system structures emerge 

from decentralized individual behaviors (Axelrod 1997, Holland 1998).  

 

 
Figure 6. Feedback Across Scale in Agent-Based Models 

 

As visualized in Figure 6, the dynamics of agent-based models involve implicit feedback 

across the scale of the system. Individual choices of the agents provide the dynamics of the 

system. This generates upward feedback, in the sense that agents comprise larger populations at 

various scales of aggregation. These aggregate characteristics or states change based upon the 

decisions made at the individual level. Such state changes at the aggregate then feed back to 
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influence other choices, as agents evaluate their environment based upon such states – for 

example, neighborhood affluence. 

Agent-based approaches have been used to transcend scalar difficulties in geography 

(Batty 2005), test effects of heterogeneity (Brown and Robinson 2006), and simulate mobile 

objects in dynamic landscapes (Westervelt and Hopkins 1999). Parker et al. (2002) offer criteria 

that may be utilized to determine if an agent-based model is spatially explicit or warrants 

spatially explicit representation. Such criteria include: dependence of results on relocation of 

objects under study, location-specific representation or formulation, and shifts in spatial 

outcomes over time. The benefits of spatially explicit modeling depend primarily on the problem 

at hand, as they tend to increase the computational requirements.7 As agent heterogeneity shifts 

modeling emphasis from the aggregate to individual-level knowledge, spatial heterogeneity plays 

a similar role in refocusing understanding of a complex system through spatially explicit 

representation. An abstract notion of space is utilized in many agent-based models, and further 

efforts are underway to integrate agent-based models with GIS (Gimblett 2002).  

 

2.2 Social Networks 

This section outlines the basis for the study of social networks as they relate to the question 

of neighborhood choice. While much research in these areas has taken place within geography, 

sociology, and other relevant disciplines, the scope of this project offers a means of addressing 

disconnects between research domains – connecting qualitative and quantitative insights, 

spatially extending social networks, embedding individual choice within those networks, and 

evolving social networks over time as they influence neighborhood choice. 

As introduced earlier, a social network refers to a set of interpersonal relationships. In 

this project, the relationships are defined as communication links that evolve in the face of 

neighborhood and community migration. Although networks are powerful, they are difficult to 

define and measure, let alone simulate over time. Research on social networks has tended to be 

ethnographic (Rowe and Wolch 1990, Gilbert 1998), empirical as in much of social network 

analysis (Wasserman and Faust 1994), or abstract as for emerging simulation techniques (Watts 

                                                 
7 To address computational requirements, software tools such as StarLogo, SWARM, and RePast have enabled 
efficient simulation of a wide variety of spatially explicit agent-based models. 
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and Strogatz 1998, Barabasi and Albert 1999). Emerging indirect estimation techniques (Conley 

and Topa 2003) enable calibration of abstract models from spatial socioeconomic data. 

Studies of social network structure ahve demonstrated the significance of homophily, or 

self-sorting according to similarity. Homophily has been demonstrated by similarity along race, 

age, religion, education, occupation, and gender lines, with geographic proximity and family ties 

creating opportunities for such self-sorting connections to form (McPherson et al. 2001). Lazar et 

al. (2002) note the importance of being able to detect others’ type that enables homophily in the 

first place. In a related study, Macy et al. (2003) examine how polarization or segregated 

clustering can occur in the absence of resource competition. They encode an attractor network in 

their model, such that agents are attracted to others of similar states and are also influenced by 

others. While a novel approach, their work is consistent with prior findings of polarization under 

the principles of structural balance. 

The research project described herein builds on prior studies of social network structure. 

The study of social networks is rich with methods of structural analysis that are based upon 

graph theory as stimulated in large part by Erdos and Renyi (1960). Assumptions about network 

connectivity may also be derived from the General Social Survey (Davis et al. 2005), which is 

available longitudinally from 1972 to 2004. Conley and Topa (2002, 2003) utilize data from the 

General Social Survey to model the degree of connectivity among individuals.  

Social networks enable a purely relational perspective, where one of the biggest 

challenges is simply identifying relationships to be analyzed.  For this project, the relationship is 

one of communication. Two areas of emerging research involve spatial and dynamic social 

networks. Next I outline the direction of this research and how the two foci may be combined.  

 

2.2.1 Social Networks in Geography 

During the 1960s, Stanley Milgram (1967) conducted an experiment that came to 

undergird “small world” theory. Milgram gave research participants in Kansas and Nebraska a 

letter describing a target person in Massachusetts. If the participant knew the target on a personal 

basis, he/she was asked to send the letter directly to that person. Otherwise, the participants were 

to give the letter to a personal acquaintance who was more likely to know the person. Of the 

letters that were returned, the median number of intermediate links was 5.5, rounding up to the 

cliche “six degrees of separation.” 
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What is striking about Milgram’s research is that it was inherently geographical in nature, 

intended to measure social distance spanning geographic locations between arbitrarily chosen 

individuals. And yet the subsequent research in social networks has tended to involve purely 

“relational” space, without consideration of geographic distance. Meanwhile, geographers have 

pursued the study of social networks and other networks in both empirical and ethnographic 

forms. While complete social networks are difficult both to define and to contain, the concept of 

networks has proved useful for understanding the role that individual networks play in shaping 

life opportunities (Rowe and Wolch 1990, Gilbert 1998, Peake 1995). 

Adams (1995, 1998) brings the concept of human extensibility to light, emphasizing the 

myriad of connections across virtual space and time as well as in real or observable space and 

time. The concept of extensibility sheds light on the difficulty of identifying what it is that 

constitutes a link, and what it is that constitutes space in the geographies of our everyday social 

experience. Since a connection in social space is enabled by human-human interaction, 

simulation techniques at the individual or agent-based level offer a means to grapple with the 

inherent complexity of our many linkages. 

Before the semantics of social networks became commonplace, mathematician Ron Atkin 

(1974a, 1974b) introduced a technique called Q-analysis that was then taken up by geographers 

Jeff Johnson (1981) and Peter Gould (1981). Q-analysis involves assessing structural 

relationships in multi-dimensional spaces that transcend Euclidean space. Atkin (1974a, 1974b) 

proposes that such representation could provide a more holistic view of urban areas, indeed one 

that enables simultaneous consideration of both global and local properties. Further, he argues 

that such structural relationships correspond to the intuitive experience of the urban environment.   

The structural work of Laumann and others (Laumann 1973, Laumann and Pappi 1973, 

and Laumann et al. 1977) provides foundations for an understanding of the social influence 

structures at play in urban communities. Indeed, Laumann (1973) argues that a sound 

understanding of structure must precede an examination of social change. While much more 

structural research is warranted (and certainly geographers are interested in spatial structure), it 

is the behavior that comes from structure and that ultimately changes structure that inspires 

research into the dynamics of social networks. 
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2.2.2 Dynamic Social Networks 

The dynamics of social networks may be considered in two ways – the dynamics of 

behavior within a network structure, or the evolution of the network itself over time. Degenne 

and Forse (1999) introduce dynamics of social networks in terms of diffusion. While providing 

useful frameworks, they note the need for much more work in the area of dynamics. Burt (1987) 

explores the implications for dynamics of diffusion from cohesion versus structural equivalence 

approaches to understanding networks. To connect structure with dynamics, White (2004) 

presents a synthesis of social network theory in relation to social dynamics, including a detailed 

conception of how statics and dynamics operate in balance through many patterns witnessed in 

social network theory. In a related work, White et al. (2004) focus on cohesive network 

topologies in both organizational contexts and emergent fields, and the ways in which these 

interact. 

Applying an epidemiological notion of diffusion to the social context, Granovetter (1978) 

demonstrates the utility of threshold models in understanding collective behavior. Social 

thresholds refer to the minimum fraction of one’s peers who have made a decision before the 

individual in question does. In a similar manner, Crane (1991) utilizes a contagion model to 

examine the nonlinear social effects of neighborhood dynamics as behaviors transmit among 

members. 

The dynamics of social networks have been examined from a number of perspectives. 

Epstein and Axtell (1996) introduce ways in which simulated agents can represent human 

connections and interactions over time. Indeed, they emphasize the importance of transients and 

dynamics more than the quest for equilibrium conditions. With a similar approach to modeling, 

Young (1998) focuses on theory underlying such individual-based conceptions and the 

institutions that result from such interaction. The extent to which individual preferences are 

selfish or altruistic has also been examined in recent simulation studies (Bowles 2001, Lazar et 

al. 2002) of the simultaneity and reflexivity of network evolution and individual preference 

evolution. These studies reveal not only that trends toward conformity within groups can sustain 

difference between groups (see also Young 2001), but also that within-group cohesion may result 

from socially influenced altruism that runs counter to selfish motives.  

Watts (1999a, 1999b) and Watts and Strogatz (1998) explore self-organizing dynamics of 

network formation, emphasizing that where self-organization occurs, the resulting structure lies 
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between randomness and order. The prime example of such a mix of randomness and order is the 

small world network inspired by Milgram (1967), in which local clusters are dense but are 

connected globally through a few cross-cutting links between hubs. Accordingly, Watts (1999a) 

developed algorithms for evolving small worlds in which interpersonal connections are locally 

dense (e.g., most of my friends are also friends) but globally sparse (e.g., everybody is not 

directly connected to everybody else). This small world lies in an interesting region between 

complete subgroup isolation and complete network connectivity. While the suitability of the 

small world structure to describe real-world social networks is still under evaluation, it is one of 

the most promising quantifiable theories of social structure. A critical element of Watts’ (1999a, 

1999b) small world formulation is a probability of “rewiring” social connections from an 

initially ordered structure (usually a ring lattice of one-dimensional connectivity). 

A parallel development published shortly after the Watts and Strogatz’ (1998) expose of 

small world network dynamics was the emergent and pervasive scale free network structure 

identified by Barabasi and Albert (1999). The scale free network exhibits a power-law degree 

distribution such that a few nodes have very high connectivity and most nodes have very low 

connectivity.  The fascinating part of this structure was the dynamics of preferential attachment 

that enabled hubs to emerge. Expanding on the relevance of these network dynamics, Barabasi 

(2002) and Buchanan (2002) recently helped to popularize the new “science of networks” 

ranging from the curious small-world phenomenon to the apparent prevalence of scale-free 

networks in all kinds of systems. 

 

 
Figure 7. Example Small-World and Scale-Free Networks 
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As illustrated in Figure 7, a small world network (left) is primarily local with a few long-

range connections (Watts 1999a). A scale-free network (right) involves preferential attachment 

so that popular people become even more popular (Barabasi and Albert 1999). Small worlds may 

be scale free and vice versa. 

As it turns out, small worlds and scale free networks are not antagonistic, such that many 

networks may exhibit both characteristics. The small world is defined by a short average distance 

(e.g., number of handshakes) to reach anybody else, while remaining locally dense and globally 

sparse. The scale free network is defined by a degree distribution that results from preferential 

attachment to a few popular hubs. It may be that these hubs can also provide the criteria for 

small-world phenomena. Figure 7 above illustrates a comparison of the two networks for the 

same average number of connections, showing how the network on the left exhibits a few 

randomly placed long-range connections, while the scale free is dominated by a central hub at 

the right of the graph. Thus in this case the two networks are not equivalent. 

The study of network dynamics adds complexity to social network analysis, a field that is 

already full of techniques to test social relationships.  And yet, as evidenced by the above 

literature, it offers the prospect of additional insight in understanding the simultaneity of how the 

network influences the individual, and how the individual influences the network.  By exploring 

relationships at the level of individual interaction, we can learn about behavior over time at both 

micro and macro social network scales of analysis. 

 

2.3 Conceptual Integration 

From a simulation perspective, much has been done to examine the emergence of social 

norms from individual interactions (Durlauf and Young 2001). Thus far such simulations have 

tended to be highly abstract. Moreover, they have largely been disconnected from a 

consideration of physical space. With fieldwork as well as simulation techniques, this research 

serves to integrate these pieces to address the problem of community fragmentation. 

 

2.3.1 Learning is Social 

A variety of theories support the agent-based framework as introduced in social science. 

Latane’s (1981) social impact theory holds that social influence is a function of strength, 

immediacy, and the number of influencing agents. The dynamic extension of this theory (Latane 
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1996) has helped inspire interesting simulations of opinion dynamics (Weisbuch et al. 2001), 

exploring how individual decision rules for learning and adapting under social influence can 

create emergent social norms. As an alternative approach to neoclassical economics, the study of 

individual choices in an adaptive and adapting environment enables a foundation for a new social 

economics (Durlauf and Young 2001). As some researchers argue that all learning is social 

(Kennedy and Eberhart 2001), simulated experiments not only shed light on emergent structures 

but also on evolution of subjective perspective. Further, Kenrick et al. (2003) outline a theory of 

dynamic evolutionary psychology that emphasizes both the social context of decision rules and 

their evolution, as well as attributes of the individual and the problem. 

 
Figure 8.  Visualization of Interactive Learning. 8 

 

The visualization in Figure 8 demonstrates how individual perceptions may be updated 

through new concept associations, either directly perceived or socially communicated. The 

adjustment of individual perceptions could be represented as a memory effect that decays over 

time. This decay is analogous to the notion of time discounting in economic systems, where a 

dollar is worth more today than tomorrow. There is no time like the present, and as we get 

further away from experiences of our past, we may effectively discount it as we do the future, 

especially if it is not reinforced by current behavior. Thus a corollary of social learning is 

                                                 
8 Adapted from A. Hubler lecture. April 2004. PHYS 521: Advanced Nonlinear Dynamics.  <http://www.how-
why.com> 
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selective forgetting, which might be considered social discounting. Such discounting relates back 

to an individual’s sense of place. Indeed, Hannon (1987, 1994) demonstrates that such 

geographic discounting of attention or concern is not restricted to humans, but also applies to 

other species.  To address social learning and discounting in a spatial context requires an explicit 

consideration of social networks in a spatial context. 

 

2.3.2 Social Networks are Spatial 

Spatial simulations of neighborhood networks date back to the cellular automata 

simulations of Hagerstrand (1965) and Schelling (1971, 1978). Cellular automata are discrete 

cells located on a grid that update their state based on their previous state and the state of their 

neighbors (Shalizi 2005). Cellular automata are a sort of precursor to the more richly structured 

decision rules of mobile interactive agents. Hagerstrand (1965) utilized empirical data on 

telephone network density to explore stochastic simulations of spatial diffusion of farming 

subsidies in Sweden. Schelling (1971, 1978) employed an abstract cellular framework for 

examining the emergence of segregation from low thresholds of preference for similar neighbors. 

While such simulation utilizes abstract space in the form of a uniform grid of household 

locations, it enables the development of intuition about the conditions under which spatial 

clustering emerge and the degree of contingency in its patterns.   

In a related abstract spatial simulation, Arthur (1988) explored the uniqueness that can 

play out as a result of historical path dependence from industrial location decisions. While 

Arthur (1988) illustrated the potency of a simplified abstract model, geographers with expertise 

in Geographic Information Systems (GIS) are ready to add realism to spatial simulations. More 

recently, Dibble and Feldman (2004) presented a computational laboratory in which simulated 

agents may interact in networks across abstract or empirical space using GIS templates.  

The argument that social networks are spatial is at once obvious and yet superficial to 

sociologists who have resisted it with a pure focus on relational space instead. And as 

geographers recognize, life space is far from Euclidean. Yet abstractions of space in just two 

dimensions can prove pragmatic for navigating our world, much as abstractions of relational 

space in social networks are relevant to human understanding. The combination of these spaces 

offers a way to make the small world (Watts 1999a) rewiring probability endogenous in a 

spatially explicit environment that incorporates individual choices about whether to leave 
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neighborhoods. A major contribution of the research described herein to the field of social 

network analysis is this dynamic evolution of networks in a spatially explicit environment. 

 

2.3.3 Neighborhood Choice 

Although embedding individual perceptions in agents who are in turn embedded in social 

space may be a rich representation, to put a simulated agent in action requires behavioral rules 

connecting attitude to choice. A variety of rules have been constructed based on rational 

expectations and utility theory, or on the simple assumption of random exchanges. In contrast to 

rational rule structures, alternative or complementary approaches such as case-based reasoning 

draw upon memory and association through analogy. The case-based reasoning algorithm 

requires a metric of similarity by which to measure new experiences. Agents are, in essence, 

reminded of past experiences when they encounter similar situations (Schank 1999). This 

phenomenon extends the notion of discounting to the level of individual choice, such that 

associations not reinforced with new experiences are forgotten over time. 

Behavioral and cognitive geographers interested in the connection between cognition and 

choice have considered personal construct theory, which holds that personal constructs are used 

to structure individual experiences of life events (Preston and Taylor 1981, Moore and Golledge 

1976). Distinct variations emerge therefore according to “family life cycle,” as different 

constructs emerge with different experience sets (Preston and Taylor 1981). Further, Desbarats 

(1983) notes the need to incorporate constraints on choice that lie outside of cognition, such as 

situational and institutional constraints. Couclelis (1986) examines alternative models of spatial 

decision and behavior within a common theoretical framework, highlighting that useful insights 

may be gleaned from comparing such models. The discrete choice methodology outlined by Ben-

Akiva and Lerman (1985) and McFadden (1991) has been widely applied to urban and 

transportation problems. Applications have demonstrated the use of logit models for discrete 

choice selection of social connections (Van de Bunt et al. 1999) and for choices made in the 

urban context (Waddell et al. 2003, Paez and Scott 2007).  

This project has not endeavored to invent a new theory of choice. Rather, the goal was 

simply to test the influence of social networks on neighborhood choice. Apart from external 

influences, the decision to leave a neighborhood is a choice influenced by perceptions that are 

mediated in the social context. Emphasizing that neighborhood stability tends to be highly 
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valued, Aitken (1990) explored perceptions and evaluations of neighborhood change. To the 

extent that such evaluations lead to tangible moving decisions, a further implication is the 

reinforcing impact of neighborhood out-migration on social network structure. In addition to 

direct cues of out-migration, such as “For Sale” signs and vacant homes, such departure ripples 

through the fabric of the community. This is not to say that once an individual household leaves 

a neighborhood, they are automatically “deleted” from their social network. But the tie may 

weaken relative to social connections that derive in part from household proximity. Moreover, if 

households leave a community altogether, the fragmentation effect on social network structure 

would be even stronger. 
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CHAPTER 3.  EMPIRICAL CONTEXT 

 

This research was motivated by the question of why people decide to leave certain 

neighborhoods in a community. How was it that some places, initially desirable, became 

undesirable over time? What role did social influence have in shaping individual choices of 

where to live? While a simulation model would be useful for addressing this question, a real-

world case community was needed to “exercise” the model, reveal its limitations, and ground its 

implications.  

 

3.1 Study Site 

Located two hours south of Chicago in Illinois, Danville is a self-contained community of 

over 30,000 people. It occupies the seat of Vermilion county, whose eastern boundary is shared 

with Indiana. 

 
Figure 9.  Relative Location of Study Site: Danville, Illinois, USA. 9 

 
 
                                                 
9 The map in Figure 9 was obtained from City of Danville: <http://www.cityofdanville.org> 
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3.1.1 Recent Trends 

Over the past few decades, Danville has experienced population decline and stagnation, 

but still experiences sprawl in the form of new fringe development. The trends in population and 

land area over time in Figure 10 reveal that Danville’s land area has nearly doubled in the last 

half-century, though its population is the same as it was in 1920. Danville’s population peaked in 

1970, with well over 40,000 people. As one city official put it, “we’re a town of 30,000 with an 

infrastructure for 60,000.” Danville is still the largest community in Vermilion county, with over 

40% of the county’s population.  
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Figure 10. Trends in Population and Land Area for Danville, IL, USA 

 

Until the 1980s Danville was a strong working class town hosting industries such as 

General Motors, General Electric, and ALCOA. The exodus of these industries in search of 

lower wages echoed the classic Roger and Me story told by Michael Moore (1989), leaving 

masses of people unemployed. This created a tension between attachment to hometown roots and 

the struggle to find work. Many middle-class workers left to find jobs elsewhere.  
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Today the city of Danville is struggling to transform itself to remain competitive in a 

global economy. Although much of Danville’s core population lives in poverty, it maintains a 

strong class of affluent professionals and doctors who serve the community’s hospitals and 

retirement homes. In recent years, Danville’s prison has extended its social network to residents 

of nearby cities such as Chicago. With recent gentrification efforts, many low-income residents 

of Chicago’s housing projects have chosen to relocate to Danville for subsidized Section 8 

housing. Such in-migration keeps Danville’s population from declining further, but raises 

concern for long-time Danville residents as social services become taxed and unfamiliar faces 

appear in neighborhoods and schools. To stabilize the neighborhood dynamics, the mayor and 

the city of Danville are actively promoting neighborhood revitalization through resident-

organized neighborhood associations. 

 

±
0 1 2 3 40.5

Miles

Median Income
$10,341 - $18,214

$18,215 - $26,250

$26,251 - $32,216

$32,217 - $41,681

$41,682 - $55,556

 
Figure 11. Danville Median Income by BlockGroup 
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The blockgroups outlined in Figure 11 were visually clipped to the map of Danville 

boundaries exhibited in Figure 12 below, excluding the Easternmost area. This Easternmost area 

was excluded from model development (see section 3.3.2 below) because it is not a significant 

residential area and it creates a spatial discontinuity. Another spatial discontinuity is in the 

Northwest area across from a man-made lake (a modern “moat” of sorts), but this area was 

retained due to its residential significance. 

Danville has a very clear sense of the spatial division between the haves and have-nots. 

The North and Northwest areas are affluent, while the South and East areas of town are modest 

to very poor. This distinction alongside continued growth in land area made Danville a solid case 

study for simulating the social dynamics of spatial disparity through neighborhood network 

evolution. 

 

3.1.2 Recent Studies 

A recent report on the workforce in Vermilion County outlined three scenarios for the 

near-term (circa 2010) future (Judy and Lommel 2002, pp. 43-45). The first scenario, titled “no 

surprises” highlights the sobering trend of declining employment in the face of global 

competition, and a steady flow of commuters who live in Vermilion county but work in the 

neighboring Champaign county. The second scenario envisioned the realization of hopeful 

economic development plans, capitalizing on demand for health care and niche industrial 

opportunities to reverse the “brain drain” of human capital that has taken its toll in the past three 

decades. The third scenario considered what could happen if “too many things go wrong”, 

outlining vicious cycles of reinforcing feedback that could further deteriorate the educational 

system, employment prospects, and accelerate the “brain drain” of young and experienced 

residents. While the authors (Judy and Lommel 2002) noted that “every effort should be made to 

avoid” the third scenario of rapid decline, it is an unfortunately plausible scenario for the 

community. Between 1990 and 2000, Vermilion county lost over 4000 residents, nearly 5% of its 

population. 

In 2005, the city of Danville conducted a survey of the community, eliciting responses 

from concerned citizens.10 The results of this community survey include 9% (22 of 238) 

responses from ward 3 (see ward map in Figure 12), which encompasses the neighborhood of 

                                                 
10 “City of Danville Community Surveys” Presentation dated 28 Nov 2005. Obtained from Chris Milliken. 
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focus for the ethnographic portion of this research. Overall, 60% of respondents had lived in 

their neighborhood more than 10 years. When asked what they liked best about their 

neighborhood, the most frequent response (34%) by far was “friendly neighbors.” In ward 3, this 

was listed even more frequently (by 9 of 22 respondents, 41%). In contrast, the responses to the 

question of what was least liked in their neighborhood revealed a variety of responses, with 

different priorities for different areas. For example, rental housing was cited in 8% of overall 

responses, but was the top concern listed for ward 3 (by 7 of 22 respondents, 32%). 
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Figure 12. Map of Danville Wards 

 

3.2 Data Sources 

Table 2 provides an overview of the Danville data that were used in this study. 

Qualitative data in the form of interviews and participant observation were collected explicitly 

for this project, and quantitative data were obtained from the City of Danville and the Census. 
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Table 2. Qualitative and Quantitative Data Collected for Danville 

 Qualitative Data Quantitative Data 
Form: Interview Observation Owner List Parcel GIS Area GIS 
Date: 2005 2005 2001, ‘03, ‘05 2005 2000 

Source: Residents Visits City of Danville Census 
 

Direct quotes provided data as well as survey responses (e.g., to the Census). Moreover, 

the direct experience itself (as generated from participant-observation) biased the researcher’s 

empathy for the subject of research. This subjective intuition then better informed the individual-

based heuristics, because they were encoded from the modeler’s perception of the relevant 

behaviors. Indeed, social scientists are increasingly recognizing the role of ethnography in 

creating more robust models (Agar 2004). 

 

3.2.1 Qualitative Data 

The ethnographic fieldwork (interviews and participant observation) took place during 

the summer and fall of 2005. Initial activities involved identification of research participants 

appropriate for in-depth interviews. This process began with informal interviews with city 

officials and representatives from Vermilion Advantage, an institution to promote economic 

development in Vermilion County. City officials and community advocates were consulted for 

preliminary identification of an appropriate target neighborhood in flux. Then a specific 

neighborhood undergoing substantial change was identified as a focus for interviews. This 

neighborhood had recently formed a neighborhood association to identify and act on local needs. 

The interview protocol in Appendix A provides an overview of the open-ended questions that 

were used. Interview length varied between 45 and 90 minutes per session. Each session was 

recorded and transcribed. Due to the in-depth nature of the interviews and the availability of 

complementary data (via participant observation and city GIS datasets), eleven (two preliminary 

and nine formal) interviews were conducted for this research.  

Resident interviews were conducted alongside processing of GIS data, during the period 

from September to December 2005. The qualitative interviews (see Appendix A for the interview 

guide) served to “ground truth” the research, reminding me of how limited the model must be 

relative to the scope of experience of Danville residents. The open-ended questioning provided 

the advantage of a smooth, natural dialogue for the interviews. However, the elicited narratives 



 34

naturally diverged from the central research focus, in ways that were highly intriguing but must 

be explored more thoroughly in subsequent analysis. For the purpose of this research, selected 

experiences and statements were used to augment chief assumptions and model heuristics for 

decision algorithms and boundaries. 

 

3.2.2 Quantitative Data 

As outlined in Table 2 above, the City of Danville provided a variety of quantitative data 

used in this analysis. These data included lists of homeowner names and addresses for the years 

2001, 2003, and 2005. The homeowner lists were collected in the spring of each year as part of 

tax assessment, and so reflected the homeowner residence for the prior calendar year. The 2001 

list was used to derive homeowner locations in the year 2000, and was combined with Census 

data for the year 2000 to initialize the simulation model as described in the next chapter. 

In addition, the city provided GIS data identifying parcel locations and type, for which 

the metadata are illustrated in the Appendix. Combining locations with the owner data for 2001, 

2003, and 2005 enabled derivation of owner migration matrices in the intervals from 2001-2003 

and 2003-2005. The methods for processing these data are described in the next section. 

 

3.3 Data Processing 

This section outlines how the data obtained from both qualitative and quantitative 

sources were processed to provide grounding for the simulation model. The data integration 

process was a significant part of this project, one that is described further in the next chapter.  

 

3.3.1 Interview Heuristics 

The neighborhood of focus was mixed in many dimensions: tenure (owners and renters), 

age, race, income, and family status. While research participants who provided in-depth 

interviews for this study spanned race, age, and family dimensions, they were all homeowners. 

(Income was not elicited in the interview process.) Perspectives on renters versus owners were 

elicited informally through participant observation of neighborhood association meetings (which 

were dominated by homeowners) and through conversation with city officials. The city officials 

openly noted that the renter-owner ratio can reach a tipping point that creates instability in terms 

of outmigration. Early on, therefore, the distinction between renters and owners was highlighted 
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as one that might make a difference in the model. One participant commented that “a lot of the 

homes in this area are rentals, and rentals are going to attract more transient type of people.” 

Another noted: “The neighborhood became a lot of rental property, and I think that’s probably 

the biggest issues there. They’re not very selective maybe because many of them will go Section 

8 housing. So they’re not taken care of in the way they might have been had they been 

homeowners.” 

One newcomer described the neighborhood of focus as “the other side of the tracks” and 

emphasized that it is a humbling experience to come to terms with her own biases. Also, 

references to the “wrong side of town” (made by a white newcomer) corroborated the implicit 

spatial distinction between the “haves” and “have-nots” in Danville. 

Another participant talked about the racial diversity of the neighborhood: “It’s mixed. It’s 

like black, white, black, white.” Despite the diversity, some racial tension was noted: “When you 

get right down to the nitty gritty, everybody has a prejudice and it may not show, but it can be 

felt. If we’re going to integrate we’re going to have to integrate right from intermarriage right on 

up. We’ll always have a separation until the youth, the preschoolers of today are old like I am 

and have outgrown all that.” 

The importance of children in social networks was revealed. “Lots of kids live on this 

block. Teenagers, everybody was just hanging out over here like we were the spot.” “My 

daughter knows more people around here. Like [neighbor], she met him because she would go 

out there and take out the garbage and they would be out there in the garage, because my 

grandchildren would ride their tricycles around the garage.” Changes in neighborhood family 

structures were also noted: “Over the years the neighborhood has changed, and we have a 

younger group coming in now, that’s [got] kids and so forth. As we began to see that [older] age 

group leave the neighborhood, I kind of took a private stance, because I didn’t know if [the new 

people] were friendly or not.” 

Some residents voiced concerns about neighborhood children: “When the kids were little, 

the were cute little things and they’d come over and talk to you when they were doing things out 

in the yard; but as they got older, they got a little more malicious.” “Now the little kids – well, 

I’m sitting out in the summertime and they are running all over and it scares me to death. I don’t 

say anything but I think they let them run a little too loose and it’s not that safe on [street].” 
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The combination of mixed racial backgrounds along with the draw of children’s networks 

produced some tension: “I think if we would get together more often, we would know each other 

more. Then we would trust each other more. Because when [child] goes over [to neighbor’s], I 

can tell they really don’t trust, I’m not going to say me, but they probably concerned. I don’t 

know if it’s because of color. They pick and choose like one day she could come over then 

another day she can’t come over. I don’t know what that’s about. And one day she can come 

over but she can’t come in.” 

Residents spoke more broadly about what it means to be a neighbor, and to have a 

neighborhood. Appendix B provides additional quotes organized by theme as relevant to the 

neighborhood association. 

“A dictionary probably says the person that lives in your area, your environment, 

surrounding, next door, behind you, in front of you, that’s a neighbor. I consider a neighborhood 

as [a place] where I could come to you, you could come to me, we can help each other out 

instead of just going past – ‘hi’ – and that’s it. I don’t even know your name.”  

“I think the world has become a place that if you find something wrong with your 

neighborhood, the easiest thing to do is leave. The toughest thing to do is make it better. There is 

a great little quote: ‘Adversity does not build character, it reveals it.’ What I hope is over time, if 

we’ve had adversity in this community, it’s not going to build character for the community but 

it’s going to reveal the character that we already have.” 

These quotations were used to guide several assumptions in model development: the 

inclusion of race and presence of children as factors in social network choice, and the importance 

of a distinction between renters and owners. The general influence of social networks in 

stabilizing neighborhood dynamics was observed through neighborhood association activities. 

This ethnographic fieldwork also served to humble the modeling activity, highlighting nuances 

and disturbing behaviors (e.g., the influence of domestic violence on decisions to divorce and 

relocate) that were beyond the scope of this project. Quotes relevant to the neighborhood 

association were offered as outlined in Appendix B. 

 



 37

3.3.2 Parcel Data Processing 

Although GIS data at the parcel level were readily available for the Danville context, they 

required processing to ensure an appropriate scope and to integrate with Census block and 

blockgroup boundaries. The following steps describe how the parcel GIS data were processed. 

1. Selecting Danville Parcels. The parcel file was provided for the entire Vermilion 

County. From this file, parcels were selected with an address explicitly identifying the 

city of Danville. The resulting number of “Danville” Parcels was 16,645. 

2. Selecting Danville Place Blocks. A shapefile was created for all housing-occupied 

Census blocks associated with the “place” (Census code 18563) of Danville City and 

projected in the same way as the parcel dataset (see Appendix C for projection). Blocks 

that were spatially distant from the center of Danville with few occupants were removed 

(namely tract 10, blockgroup 1, blocks 2,5,8,29; and tract 105, blockgroup 1, block 35). 

These blocks are revealed by the easternmost gray area of Figure 13, which illustrates the 

boundaries of the selected 786 blocks with the entire set of 991 Danville blocks. 
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Figure 13. Selected Danville Block Boundaries 



 38

 
3. Selecting Parcels within Blocks. A point shapefile was created for the centroid of the 

16,645 Danville Parcels. This file was spatially joined to the selected Danville blocks of 

step 2. The resulting 13,173 successfully joined parcels were retained for the analysis. 

Figure 14 illustrates the residual alignment discrepancy between Parcel and Census Block 

datasets for a selected area of East Danville. 
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Figure 14. Difficulty Associating Parcels with Census Blocks 
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4. Identifying Owner Parcels. The 2001 list of owner-occupied addresses as provided by 

the city of Danville was aligned with the selected Parcel data. The resulting 7579 owner-

occupied parcels were saved as a separate point shapefile. 

5. Counting Parcels by Blocks. The owner-occupied and total parcel counts of each were 

tallied for each block. 22 of the 786 blocks contained no parcels and so were removed. 

The remaining 764 blocks were saved as a separate shapefile. 

 

3.3.3 Merging Owner Records 

The 2001, 2003, and 2005 lists of owner-occupied residences were compared by name 

and address to derive migration patterns at the household level. First, the names were sorted in 

alphabetical order (last, first). Then the 2001 and 2003 data were arranged side by side in an 

Excel spreadsheet for line-by-line comparison. When a name appeared in 2001 but not in 2003, 

the owner was coded as “left” – either he/she left Danville or became a renter. Likewise, if a 

name appeared in 2003 but not in 2001, the owner was coded as “came” (this could be a renter 

becoming an owner or a household new to Danville). This line-by-line comparison was 

conducted manually so that typographical mistakes in the datasets could be readily identified and 

overcome. Similarly, when the first name entries included more than one name (e.g., Joe & 

Martha) in one year but one name (e.g., Joe) in another, the entries were recognized as the same 

“owner” (e.g., the line highlighted in Table 3). The manual identification of matching owner 

entries in different years was susceptible to human error. However, the lists were processed 

multiple times so that some mismatches were identified and resolved. The same process was 

repeated for the 2003-2005 comparison. 
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Table 3. Example of Owner Matching Across Years11 

 
The process of geocoding was performed by matching the addresses with the parcel GIS 

dataset provided by the city of Danville and described above.  

 

3.3.4 Census Data Extraction  

A significant secondary data source in this project was the U.S. Census 2000. These data 

align closely in time with the owner-occupied household list assembled in 2001 (which relied 

upon owner occupancy in the prior calendar year 

1. Collection of Block Data from Census. Using a query for the 764 selected blocks within 

the “place” of Danville (see section 3.3.2), Census data were extracted for tenure 

(housing units owned, rented and vacant) and race by tenure (white householders who 

owned or rented).  

2. Imputation of Renter-Occupied Parcels. Because the owner-occupied parcels were 

already established, the renter-occupied parcels were imputed using the ratio of rental to 

vacant housing units in the block. This ratio served as a “rental probability” applied to the 

non-owner-occupied parcels. The quantity of rentals and vacant units was determined in 

advance, then allocated to parcels in the “Create Model Instances” class, alternating the 

allocation of rentals and vacant units. 

                                                 
11 This table is illustrative only. Owner names have been changed to preserve anonymity. 
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3. Imputation of Racial Category. “White” or “Non-white” racial status was imputed on the 

basis of tenure at the block level.12 To do so, the probability of a household being white 

was set to the fraction of white households within the owner-occupied and renter-

occupied households. In the “Create Model Instances” class, these probabilities were 

invoked within the owner and renter algorithms respectively (see Appendix F for the 

algorithm steps). 

4. Assigning Children and Income. Census data at the blockgroup level were used to 

determine the prevalence of children among white and nonwhite households, as well as 

the distribution of income among white and nonwhite households. Racial status was used 

to impute children and income attributes because the information was available at that 

level of detal, and race had already been imputed at the finer-grain block level in step 3. 

This approach is limited by the fact that blockgroups encompass more blocks than are 

considered and so the blockgroup distributions may not be representative. By accounting 

for the cross-distributions of these attributes by race, this approach maximizes the use of 

available information in hopes that the simulated distributions resemble the actual 

distributions in Danville. 

 

3.4 Analysis of Geographic Patterns 

The availability of owner-occupied household data (see section 3.3.3) enables analysis of 

patterns appropriate to guide model development and calibration. This section describes two 

analyses using the geographic distribution of owners: the spatial distribution of households 

sharing the same last name, and the intra-community migration of households over a two-year 

period. 

 

3.4.1 Distance Between Households Sharing Last Name 

Homeowner last names were included in the records described in section 3.3.3, and were 

geocoded using the parcel data described in section 3.3.2. This information was used to compute 

distances between all owner-occupied households in the most recent (2005) record. Distances 

                                                 
12 The variable code H015I refers to tenure status (rent or own) for non-Hispanic white householders. The racial 
category “Black or African American” constitute the majority of non-white households in Danville. For simplicity 
of representation, the racial category was reduced to “white” or “non-white.” 
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between households sharing the same last name were then compared with households having 

different last names.  

Table 4 compares households with shared and unique last names. While the majority of 

households (72%) share their last name with at least one other households, a very small fraction 

(0.11%) of the links between households occur between households sharing the same name. The 

vast majority (almost 30 million) of household pairs have different last names. 

 
Table 4. Comparison of Households with Shared and Unique Last Names13 
 Shared Last Name Unique Last Name Total 
Number of Households 5628 (72%) 2117 7745 
Number of Possible Links 32970 (0.11%) 29,963,415 29,996,385 
Mean Distance 9796.2 feet 10236.8 feet  
 

Table 4 reveals a difference in distance of over 400 feet closer proximity for households 

with shared last names, relative to households with different last names. These distances were 

computed using a Python script to convert coordinate pairs into Euclidean distance, and were 

then imported into R for statistical analysis. The Welch two-sample t-test was performed on the 

shared versus different last name distances. This t-test revealed a significant difference (t=-

14.8071, df=33044.21, p-value < 2.2e-16) of 440.6 feet closer proximity for households sharing 

the same last name. The 95% confidence interval for this difference in distance was 382.3 to 

499.0 feet. The histograms of distance between households illustrated in Figure 15 also reveal 

that the distribution of distance between households sharing last names is skewed toward shorter 

distances than households of different last names.  

                                                 
13 The number of households is listed as the total households sharing last names with at least one other household. In 
contrast, the number of possible links is listed as the connections between households sharing the same last name. 
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Figure 15. Distribution of Distance Between Households 

 

This difference is more pronounced when the average distance is considered by the 

uniqueness of the name. The horizontal axis in Figure 16 reveals the commonness of a name as 

the number of households sharing the same last name (e.g., “2” for two households with the last 

name of Metcalf). The vertical axis shows how the average distance varies with such 

commonality of name. The solid line in Figure 16 shows the average distance between 

households with different last names, which is over 400 feet farther than the distance for those 
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sharing the same last name. However, this average is significantly diluted by the number of 

households with very common last names (i.e., the “Smith” and “Johnson” effect). For example, 

the average for households sharing a last name with only one other household is approximately 

8500 feet, which is substantially lower than the overall average. 
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Figure 16. Distance Between Households by Number of Households Sharing Last Names 

 
The dilution of average distance between households by common names stems from the 

number of possible links between high-frequency names. If a name such as “Johnson” is shared 

by 90 households, the number of distances to be measuredis 90*89/2 = 4005. In contrast, a name 

shared by only two households has just one measurable distance. 
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Figure 17. Distribution of Unique Names by Number of Households Sharing Last Names 

 

The frequency distribution of unique names in Figure 17 corroborates the dilution effect 

that very common last names have on average distance. Approximately 600 names are shared by 

only two households, and nearly 300 names are shared by three households. This number 

declines much like a power law, which has come to be a signature measure for complex systems, 

such as the degree distribution of scale-free networks (Barabasi and Albert 1999). 

The analysis of distance between households sharing last names provides a means of 

testing an implicit social network effect. Two obvious limitations of this analysis are that: 1) not 

all households sharing last names are related, and 2) not all sets of relatives in Danville are 

reflected due to their different last names as well as the exclusion of renters from the source data. 

These limitations render the analysis difficult to embed in a simulation model, although a 

consideration of both last name and uniqueness could strengthen the social network effect on 

migration choices that result in patterns of disparity. As described in subsequent chapters, this 

option is reserved for future extensions of the model. 
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3.4.2 Creating the Owner Migration Pattern 

The most important part of the modeling process illustrated in Figure 5 earlier is the 

creation of patterns both to guide model development and to provide points of comparison for 

model analysis. This section describes the creation of owner migration patterns from the time 

series homeowner data described in section 3.3.3 above. 

Parcel centroids were used to create point feature sets, isolating only the owners who 

moved in each two-year time period. The from-to pairs of points were then used to create line 

features as vectors showing migration paths of individual households over two years. 
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Figure 18. Migration Within Danville from 2001 to 2003 
 

The set of overlapping arrows in Figure 18 represents vectors for homeowner moves 

between 2001 and 2003, derived from the name and address information provided by the city of 

Danville. The light dots represent the 2001 origin, and the darker dots represent the 2003 

destination. While the entire set of arrows in Figure 18 makes directionality difficult to 

distinguish, patterns may be distinguished by selecting subsets of parcels. Selecting parcels in the 

center reveals a strong tendency to point to the northwest direction, which is the affluent section 
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of Danville. The desirability of the northwest neighborhood is confirmed by selecting the parcels 

in the northwest section by the lake – most of the moves are to the area, and not away from it. 

Selecting parcels in the lower east side (i.e., ward 3 in Figure 12 where the interviews were 

conducted) reveals a strong northwest outmigration tendency, though not reaching as far as the 

lake. An internal migration pattern for Danville would be this northwest vector. For the purpose 

of calibration, these changes were tabulated at the blockgroup level (see Appendix E).  

 

 
Figure 19. Ownership Changes From 2001 to 2003 Within Danville 

 

These ownership changes within Danville reveal internal migration preferences. Figure 

19 reveals the aggregate effect of the individual arrows shown in Figure 18. The dark areas, such 

as the lake area, have the most incoming owners, while the lighter areas represent areas of 

outflow.  

However, for the same time interval of 2001 to 2003, if all the ownership changes – new 

owners as well as owners who left Danville – are included, the pattern nearly inverts (Figure 20).  
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Figure 20. Overall Ownership Changes From 2001 to 2003 

 

For this time period (2001-2003), Danville experienced a net outflow of 55 owner 

households, many of whom left the attractive northwest lake area. Even more confusing was the 

inflow of owners to the southeast side of town, that seemed less attractive. The key to the 

explanation for the behavior exhibited in Figure 19 and Figure 20 was that an increase overall 

included both newcomers to Danville as well as renters who become owners. It is not uncommon 

for landlords (once they've made enough money from renting) to sell houses to tenants on 

contract. In my neighborhood of focus in the southeast side of town, there is a housing investor 

who buys a house to refurbish it, find a good renter, and help them transition to ownership. 

Apparently this practice is common in low-moderate income areas (often areas that are 

implicitly red-lined14 because banks won't lend readily there) and less common in higher-income 

areas where "normal" housing market dynamics are at play. So the overall increase in ownership 

in lower-income areas may reflect a significant number of renter to owner transitions. 

                                                 
14 Red-lining is a form of mortgage discrimination in which certain areas, once literally marked on maps with a red 
line, are considered off-limits to receive bank investments. This practice is now illegal in its explicit form. 
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The net exodus by the Lake area (despite its appeal to movers within Danville) may be 

accounted for by the link between affluence and mobility. Affluent professionals are able to 

afford much more than Danville has to offer in terms of housing investments. Danville is a 

depressed housing market, as revealed in a recent survey with its median home price of 

$65,900.15 The only parts of Danville where housing investments can be recouped are the 

wealthiest (by the lake, ward 7 in Figure 12). Professionals move there but frequently have to 

move elsewhere for work. Moreover, there are several satellite communities around Danville that 

are destinations for some movers. But in the lower income areas, the housing values are 

considered to be already as depressed as they're going to get. This allows people to not worry 

about losing investments, as long as it's a sound structure. One of the residents interviewed for 

this project had this perception as a new mover. This resident felt confident with the housing 

value not declining further, but decided not to invest in a garage addition because the value of 

such an addition would probably not be recouped in a later resale. 

For the 2003 to 2005 ownership changes, the broad pattern remained the same – within 

Danville, the northwest (lake) area was attractive; but overall changes demonstrated a net 

outflow from attractive areas and an inflow of new owners to lower income areas. In summary, 

the people who live in the most affluent areas were most able (and likely) to move elsewhere. 

Renter to owner transitions were more common in lower income areas, as well as new movers 

who want a good investment but can't afford the lake area. 

This explanation of overall migration patterns suggests the importance of economic 

forces, modeled as an affordability threshold in the next chapter. Perhaps with higher income one 

can “escape” an undesirable neighborhood, but with a lower income one locates closer to the 

valued social connections. Indeed, several residents of the lower income neighborhood of focus 

for this project were family members co-locating to provide child support and other valued social 

services that are not readily measured by household income. 

While the discrepancy between intra-Danville migration patterns and patterns that include 

the overall inflow and outflow is highly intriguing, the ambiguity about causes of inflow and 

outflow render the overall pattern less useful for model calibration. The intra-community 

ownership migration pattern is therefore used for the calibration results described in Chapter 5. 

 

                                                 
15 “Housing Report for Danville.” 11 November 2006. http://www.ecanned.com/IL/Danville_MSA.shtml  
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CHAPTER 4.  MODEL DEVELOPMENT 

 

This chapter describes how an agent-based model was constructed to simulate spatial and 

dynamic household choices over time. Before building a complete model for the City of 

Danville, a prototype model (Metcalf and Paich 2005) was constructed based upon an abstract 

two-neighborhood conceptualization. Then, parcel and Census data were integrated into a robust 

modeling framework to simulate dynamics of approximately every household in Danville. 

AnyLogic16 simulation software was used for both model development and calibration 

(as described in the next chapter). Based upon the Java object-oriented platform, AnyLogic uses 

graphical icons to represent modular objects and algorithms. While the AnyLogic environment 

was helpful for model conceptualization and simulation, most of the data integration steps took 

place directly in the Java programming language using the Eclipse integrated development 

environment (IDE).  

 

4.1 Model Conceptualization 

One of the first tasks in developing a model is to visualize it (Grimm and Railsback 

2005).The template in Figure 21 demonstrates how a neighborhood network may be embedded 

in two-dimensional space. In this case, houses are distributed uniformly across a grid between 

two neighborhoods. Social links are strong in broad domains (“neighborhoods”), though not 

restricted to direct neighbors (as in Schelling 1971, 1978). This diagram is a juxtaposition of the 

relational space of the social network as visualized in two-dimensional space. The social links of 

one house from each neighborhood are shown. While links are predominantly contained within 

each house’s neighborhood, they expand beyond direct neighbors and may ultimately connect 

across neighborhoods through boundary households. 

In this abstract two-neighborhood space, households may have spatial preferences for 

friendship connections in their immediate neighborhood or in proximate neighborhoods. Or 

maybe social selection preferences dominate. Income threshold may be considered as a proxy for 

socioeconomic status for starters, though other factors could also be included. And then, the 

impact of moving is considered: Does a household change social connections after a move? Is 

                                                 
16 http://www.xjtek.com 
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there a difference when a household moves between neighborhoods versus out of the community 

altogether? 

 
Figure 21. Example Template for a Spatial Social Network 

 

This simple conceptualization is the beginning of an agent-based model. These 

households are agents that connect with other households both inside and outside the 

neighborhood. They may also move between neighborhoods, and into or out of the community 

altogether. An abstract example model structure may be built from these heuristics. 

Figure 22 is a screenshot of this prototype model as developed in the AnyLogic modeling 

environment. The left panel shows the model objects: house, neighborhood, person (in this case, 

one person created a household), and main. An agent is an object, but an object is not necessarily 

an agent. Objects may undergo state changes without making decisions per se. As described 

earlier, the AnyLogic environment is built on the Java object-oriented programming language, 

making it amenable for agent-based modeling. Featured in the center panel, the main object is 

the “view of God,” as it contains all of the model – multiple instances of the state objects 

neighborhood and house, as well as the “people” agents. It also contains aggregate indicators 

such as cohesion and income gap between neighborhoods. At the right is a view of the animation 

of this model just after it starts up. This is not a particularly informative or aesthetic 

visualization, but it does reproduce the two-neighborhood structure just articulated. 
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Figure 22. Screenshot in the AnyLogic Simulation Environment 

 

The dynamics of this prototype model depend upon decision rules made at the individual 

level. Two choices were made: who to like and where to live. Both choices employed a logit 

expression of the utility of weighted effects. Neighborhood utility derived from income-based 

attractiveness and the individual’s fraction of friends in the target neighborhood. While 

neighborhood attractiveness was a universal measure (proportional to the neighborhood 

affluence relative to overall community affluence), the neighborhood-based friendship fraction 

was unique to each individual. In turn, friendships reflect spatial and socioeconomic preferences 

through the utility of a social network connection. 

A stochastic, exponential distribution of decision evaluation frequencies enabled 

asynchronous evaluation by individual agents. Whether or not a move was made depended upon 

the neighborhood utility, and the availability of houses in the target neighborhood. If a move was 

made, the relocating agent updated their friendship network by making one friend and losing a 

friend according to a binary logit of utility.  

Experiments with this prototype model (Metcalf and Paich 2005) revealed that the 

income-based attractiveness is stronger in the utility equation when neighborhood preferences 
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are balanced. This occurs because the neighborhood friendship fraction averaged 50% (equal 

base probability of choosing a friend in either neighborhood) in the balanced case, versus 70% 

(stronger preference for local neighborhood) in the unbalanced case. Those agents who could 

afford (based upon their income level) to move to the more attractive neighborhood did so, 

producing an agglomeration of higher income individuals in the attractive neighborhood. At the 

same time, balanced preferences resulted in a higher cohesion (fraction of social ties that cross 

neighborhood boundaries) level. This co-occurrence of balanced (a-spatial) friendship 

preferences and community-wide network connectivity in the prototype model demonstrated that 

spatial disparity could result without social network fragmentation (the converse of cohesion) 

under this formulation. 

The prototype model was used to explore how the concepts of neighborhood and network 

choice could be combined in an algorithmic agent-based model. While additional insights could 

be gleaned from testing this abstract model, it did little to verify the adequacy of assumptions 

relative to a real-world case study. The model as developed for the case of Danville, Illinois 

required substantial parameterization based upon the data sources outlined in Chapter 3. This 

model development is described in the sections that follow. Structurally, the major differences 

from the prototype model are the extent to which location is accounted for more explicitly (at the 

Census block level), and the inclusion of parameter weights corresponding to Census-derived 

attributes that then may be adjusted as alternative model structures. The following sections 

describe how the model structure develops from a set of data objects for the case of Danville.   

 

4.2 CaseTown Model Structure 

Moving from an abstract prototype to an applied model required significant consideration 

of what the applied model structure contains. At the heart of the model, household agents make 

decisions about where to live (neighborhood) and who to associate with (social network) based 

upon factors of geographic proximity, income, race, and presence of children. These dynamics 

take place in a landscape of parcels that may be owned, rented or vacant, and are spatially 

situated within Census blocks and blockgroups for the city of Danville.  

The initialization of the household agent objects and the spatial state objects was a 

significant step in structuring the model. This section outlines the structure of the applied 
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“CaseTown” model as informed by Danville data. Supporting documentation is provided in 

Appendices D (raw data files), F (java classes), and G (AnyLogic implementation). 

 

4.2.1 Creating Model Objects from Data 

As noted in Chapter 2, an agent is an object but an object is not necessarily an agent. For 

the full model, households are the only true agent objects, embodied as mobile agents that make 

decisions about where to live and who to include in their social network. The household sets the 

scale of decision making; it is not further subdivided into family members. Households may own 

or rent parcels, which are plots of land corresponding to location data provided by the city of 

Danville. The parcel object is a state object, not a decision-making agent. Likewise, blocks and 

blockgroups are state objects representing census areas of aggregation. Census blocks inform the 

rent/own/vacant status, and the blockgroups inform the income distribution of the households. 

The spatial scope of the block objects is revealed in Figure 23. 

 

 
Figure 23. Map of Owner Occupancy in Danville Census Blocks 
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The map in Figure 23 illustrates the prevalence of owner-occupied households in census 

blocks. The light backdrop illustrates the larger blockgroup boundaries. The darker shades 

indicate that owner-occupied households dominate renter-occupied households. The percentage 

shown does not include vacant households, so that it is strictly a ratio of owner-occupied to all 

occupied households. Danville city officials consider the renter-owner ratio to be a significant 

determinant of neighborhood stability, and resident interviews corroborate this hypothesis. 

Because of this importance, rent and own states are incorporated into the model at the parcel 

level. 

After defining what the model objects represent, the non-trivial task remained to create 

the objects from Danville data. The schematic in Figure 24 illustrates the process of creating 

model objects. This process began at left with unstructured, or raw, data files. Unstructured does 

not mean unorganized – it simply means that the data lack semantic meaning. The geographic 

data processing steps described in Chapter 3 enabled the creation of four simple text files, where 

the rows correspond to the number of objects. 28 blockgroups contained the income and move 

frequency data, 764 blocks contained the rent-own-vacant information, 13,166 parcels contained 

location coordinates, and 7,576 initial owners contained parcel identification. Table 9 (parcel), 

Table 10 (owner), Table 11 (block), and Table 12 (blockgroup) in Appendix D provides excerpts 

from these four raw data files. 
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BlockGroups

Blocks
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(Raw) Data Files

Parcel Owner
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Figure 24. Process for Creating Model Objects 
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As outlined in Figure 24, the unstructured data were imported into the Eclipse 

development platform for processing. Apendix F documents the sequence of tasks for these data 

to become structured. The first task was to properly link the data. Spatially, these links dictated 

that blockgroups contain blocks, which in turn contain parcels. Parcels were linked to their initial 

owners (from the 2001 owner-occupied household list) as described in Chapter 3.  

After the structured data were properly linked, the remaining objects and attributes were 

identified. Section 3.3.4 describes how rent and vacant parcels are imputed from block 

characteristics, and how household racial status was imputed from the own or rent status. Then 

household income and presence of children were assigned based upon blockgroup characteristics 

and household racial status.  

The java classes in Appendix F provide explicit documentation for the creation of initial 

model objects from raw data. The sequence of processing classes was as follows: 

1. Create Data Structure (args: 28blockgroups.csv, 764blocks.csv, 13166parcels.csv, 

7576owners.csv, dataStructure.ser). This class created data containers to provide 

structure to the raw data. 

2. Create Model Instances (args: dataStructure.ser, modelObjectsFinal.ser). This class 

imported the structure created in the previous step, and created the template for the model 

objects, including the assignment of rental and racial (boolean, true for “white”) status. 

3. Block Distance (arg: modelObjectsFinal.ser). This class imported the newly defined set 

of model objects and updated it to include a block distance matrix for the N=764 blocks. 

This created a matrix with 292,230 distance measures (see Error! Reference source not 

found.). The maximum distance was 34,737 feet and the average distance was 9397 feet 

between blocks.  

4. Assign Children & Income (arg: modelObjectsFinal.ser). This class imported the latest 

instance of model objects, and assigned children (boolean, true if present) and income 

(from a distribution across 16 income categories, bounded by 5k and 250k) attributes 

based upon household racial status at the blockgroup level. 

 

4.2.2 AnyLogic Model Structure 

At this point the final structured data had been written to a file, and were ready to import 

into the AnyLogic simulation environment as model objects. The distinction between agent 
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objects and state objects is important to this structure.  Households are true agents, making 

decisions that change their state and the state of other objects. Parcels, blocks, and blockgroups 

are objects that change state but do not make decisions. 

Figure 25 illustrates a screenshot of the model structure in AnyLogic. At the upper left 

are the state objects Parcel, Block, Blockgroup, Household, and ModelObjects. The Household 

state object is a container for state information used to create the dynamically active Household 

agent object. The ModelObjects class is a container for the sets of objects (encoded as java 

ArrayLists) blockList, householdList, etc. The CaseTown package in Appendix F provides full 

documentation for these classes. 

 
Figure 25. Model Structure Screenshot in AnyLogic 

 

The center panel of Figure 25 shows the structure of the main class in AnyLogic, which 

(as mentioned above) is a sort of “view of God” encompassing all of the other class objects. The 

AnyLogic references “Active Objects” the dynamic objects whose instances are created wholly 

in AnyLogic. This includes the Household agent object as well as an Initialize class that contains 
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the startup sequence illustrated at right. This startup sequence is executed as the first line in the 

Main class startup code (see Appendix G). 

The first step in the startup sequence is to load the serialized data that were created using 

the sequence of java processing classes described above and documented in Appendix F. These 

data are then represented as state objects in the caseTown package, using the ModelObjects class 

container to “hold” the collections of objects. Once the data have been opened in AnyLogic, the 

Household agent objects are created from the imported Household state objects by iterating 

through each Household in the ArrayList (see Appendix G for the Initialize class algorithms). 

The next significant step in the startup sequence is to create an initial network of 

household agents. This is accomplished by cycling through the set of agents and requiring a 

minimum number of connections to be made by each household. The mutual nature of 

connections ensures that most households are chosen by others before they make their own 

choices. Here, a minimum requirement of 3 connections results in an average degree of 6 

connections. The specific degree value varies with each initialization due to the random 

component of household selection. 

While households pick other households at random for consideration, the choice of 

whether to make a friendship is not random (although probability is involved). The choice 

structure for social networks is described below. The factors in households’ choice of social ties 

include distance between blocks, income similarity, racial similarity, and presence of children, as 

well as scaling constants. A parameter specifying a fraction of friendships to occur within the 

household’s blockgroup is also included. These parameters are adjusted during model calibration 

as described in Chapter 5. 

 

4.3 Model Dynamics 

With the model structure in place, the dynamics were developed. In this section, an 

overview of dynamics is first provided using a stock and flow representation (as introduced in 

Chapter 2) emphasizing the importance of feedback and accumulation, which creates delays in 

the system. After this overview, the specific formulations for the dynamic choices of networks 

and neighborhoods are presented. All details of the AnyLogic model structure and dynamic 

algorithms are documented in Appendix G. 
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4.3.1 Stock and Flow Representation of System Dynamics 

The causal map in Figure 26 illustrates the significant forces underlying migration 

patterns in a place like Danville. To the medically untrained eye, the diagram in Figure 26 may 

resemble the structure of a heart. Perhaps this visual illusion engenders the empathy appropriate 

for this study of spatial disparity. 
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Figure 26. Causal Map of Neighborhood Dynamics 

 

The representation of these system dynamics utilizes the stock-flow iconography that is 

described more fully in Appendix H. The directionality and polarity of causal relationships is 

indicated by arrows that create reinforcing (R) and balancing (B) feedback loops. Three major 

accumulations (stocks) are represented in the boxes. First, the stock of residents changes with 

rates (flows) of in and out-migration to and from the neighborhood. As the number of residents 

increases relative to a fixed neighborhood housing capacity (in the simulated case of no new 

development), a balancing feedback loop (B1) is completed as the number of vacancies 

decreases. Another effect of increasing the number of residents, in conjunction with the duration 
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of one’s tenure in the neighborhood, is to increase opportunities for local interactions. Such 

interactions may occur within deliberately formed neighborhood associations, or simply through 

casual contact. These interactions, integrated over time, form neighborhood social networks. As 

these networks are strengthened, increased duration of tenure in the neighborhood is likely to 

result, reinforcing (R1) the network effect further. 

A “co-flow” representation in Figure 26 enables the flow of incomes associated with 

migration patterns to contribute to neighborhood affluence, which feeds back to in-migration 

through affordability (B2) and attractiveness (R2) effects on neighborhood choice. The form of 

these effects are described in the next section. Note also that this feedback implicitly occurs 

across scale as neighborhood affluence contributing to the household’s choice of where to live. 

 

4.3.2 Decision Rules 

How does a household make decisions? As revealed through the ethnographic fieldwork, 

the social network influence may be strong, but it is also subtle. As modeled, the social influence 

consists of a fraction of friends within a specified blockgroup boundary encompassing the place 

(parcel) of consideration. In the real world, the causal mechanism varies from individual to 

individual. For example: divorce, a marriage, a friend selling property, and a family member 

passing away are a few of several social mechanisms for residential relocation. Closer to the 

model assumptions is the influence of discretely bounded neighborhood associations. These 

association effects are partially inscribed as the fraction of all social ties that fall within a 

neighborhood. 

As noted in Chapter 2, the implementation of agent-based models generally involves 

algorithms. It has been a significant effort simply to articulate the algorithms. In this way, the 

modeling practice aids articulation of hypotheses of human behavior. At the individual level, 

how can we represent (articulate) social influence on neighborhood choice? Here, rules are 

embedded for social network choice. The resulting fraction of friends in the neighborhood is then 

measured as an influence on the household’s decision of where to live.  

The question asked in the pattern-oriented modeling approach is: for the assumptions 

made, how close do we get to reproducing observed patterns? As noted by Agarwal et al. (2002), 

the decision-making dimension of model complexity is frequently shallow when compared to the 

spatial and temporal dimensions. The focus on human decision-making in this model is intended 
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to add depth to this dimension of complexity. What would happen if we all thought a particular 

way? It doesn’t have to be the same way; we can have heterogeneity of individual preferences 

(represented here as a happiness threshold) as well as different rules altogether. In this model, 

different rules are represented by different weights on parameters in a set of influences on two 

household choices. 

Household agent objects make two decisions: social network choice and neighborhood 

choice. The social network choice in Equation 1 employs a binary logit expression, such that the 

probability of a household i connecting with household j is based upon the exponential of the 

utility of that connection, divided by 1 plus the same exponential term (Ben-Akiva and Lerman 

1985). In turn, the utility of the connection is expressed as a set of alpha (α) parameters 

multiplied by effects. 

 
Equation 1. Social Network Choice 
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where 

Pij   = Probability of household i to connect to j  

Uij  = Utility of connecting household j to household i 

Dij  = Distance between household i and household j 

Ii, Ij  = Income of household i and household j respectively 

Iavg  = Average income of all households in the Danville model 

C = Constant average utility 

b = Scaling constant 

αD, αI = Parametric weights for the distance and income effect respectively 

 

The two effects shown in Equation 1 are the distance effect and the income effect. In both 

cases, greater difference decreases the likelihood of connection. Thus, the weights for these 

effects, represented by the alpha terms, would be negative when making a connection and 
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positive when breaking a connection. The C term represents the constant average utility. This 

term, as well as the alpha parameters, will be adjusted as part of the model calibration. 

Additional terms may also be included to create alternative model structures. These terms 

include binary (dummy variable) representation of race (white or nonwhite) and children (present 

or not). If the prospective household has the same race, the value of the term is 1. Similarly, if 

both households have children, the binary term is encoded as unity. If one or both households 

does not have children, the effect is zero. 

Household agents evaluate their social network at a stochastic frequency designed to 

create asynchronous decisions – which enables realistic heterogeneous behavior, and is also 

more efficient computationally. At this point in time, a household picks another household at 

random and tests whether the probability from the binary logit passes a “satisfaction threshold”, 

which is a proxy for human idiosyncrasy. 

For neighborhood choice, the algorithm is similar to that of social network choice.  The 

utility of a parcel p to household h invokes a constant C term and a set of weighted effects, where 

the alpha parameters are the adjustable weights.   

 
Equation 2. Neighborhood Choice 
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where 

Up,h = Utility of parcel p to household h 

Ap,h   = Affordability of parcel p to household h 

SNh = Social network of household h 

b(p), bg(p) = Census block, blockgroup containing parcel 

 

The first effect in Equation 2 is an affordability constraint, such that the effect is negative 

if the household’s income is less than the average block income of the parcel. If the household’s 

income is sufficient, affordability is not a constraint. For assessing the utility of the current 

location, affordability is excluded from the evaluation. The next effect measures attractiveness 
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based upon the average income of the parcel’s block, normalized to the average income of the 

entire community. Then a social network effect is included. This is simply the fraction of a 

household’s social network (or number of connections) that reside in the destination blockgroup, 

divided by the household’s complete social network. Additional effects may be added to create 

alternative structures. 

Household agents evaluate potential parcels at a frequency informed by their tenure as 

renters or owners. The first step is to assess, via a pre-determined happiness threshold, whether 

they are satisfied in their current location. If they are not satisfied, then they search the available 

(vacant) parcels up to 15 times (approximating a scan of the real estate section) to assess 

alternatives. If the utility of the alternative parcels exceeds the current location utility, they 

become part of a consideration set. After the consideration set is complete, the location with the 

highest neighborhood utility is chosen. 

Note that the distance effect in choosing a social network, and the social network effect in 

choosing a neighborhood, constitute the recursive relationship between neighborhoods and 

networks as hypothesized in Figure 1 earlier. These effects may be turned off simply by setting 

the parameter weights to zero, to test alternative model structures. Effects may also be adjusted 

by changing the level of aggregation (e.g., block and blockgroup effects). 

When a household moves to a new location, it induces a state change in the old and new 

parcels. First, the old parcel becomes vacant. The new parcel will be occupied, but whether it 

will be a rental or owner-occupied unit is not yet clear. To enable transitions between the rent 

and own state, both parcels and households keep track of their prior rent or own state.  
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Figure 27. Transitions Between Rent and Own Status 
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As illustrated in Figure 27, if both the parcel and the household were formerly of “rent” 

status, that status is retained. The same logic is applied to the “own” status. But if the prior parcel 

state was “rent” and the household was formerly “own”, or vice versa, the new state is uncertain. 

A simple way to handle this uncertainty is to flip a coin for determining the new state under these 

conditions. Despite this simple assumption, tracking ownership status and enabling transitions 

between “own” and “rent” status is important to the model formulation. This assumption enables 

more adequate calibration relative to the ownership migration patterns introduced in Chapter 3. 

As mentioned, the dynamics of agent-based decisions are implemented using 

asynchronous evaluation. Such evaluations occur at a frequency of times derived from an 

exponential distribution of owner or renter move rates. The exponential distribution invokes a 

Poisson process and in the aggregate appoximates a first-order delay in the stock and flow 

representation of system dynamics. 

 

4.4 Simulating Spatial Disparity 

The dynamics of household choice described above create a system of migration patterns 

that may be calibrated relative to the observed migration patterns, as described in the next 

chapter. Although this project has not yet produced a calibrated solution, in this section I outline 

how a measure of spatial disparity was developed to examine the dynamics of a single 

simulation.  

While a number of measures have been proposed to assess spatial disparity (i.e., 

Chakravorty 1996), I utilized the widely known Gini coefficient (Gini 1921) applied to incomes 

averaged at the blockgroup level. The Gini coefficient is evaluated as a fraction between zero 

and one, with higher values representing greater inequity. The spatial dimension of this inequity 

is provided by comparison among the 28 blockgroups containing households. Equation 3 

describes the formula used to assess the Gini coefficient for the population of 28 blockgroups in 

this model. 

 
Equation 3. Formula for Measuring Gini Coefficient 
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where 

  G  = Gini coefficient 

  n  = number of blockgroups (28) 

  i  = index of blockgroup in non-decreasing rank order 

  yi  = average income of ith blockgroup 

 

Using the Gini coefficient by blockgroup, Figure 28 reveals the dynamics of spatial 

disparity for a parameter set resulting from the optimization described in the next chapter. From 

a starting point of ~ 12%, spatial disparity increases to amost 16% over the first two years (the 

calibration period for migration patterns) but eventually declines to the starting level, with some 

variation. 
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Figure 28. Gini Coefficient and Fraction of Local Ties over Years of a Single Simulation 

 

The secondary (right-most) vertical axis of Figure 28 reveals the dynamics of the social 

network, measured as the fraction of each household’s local ties within their home blockgroup. 

The fraction of local ties declines from the initial value of ~60% to around 54% over the years of 
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simulation. The dynamics of the social network exhibit a first order effect as moves are 

generated and some ties are broken. Indeed, in this simulation some households were completely 

disconnected from their social network. In contrast, the dynamics of spatial disparity exhibit a 

lagged effect, increasing with the migration patterns but ultimately declining. 

These dynamic simulation results provide an example of how a calibrated result may be 

investigated. Extreme caution must be taken in interpreting these results. The importance of 

calibration is described in the next chapter, along with the range of outcomes that fit reasonably 

to the observed migration patterns. However, even a “good” solution should be subject to 

skepticism until it has been validated dynamically over a time frame of interest to policy makers. 

The simulation shown in Figure 28 has not been adequately validated, as the calibration results 

are as yet inconclusive. Nonetheless, insights have been gleaned from the model development 

and calibration process, as are documented in the pages that follow.  
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CHAPTER 5.  CALIBRATION RESULTS 

 

This chapter highlights the crux of this research in articulating and exploring a calibration 

method for the agent-based model articulated in the previous chapter. Because of the inherent 

randomness in the model, all results presented in this chapter are averaged across batches of 25 

simulation runs per experiment. The sections that follow first describe feasible model 

alternatives that may be tested within the articulated simulation framework. Then the full 

calibration strategy is described, followed by results that have been obtained toward this end. 

 

5.1 Specifying Alternatives  

As described in the previous chapter, the spatial dynamic behavior of this model stems 

from the two choices made by household agents: 1) the choice of friendships (social networks), 

and 2) the choice of where to live (neighborhoods). Each of these choices uses a utility 

formulation of weighted effects, where the weights are adjusted during model calibration. 

Different combinations of effects create alternative model structures. 

 
Figure 29. Model Structure Alternatives 

 

The distance and income effects in Figure 29 are central to the full model structure as 

well as the prototype model. These effects are structured so that the greater the Euclidean 

distance between parcels, and the greater the income difference between households, the less 

likely the households are to have a social network connection. Neighborhood choice depends in 
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part on the social network effect, expressed as the fraction of a household’s connections within 

the prospective blockgroup area. The distance effect in choosing a social network, and the social 

network effect in choosing a neighborhood, constitute the recursive relationship between 

neighborhoods and networks as hypothesized in Chapter 1. 

 In addition to distance and income, several other effects were included in the full data-

driven model. The rent or own status, informed by the Census, is used to vary the frequency of 

evaluating a move. Census-informed ethnicity (in the form of a “white” or “nonwhite” racial 

dichotomy), and presence of children were also included as factors in social network choice for 

the full model. Feasible model extensions could include shared last name aand housing 

composition.  

Identifying which parameters are worth testing is a model boundary choice informed in 

part by the data analysis in Chapter 3. For example, friendships among children were revealed by 

interviews to be a significant factor in neighborhood networks. And shared last name could be 

included as a proxy for family connections. Income has already been included as an effect in 

social network choice as well as neighborhood choice, through the affordability and 

attractiveness terms. Another effect on neighborhood attractiveness could derive from its housing 

composition, such as presence or persistence of vacant units in the neighborhood. The real-life 

effect of excess vacancy in some Danville neighborhoods is to enable spaces for illegal activities 

such as drug dealing, meth labs, and vandalism. This, in addition to aesthetic concerns, could 

make vacancy a negative effect. Other composition effects could include ownership fractions and 

ethnicity. 

Table 5 outlines which model parameters were selected for calibration. This analysis does 

not include the shared last name and housing composition effects postulated above. 
Table 5. Description of Parameters Varied to Create Alternative Model Structures 
Name Description Lower Bound Upper Bound 
locNorm Normalizing Constant, Denominator of Parcel Location Utility 0.1 2 
locConst Linear Constant for Parcel Location Utility 0 1 
locAfford Weight on Household’s Affordability Constraint 0 1 
locAttract Weight on Income-based Attractiveness of Block 0 1 
locSN Weight on Fraction of Social Network in Blockgroup 0 1 
localProb Probability of Forming Local Ties within Blockgroup 0.2 0.7 
nwNorm Normalizing Constant, Denominator of Social Network Utility 0.1 2 
nwConst Linear Constant for Household’s Social Network Utility 0 1 
nwChild Weight on Boolean Effect of Children on Social Network Utility 0 1 
nwDist Weight on Effect of Block Distance on Social Network Utility 0 1 
nwInc Weight on Effect of Income Difference on Network Utility 0 1 
nwRace Weight on Boolean Effect of Racial Similarity on Network Utility 0 1 
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Combinations of these effects specify alternative model structures for calibration. 

Defining alternatives enables us to discern which combinations of effects match the observed 

migration patterns best. The next section outlines the strategy that was employed to conduct 

these tests. 

 

5.2 Strategy 

This section presents an overview of the calibration methodology employed in this 

project. The following are steps toward calibration of an agent-based model. These steps are not 

necessarily clear-cut and sequential. Grimm and Railsback (2005, pp. 343-345) outline the 

following calibration methodology for pattern-oriented modeling:  

1. Using independent analysis, specify parameters that can be specified (e.g., location of 

parcels/owners, income from Census). Identify which parameters remain uncertain. 

2. Specify ranges of values for uncertain parameters. (Note that steps 1 and 2 involve setting 

practical model boundaries.) 

3. Create a set of permutations of parameter values across their possible ranges. 

4. Define patterns to filter out unacceptable parameterizations. Here, the owner migration 

patterns described in Chapter 3 are used. 

5. Design a scenario for the circumstances under which the filter patterns were observed. 

Here, the initial circumstances were set using 2001 owner data for the initialization, close 

to the 2000 census data for attribute specification. 

6. Run simulations for all permutations of model parameterizations. Save output variables to 

match with patterns, as well as major model predictions. 

7. Determine the parameter combinations (model structures) that reproduce the filter pattern 

at a coarse level. 

8. Perform sensitivity testing on selected parameters within combinations, assessing 

influence in simulated output. 

9. Assess structural robustness of model through testing of effects at the model boundaries 

testing. 

Just as with the overall modeling process (as represented earlier in Figure 2 and Figure 

5), the calibration process is also iterative. Nonetheless, these steps serve as a reasonable guide to 
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making models more than abstract. Figure 30 illustrates the overall flow of the calibration 

process just described to create a model that makes sense in the real world.  

At the top of Figure 30 are the initial steps. First, parameters are set where possible using 

data analysis – for income, race, parcel location, etc. Then broad ranges are initially chosen for 

the remaining uncertain parameters – whether they are negative or positive, for example. These 

bounds are readily adjusted using the OptQuest optimizer of the AnyLogic software. Alternative 

model structures are specified as combinations of parameters for the effects just described. 

 

 
Figure 30. Calibration Strategy 

 

The most critical step in this calibration strategy is to identify observed patterns that will 

serve as “filters” for acceptable models (Grimm and Railsback 2005). These patterns enable 

“decoding” of model structure (Wiegand et al. 2003). In this case, I use the owner data time 

series to create observed migration patterns. 

With such patterns in place, each model alternative is tested by varying its constituent 

parameters one by one using the optimizer. The simulation is run, and simulated migration 

patterns are compared with the observed migration patterns. An error term is specified to capture 

the difference between simulated and observed patterns, with a penalty for excess parameters. 
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The goal is to minimize the error term. For this analysis, two error terms – total move errror and 

directional error accumulated by blockgroup – are combined in a single objective function. 

Once each model alternative has minimized the error in its set of parameters, the best-fit 

models are selected for further analysis. Because the observed migration patterns include a 

subset of specific observations, the error patterns may be assessed to understand why some 

structures fit better than others. Structures with acceptable overall fit are selected to focus on 

further sensitivity testing. The focus here is on overall fit, rather than the statistical significance 

of individual parameters. In creating the agent-based algorithms, I have deduced from aggregate 

data and now try to reproduce broad patterns. In the event that no model fits acceptably, the error 

patterns may still be assessed for greater understanding. 

 

5.3 Testing 

The AnyLogic software comes with a built-in optimization package that enables a wide 

variety of experiments under uncertainty. Figure 31 shows a screenshot of the optimization 

window in AnyLogic. The left panel reveals the parameter names that have been selected to 

vary, along with the best value attained to date. Appendix G documents how the parameters are 

encoded for network and location choice, as described in the previous chapter.  

Objective = Directional Error + Total Move Error

Network and
Location Choice 
Parameters

 
Figure 31. View of Optimization Process 
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Each experiment is run for the first two years and evaluated relative to the observed 

migration patterns. The objective function combines directional error (accumulated by 

blockgroup relative to the matrix of observed migration in Table 13 of Appendix E) and 

cumulative move error to ensure that approximately the right number of intra-community owner 

moves are made. If a new test does not produce better results than the previous test, the previous 

“best” is carried over in the right-most plot of Figure 31. Note that this example is illustrative 

only, as it reflects a single simulation outcome rather than a batch average as described below. 

Each parameter is varied Monte Carlo style such that random combinations are tested 

across the range of possible parameter values. The bounds are defined in the optimization setup 

and are tested in this optimization process. Parameter weights and constants were bounded 

between zero and unity, since each effect was normalized. The scaling constants (in the 

denominator of the utility equations) were bounded between 0.1 and 2 to reflect a range of 

reasonable elasticity. And the probability of evaluating social connections within the home 

blockgroup, encoded as the “localProb” term in Appendix G, varied between 20% and 70%. 

 

5.3.1 Solution Space 

The single “best” outcome in the optimization process just described (e.g., see Figure 28) 

is less useful than a range of outcomes in understanding model behavior. The simulated errors 

were thus exported for further analysis, alongside each set of parameter values. The plot in 

Figure 32 shows the error produced for each of 1000 experiments, where each experiment is 

averaged across a batch of 25 simulation runs over a 2-year period.  

The total move error exhibits a linear relationship with directional error by blockgroup. 

Because the total move error is considered as the absolute value of the difference between 

simulated and observed moves, this relationship appears in the shape of a V in Figure 32. As 

described above, the total and directional errors (accumulated by blockgroup) are added in a 

single objective function. This objective function is minimized in the “good” solution space 

highlighted, representing combined (total + directional) error of less than 230 moves. While an 

ideal situation would be to reach zero on both axes, such a goal has been unattainable in this set 

of experiments. 
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Figure 32. Total Move Error and Directional (BlockGroup) Error for 1000 Experiments 

 
A range of outcomes is revealed in Figure 32, illustrating the relationship between total 

move error and directional error. If directional error were minimized completely, the trivial 

solution of no moves would be preferred over more meaningful solutions. This is because the 

observed 139 intra-community owner moves would produce equivalent errors in both the 

cumulative and directional dimensions. Total move error is minimized when directional error 

reveals approximately 220 moves. The difficulty of matching the directional dimension is largely 

due to the substantial number of zeros17 in the observed migration patterns shown in Appendix E. 

Despite this difficulty, the “good” solutions shown in Figure 32 are significantly better than a 

directional error of 278 (the equivalent of matching total moves from and to all the wrong 

places).  

                                                 
17 In the 28 x 28 owner move matrix (solely for internal migration patterns), there are 784 total cells. Only 86 of 
these are nonzero, containing the 139 total moves. This leaves 698 cells containing zero moves. Most of these cells 
are matched in the solution space. 
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Figure 33. Variation of Move Error by Amount of Error Among Filtered Solutions 

 
These 486 “good” solutions were selected by filtering for a combined error (objective 

function) of less than 230 directional and total moves. Figure 33 displays the variation of this 

error within each batch of simulation runs, revealing that the standard deviation of error is not 

significantly related to the amount of error per se (evidenced by an R-squared term of nearly zero 

for a linear relationship form). The standard deviation for this average error across the 25 runs in 

each experimental batch varied between 5 and 15 moves, averaging 10 moves of deviation from 

the average error.  
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Figure 34. Filtered Patterns of Parameter Effect Ratios 

 
The filtered set of solutions may now be used to investigate the multi-dimensional 

parameter space in search of insightful patterns. Figure 34 reduces these dimensions by 

comparing ratios of effects. The vertical axis shows the ratio of income-based attractiveness to 

social network effects on location choice, while the horizontal axis reveals the ratio of distance to 

income effects on social network choice. A handful of data points high on the vertical axis and 

low on the horizontal axis were excluded from this plot for visualization purposes.  

Although the overall distribution envelope in Figure 34 appears to be somewhat 

exponential in nature, a significant result is that most of the ratios in this set of solutions are less 

than one. This implies that the attractiveness effect is generally weighted less than the social 

network effect on location choice, and the distance effect is generally weighted less than the 

income effect on social network choice. Note that a low parameter weight does not imply a less 

significant contribution to simulated migration patterns. Indeed, sensitivity testing of the income-

based attractiveness effect revealed that its parameter weight has a very strong effect on inducing 

intra-community migration. Similarly, the social network effect is frequently zero, as an 

individual household has 6 social ties on average, spanning a possible space of 28 blockgroups. 
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Therefore, the higher weight on the social network effect does not necessarily imply a stronger 

impact on the resultant migration error. 
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Figure 35. Filtered Comparison of Spatial and Social Influences on Choice 

 
An examination of the recursive relationship between spatial and social effects in the 

solution space is provided by Figure 35. The vertical axis displays the weights for the social 

network effect on location choice, and the horizonal axis displays the weights for the distance 

effect on social network choice. While the relationship would not be readily reduced to a linear 

form, it appears to be a positive relationship. As the distance effect increases on network choice, 

so does the network effect on location choice. Also, when the distance effect is low, more 

variation is observed in the social network effect. Although the nature of the relationship is ill-

defined in algebraic terms (e.g., a linear trendline), it is significant to note the positive correlation 

among the filtered solutions. 

A cluster analysis of parameter weights in the set of 486 “good” solutions was performed 

to delve deeper into the simulated patterns of effects. Figure 36 reveals the results of this analysis 
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as performed in SPSS as a two-step cluster classifcation.18 Note that each parameter was 

multiplied by 100 to improve the scaling of statistical analyses performed in SPSS. In addition to 

the parameter weights shown, both directional and total move errors were included in the cluster 

analysis.  
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Figure 36. Cluster Analysis of Parameters in "Good" Solution Space 

 

Three clusters of similar size resulted from this analysis. Figure 36 shows the means for 

each parameter weight in the cluster. The migration errors are not shown because they were so 

similar across the set, which had been filtered to have a cumulative error of less than 230. 

However, cluster 3 (triangles connected with a bold line) resulted in a slightly lower error in this 

analysis, with one less move error on average than the other two clusters. Cluster 3 overlaps with 

cluster 2 for several parameters, such as the affordability (locAfford) and social network (locSN) 

effects on location choice, as well as the constant term (locConst) for that choice. Moreover, the 

ratios explored in Figure 34 are corroborated by the average cluster results in Figure 36 (i.e., 

locAttract/locSN < 1 and nwDist/nwInc < 1). The probability of selecting social ties within one’s 
                                                 
18 The SPSS clustering criterion was BIC (Bayesian Information criterion) with a log-likelihood distance measure. 
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blockgroup (localProb) is above 50% for all three clusters. Although the distance effect in social 

network choice is more widely variable, this pre-filtering of choice within blockgroup 

boundaries is consistently substantial.  

The filtered set of 486 solutions just examined has reduced the solution space by more 

than half. But this (still large) number of solutions precludes the appearance of a definitive 

answer. As noted in Chapter 2, such a definitive solution would not be expected for this kind of a 

“wicked” problem (Rittel and Webber 1973). It is substantial already that this research has 

produced a functional model formulation – not a definitive formulation, but rather one that may 

be revisited after adequate testing and analysis. 

 

5.3.2 Regression Results 

Building on the exploratory data analysis just presented, this section provides a summary 

of the regression results for the simulated output. Here, the independent variables were the 

parameter values for each of 1000 experiments performed. Each experiment consists of 25 

simulation runs to compensate for random variations between runs. The dependent variable was 

the average move error, combining both directional and cumulative moves across each 

simulation batch. 

 
Table 6. Regression Summary of Parameter Effects on Average Move Error 
 Full Model Linear Model 
R-squared .701 .478 
Standard Error of the Estimate 50.6 66.3 
Social Network Effect (locSN) significant NOT significant 
Effect of Children on Network (nwChild) NOT significant more significant 
Effect of Distance on Network (nwDist) NOT significant NOT significant 
Probability of Local Ties (localProb) significant significant 
Affordability Constraint (locAfford) significant NOT significant 
Network Constant (nwConst) significant NOT significant 
 

Table 6 provides an overview of the regression analyses performed on the simulation 

data. Two models were created for comparison of parameter significance. The full model 

includes nonlinear (squared) as well as linear forms of the 12 independent variables.19 While the 

                                                 
19 Each parameter was multiplied by 100 for scaling purposes prior to regression and transformation into squared 
terms. 
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full model has a better fit (i.e., a higher R-squared term) than the linear model, it also has twice 

as many independent variables. 

Aside from the comparison of R-squared and standard error terms, Table 6 provides a 

qualitative comparison of the two models, highlighting which parameters appeared as significant. 

The significance of some effects depends upon the model. For example, the social network effect 

on location choice was deemed significant when squared terms were included, but not in the 

linear model. The effect of children on social network formation was not significant in the full 

model, but was more significant in the linear model. The distance effect on network formation 

appeared insignificant in both model forms, but the probability of local ties (a means of 

incorporating spatial effects within a discrete blockgroup area rather than along a spectrum of 

block distance) was significant in both. Regression details for each model are provided in Table 

7 (linear model) and Table 8 (full model). 

 
Table 7. Regression of Model Parameters (Linear Form) on Average Move Error 

Coefficientsa

371.219 11.747 31.601 .000
.577 .105 .315 5.524 .000

-.010 .203 -.003 -.051 .960
-.766 .158 -.214 -4.853 .000
-.196 .231 -.061 -.848 .397
-.629 .155 -.245 -4.048 .000
-.305 .181 -.085 -1.687 .092
.153 .104 .076 1.462 .144

-1.218 .189 -.337 -6.435 .000
-.129 .143 -.045 -.897 .370
1.526 .156 .465 9.808 .000

.237 .187 .066 1.269 .205
-.762 .269 -.112 -2.831 .005

(Constant)
nwNorm
nwConst
nwInc
nwDist
nwRace
nwChild
locNorm
locConst
locAfford
locAttract
locSN
localProb

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: avgErra. 
 

 

The regression results in Table 7 reveal the coefficients and significance levels of the 12 

linear parameters (and a constant term). The results appear straightforward in this form, though 

the linear model fit to the average error is not as close as the full model. As mentioned in the 
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context of Table 6, several of these parameters have different significant levels from their 

nonlinear form in the full model. 

 
Table 8. Regression of Model Parameters (with Squared Terms) on Average Move Error 

Coefficientsa

558.212 25.550 21.847 .000
.722 .300 .394 2.410 .016

-.002 .001 -.256 -1.677 .094
-1.907 .497 -.550 -3.833 .000

.022 .004 .751 5.024 .000
2.828 .486 .791 5.815 .000
-.034 .004 -1.115 -7.626 .000
-.265 .483 -.082 -.549 .583
.002 .004 .070 .543 .587

1.149 .394 .448 2.918 .004
-.014 .003 -.594 -4.298 .000
-.339 .543 -.094 -.624 .533
-.003 .005 -.099 -.632 .528
.074 .277 .037 .266 .790
.000 .001 .028 .223 .824

-5.419 .555 -1.500 -9.758 .000
.035 .005 1.229 7.580 .000

-2.007 .406 -.710 -4.938 .000
.015 .003 .610 4.435 .000

-1.955 .362 -.595 -5.397 .000
.039 .004 1.224 10.648 .000

1.934 .489 .537 3.956 .000
-.014 .005 -.366 -2.996 .003

-5.297 1.419 -.782 -3.732 .000
.045 .015 .656 3.005 .003

(Constant)
nwNorm
nwNorm2
nwConst
nwConst2
nwInc
nwInc2
nwDist
nwDist2
nwRace
nwRace2
nwChild
nwChild2
locNorm
locNorm2
locConst
locConst2
locAfford
locAfford2
locAttract
locAttract2
locSN
locSN2
localProb
localProb2

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: avgErra. 
 

Table 8 lists the coefficients and significance of 24 parameters (plus a constant) for the 

regression of a model with both linear and squared terms. As noted in Table 6, this model fits the 

simulation error better than the linear model form, but does so at the expense of extra parameters. 

The significance (as measured by the t-value magnitude greater than 2, and p-value less than .05) 

tests reveal that both linear and squared parameters share significance levels. That is, both linear 

and squared income effects on network choice are significant. Similarly, both linear and squared 
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distance effects on network choice are insignificant. Several of these parameter pairs also 

changed coefficient polarity between the linear and squared forms. 

The results of this analysis are mixed. Social network influence on location choice is 

considered significant in a nonlinear form but not in the linear model. Distance effects on 

network choice are not considered significant, though the creation of local ties is significant on 

reducing migration error. Spatial and social effects are interlinked by migration patterns, and are 

suggestive (if not conclusive) of significance in alternative model forms. 
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CHAPTER 6.  CONCLUSIONS 

 

It is a bittersweet feeling to come to the end of a project and realize it is only the 

beginning. On the one hand, the results described in the previous chapter do not conclusively 

demonstrate the effect of social networks on spatial disparity, or even migration patterns. On the 

other hand, the results are suggestive enough to warrant further exploration using the modeling 

methodology demonstrated in this project. Such exploration is warranted in two ways: (1) further 

analysis of filtered solutions and their implications for the social link with spatial disparity; (2) 

revisiting the problem and beginning another cycle of modeling as suggested by both Figure 2 

and Figure 5 earlier. 

This research represents a significant step toward addressing the “wicked” problem 

(Rittel and Webber 1973) of spatial disparity using agent-based modeling. As with other large 

models of rich spatial and temporal detail (e.g., BenDor and Metcalf 2006), the model generated 

in this project may be considered a sort of knowledge repository to consolidate alternative forms 

of information relevant to the Danville case. The inclusion of household choice in a spatial 

dynamic simulation model crosses a pragmatic frontier in representing multidimensional 

complex systems (Agarwal et al. 2002). More broadly, the structural template of the model may 

be applied to other metropolitan areas facing similar dilemmas of disparity. 

As articulated in Chapter 1, the goal of this study was to examine how social networks 

can shape community structure through neighborhood choice. The relationships illustrated in 

Figure 1 serve as a dynamic hypothesis to guide model conceptualization for the case of 

Danville, IL, USA. A variety of data sources provided a rich starting template of household agent 

attributes in a spatial dynamic simulation model. Spatial owner migration patterns accumulated 

at the Census blockgroup level serve to inform model development and calibration. 

A prototype model (built without quantitative data) accelerated the model development 

cycle by testing heuristics in a two-neighborhood system. The full model (see CaseTown 

Package and Model Structure in Appendices F and G) was built with a combination of java 

classes and AnyLogic active objects. Spatial data at a variety of scales (e.g, parcel, block, 

blockgroup) were processed using a set of algorithms to structure a set of state objects that 

provide context for the household agent objects. Household attributes were inferred 

probabilistically from Census 2001 distributions in conjunction with available owner-occupied 



 83

household locations for 2001. The initial social network among households is constructed from 

the same network choices that are made over time. 

Network and neighborhood choices are formulated such that the utility of a decision 

depends upon parameter weights that may be estimated indirectly from observed migration 

patterns. The significant amount of randomness in this model can produce divergent, path-

dependent outcomes for the same parameter settings. While the random aspects of initial network 

formation may be fixed using a random seed, the dynamics of the full model have not been fixed 

in this way. AnyLogic software experts are presently helping to excavate the source of this 

trouble and determine its implications. 

 

6.1 Insights 

Balanced spatial preferences in the prototype model led to a stronger emphasis on income 

in determining choices and thus disparity between neighborhoods. Those who can afford to move 

to the more attractive neighborhood do so, producing an agglomeration of higher income 

individuals in the attractive neighborhood. At the same time, balanced preferences result in a 

higher cohesion level, so that spatial disparity and fragmentation do not coexist at their extremes 

under this model formulation. 

For the applied CaseTown model, the results of 1000 simulation experiments provide 

insight into the effects of alternative model structures on recreating migration patterns. Each 

experiment allows for variation across simulation runs by averaging directional and cumulative 

move error over a batch of 25 runs. The solution space was more than halved by filtering results 

below a combined error (objective function) of 230 moves. The resulting 486 alternatives were 

examined for patterns in the parameter space linking social and spatial effects. Linear regression 

was performed on the set of 1000 experiments to test the significance of the choice parameters in 

predicting migration error. 

The significance of social network influence on neighborhood choice appears in a 

nonlinear regression model but not in a linear form. The distance effect on network choice is not 

significant, but the probability of forming local ties is a significant effect generally estimated to 

be greater than 50% likelihood in the home blockgroup. 

The analysis stage of the modeling process (e.g., Figure 5) warrants at least as much time 

and effort as the model formulation, though it is often cut short by project deadlines. Fortunately, 
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the data-intensiveness of this model necessitated analysis throughout the research process, so that 

insights were archived along the way. For example, the measurable significance of shared last 

name on spatial proximity suggested the influence of social ties on spatial patterns.  

The owner-occupied household data over a two-year time series revealed a northwest 

migration pattern within Danville, as congruent with anecdotal evidence and expectations. This 

internal migration pattern contrasted with the overall flows of outmigration and new ownership. 

Outmigration from Danville was evident in the more affluent neighborhoods, ostensibly where 

property values could be recouped as mobile professionals relocated for better job opportunities. 

An influx of ownership in lower income areas (such as the neighborhood of focus for this 

project) revealed the significance of renter to owner transitions. Since the property values had 

reached bottom in lower income areas, landlords were willing to sell houses to tenants on 

contract after they made enough money from renting.  

Because the renter-owner transitions are significant, and the renter-owner ratio is 

considered to be an indicator of neighborhood stability, renters and owners are modeled 

explicitly in this project. While an influx of renters could bring instability to a neighborhood, the 

transition to ownership status enables an avenue for extending tenure and strengthening social 

networks (as suggested by the causal map in Figure 26). Although a flexible framework has been 

created, further analysis of renter/owner dynamics is warranted. 

This research has developed a model and theoretical framework to examine the dynamics 

of spatial and social influences on neighborhood and network choice. While the results are 

mixed, they illustrate how a computer model may be used to shed insight on the spatial dynamics 

of emergent social phenomena such as spatial disparity. I utilize fieldwork that elicits perceptions 

of place to help structure the model and also reveal its limitations. With further developments, 

the model may be used as a computational laboratory to explore the effects of alternative policy 

settings, individual assumptions and institutional structures.  

 

6.2 Model Extensions 

The most immediate and direct extensions of this work would be to extend the analysis of 

simulated migration patterns. To do so, the error between simulated and observed moves may be 

structured in an objective function such that cells in the migration matrix are weighted by the 

number of moves therein. The majority of zero cells would then matter less to the objective 
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function than cells with significant flows of homeowners. Refinement of this error would enable 

better examination of parameter effects. 

While the mechanics of migration have been emphasized in this iteration of the modeling 

cycle, they must still be linked to measures of spatial disparity. Such disparity could be measured 

in different ways. The prototype model assessed the gap in average income between two 

neighborhoods as an indicator of disparity. This income gap was compared with network 

characteristics such as the fraction of social ties crossing neighborhood boundaries. While the 

measure of local social ties has been employed in the full model across 28 blockgroups, a single 

measure of spatial disparity has not been articulated at the blockgroup scale. 

Extensions of model scope could include familial relationships derived from shared last 

name. Spatial dimensions of family ties are measurable from the distance analysis in Chapter 3. 

Similarly, the presence of children was more significant than factors such as race and block 

distance in influencing social network choice. As noted in the previous chapter, model 

extensions focusing on neighborhood choice could focus on the aggregate feedback of housing 

composition on prospective household choice.  

Negative (balancing) effects from excess vacancy and rentals, as well as mixed effects 

from preferences for similarity or diversity of race or ownership status could be incorporated. 

Indeed, the abstract segregation model introduced by Schelling (1971, 1978) suggests that a 

preference for diversity is required to overcome even a slight self-sorting tendency. Well-

designed mixed-use neighborhoods could help to promote such individual-level preferences. 

 

6.3 Policy Analyses 

Once a feasible set of solutions has been derived from sensitivity analysis, more specific 

experiments may be conducted to test scenarios of migration shocks. Controlled variations of 

renter-owner transitions and evaluation frequencies would also be warranted. These experiments 

require resolution of the simulated random seed problem to ensure reproducible results. With 

these adjustments, dynamics of spatial disparity indicators may be juxtaposed with community 

network structures in a coherent manner. 

The intrinsic policies that may be tested with this model include whether it is a good idea 

to allocate resources toward neighborhood association formation. Specifically, policy analysis 

could aid in addressing the following questions: 
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 How can local networks develop at a fine enough scale of neighborhood to create a 

coherent cluster? A dense spatial cluster of social networks could become myopic 

and insular, or it could become an organization empowered to transact directly with 

the city. A neighborhood association could induce the latter. 

 How can a collective sense of place be incubated in such a network to balance rapid 

migration dynamics? A policy encouraging renters to transition to homeowner status 

could help to stabilize neighborhoods. Alternatively, such a policy may not matter 

much beyond a particular tipping point of neighborhood composition (be it along 

dimensions of income, tenure, vacancy or race). 

 How does spatial disparity relate to social fragmentation? This question requires 

explicit formulation of both disparity and fragmentation, despite their conceptual 

linkage the in the introduction to this research. Counter to expectations, the prototype 

model measures for disparity and fragmentation did not coexist at the same instance 

in spacetime. 

 

6.4 Implications 

In the end, the purpose of this project has been to examine the feasibility of this modeling 

and calibration methodology as applied to the persistent problem of spatial disparity. While this 

is only a modest step toward understanding the problem, it is a more groundbreaking step in 

terms of suggesting alternative ways of examining the problem. 

The simulation model presented herein provides the opportunity to test understanding of 

migration dynamics using internally consistent assumptions. In this way, the model framework 

serves as a repository for knowledge arriving in various forms, from qualitative explanations to 

quantitative data. Alternative model structures enable multiple valid perspectives on the problem, 

and the real-world case provides a sort of “ground truth” to humble the model and reveal its 

limitations. The goal of modeling is to generate iterative learning about the problem. The 

benefits of this iteration are not restricted to modelers – it engenders dialogue between policy 

stakeholders and residents. One of my interviewees reminded me that my own participation was 

influencing the growth of the neighborhood association, for example. 

When we use the power of direct experience, we can creatively think of how our own 

decision rules operate, and learn to translate these rules into algorithms. While we humans have a 
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great advantage in deeply understanding our human subjects from within, this renders us our 

own harshest critics about the validity of any assumptions at all. After all, humans are 

unpredictable! As soon as we attempt to model ourselves, we have transcended the selves we 

wished to represent. 

It is because of the impossibility of ever modeling ourselves completely that we must 

always iterate in the modeling process. No answer will be conclusive, but we can take what we 

learn and apply it to further questions, inquiring into a universe of “whys” as we get closer to 

understanding our fundamental nature. 

The pattern-oriented modeling process applied herein uses patterns to decode information 

otherwise unavailable to the scientist (Wiegand et al. 2003, Grimm and Railsback 2005, Grimm 

et al. 2005). In this research, migration patterns have enabled examination of possible recursive 

relationships between social network and neighborhood choice. The results are neither 

conclusive nor inconclusive, but rather suggestive of further research in this domain. 

The process of learning by experimenting enables deeper understanding of the problem at 

hand. Despite an apparent quest for realism in modeling, it is this process of exploration that 

enables intuition to build from the experiment of modeling ourselves. In addressing the problem 

of spatial disparity, I have focused on insights rather than specific answers. Understanding the 

model structure is central to understanding model behavior. Because so much uncertainty exists 

in many of the assumed parameter values, much insight can be gleaned from observing patterns 

of simulated and empirical behavior over spacetime. 
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Appendix A: Interview Guide 

I’m trying to understand what makes a neighborhood.  How does a neighborhood form, how 
does it change?  I know that neighborhoods depend on who lives there and how they know each 
other.  I’d like to ask you some questions about your own experience with neighborhoods in 
Danville.  I’ve got a tape recorder to make note-taking easier.  If you feel uncomfortable with 
any of the questions, you can “pass” on them.  Your recorded response will be anonymous.  
Please read over this consent form and sign it.  You’ll keep a copy and you can contact me at any 
time. 
 
Are you ready to begin? 
 

1. How long have you lived in Danville? 
 

2. Would you mind sharing your age? 
 

3. How long have you lived in this house?   
 

4. Do you rent or own your home? 
 

5. How many people live in your house, including you? 
 

6. Where did you live before? 
 

7. Why did you decide to move to this house? 
 

8. Were there any people (friends or family) who influenced your decision?  If so, how? 
 

9. Have you ever thought about leaving?  If so, when and why? 
 
 

10. How would you describe this neighborhood when you moved here? 
 

11. Did any of your friendships change when you moved here?  In what way? 
 

12. If you were to draw your neighborhood boundary at that time, where would it be? Why? 
 

13. Did you know any of your neighbors before you came here? After? 
 

14. How often did you interact with your neighbors when you moved here? 
 
 

15. When did your neighborhood association form? 
 

16. Why did your neighborhood association form? 
 

17. How did your neighborhood association form?  Were you part of that process? 
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18. How were the boundaries of the association decided? 

 
19. If you could change one thing about the association, what would it be? 

 
20. How has the neighborhood association affected your life here? 

 
21. How would it affect you if the neighborhood association dissolved? 

 
 

22. How many of your neighbors would you consider close friends? 
 

23. How often do you interact with your neighbors? With your friends? 
 

24. In what ways are neighborhood friendships important to you? 
 

25. Who is your closest friend in this neighborhood? In Danville? 
 

26. How would it affect you if your best friend left this neighborhood? If he/she left 
Danville? 

 
27. How does it affect you when new people move into this neighborhood? 

 
28. Would you consider leaving your neighborhood for another one in Danville? Which? 

 
 

29. Using a reference map of Danville, describe distinct neighborhoods. How are they 
different from each other?  

 
30. Where do your closest friends and family live? 

 
31. How often do you visit your friends and family?  On what occasions? 

 
32. Do you go to church?  Which one?  Where is it located? 

 
33. How many of your friends and family are part of your church? 

 
34. How would it affect you if the church dissolved? 

 
35. Do you avoid certain places? Which ones? In what way?   

 
I’d like to interview up to ten people for this project.  Can you recommend anyone else who 
might be good to talk to?  Someone who lives or used to live in this neighborhood? Or someone 
from another changing neighborhood in Danville? 
 
Is there anything else you’d like to add?  Thank you for your time! 
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Human Subjects in Research Consent Form 
Research on How Neighborhoods Are Made 

 
I will participate in a research study designed to understand how neighborhoods are made from individual 
choices and social ties to place.  This study is conducted by investigator Sara Metcalf at the University of 
Illinois at Urbana-Champaign.  Participants must be 18 years or older. 
 

1. I understand that participants in this study will include individuals who currently or have recently 
lived in a Danville neighborhood. 

 
2. I understand that the duration of the study will be from summer 2005 through summer 2006, and 

that most interviews will occur during summer and fall 2005. 
 

3. I understand that I may be asked to respond to interview questions, and my responses may be 
recorded on audiotape for research purposes.  The interviews may take 1 to 1½ hours of my time. 

 
4. I understand that I may refuse to answer any questions that make me feel uncomfortable. 

 
5. I understand that there are no psychological, emotional or physical risks to participation in this 

study. 
 

6. I understand that I may benefit from this research by gaining an improved understanding of how I 
influence neighborhoods. 

 
7. I understand that I will not receive any monetary compensation for participation in this study. 

 
8. I understand that I will remain anonymous in any reports of research findings from this study. 

 
9. I understand that participation in this study is voluntary and that I may withdraw at any time. 

 
10. I understand that this research study has been reviewed and approved by the Institutional Review 

Board—Human Subjects in Research, University of Illinois.  For research-related problems or 
questions regarding subjects’ rights, I can contact the Institutional Review Board at 217-333-2670 
or email irb@uiuc.edu. 

 
I have read and understand the explanation provided to me.  I have had all my questions answered to my 
satisfaction, and I voluntarily agree to participate in this study. 
 
I have been given a copy of this consent form. 
 
 
______________________________________________ _______________________ 
Subject/Participant      Date 
 
 
______________________________________________ _______________________ 
Researcher       Date 
 
For more information, contact Sara Metcalf.  Phone: 217-390-7421.  Email:  ssm@uiuc.edu 
This research is under the supervision of Dr. Bruce Hannon, Dept. of Geography, University of Illinois. 
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Appendix B: Neighborhood Research Report-Out 

Results of Neighborhood Research 
For the Kentucky-Tennessee-Delaware (KTD) Neighborhood Association 

 
Sara S. Metcalf 

University of Illinois at Urbana-Champaign 
July 13, 2006 

 
For the past year, I’ve been trying to understand what makes a neighborhood.  How does a 
neighborhood form, how does it change? I know that neighborhoods depend on who lives there 
and how they know each other. I chose Danville as the focus of my research because the overall 
population is stable, but there have been lots of changes within Danville neighborhoods. John 
Dreher introduced me to several of the neighborhood associations in town. I first visited the KTD 
meeting in August 2005, as you were preparing for the block party. The strength of this 
association impressed me, and after a few more visits I began to interview some of the residents 
from this area. 
 
For my research, I asked people about their experiences living in different neighborhoods in 
Danville as well as other communities. I was particularly interested in the influence of social ties 
(friends and family) on choices of where to live. People choose to move for a lot of different 
reasons, but having strong connections to people in the place that you live helps to build a solid, 
stable community. 
 
At this stage, I have finished my interviews and observations of Danville. The city of Danville 
also provided me with computer data that I’ve used to look at local migration patterns for 
homeowners in the past few years. The final stage of my research is to put what I’ve learned into 
a computer model that can be used to experiment with different ideas about the role of social ties 
on neighborhood stability. 
 
What follows is a selection of quotes that relate to the KTD neighborhood experience and the 
neighborhood association. I have grouped these quotes according to certain themes. I believe that 
reading your neighbors’ words is more powerful than my interpretation of them! 
 
I’m providing this update on what I’ve learned from the study so far, since I’m moving to Texas 
to finish the computer part of the project. Thanks so much to everyone who welcomed me here 
and shared their perspective with me. I hope that you continue to make your neighborhood 
stronger as you get to know each other through the KTD neighborhood association. 
 
I appreciate any additional comments or concerns that you might have about this study. Please 
feel free to contact me: 

Sara Metcalf 
10995 Woodlands Drive 
College Station, TX 77845 
(979) 764-3925 (home) 
(217) 390-7421 (mobile) 
sara.metcalf@gmail.com 
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Concerns and Changes 
“Over the years the neighborhood has changed, and we have a younger group coming in 

now, that’s in now, and kids and so forth.  When I came in it was so quiet, you know.  Now I’m 
thinking what is all this noise out here, you know. In the summertime the stereos are blasting and 
all that and cars up and down the street.” 

“Now the little kids, they are running all over and it scares me to death.  I don’t say 
anything but sometimes I think they let them run a little too loose and it’s not that safe.  It’s a 
main drag.” 

“They wanted to get the traffic to slow down.  To keep kids from running wild in the 
neighborhood.  Maybe to enhance the neighborhood and just in general they got sick and tired of 
being a deteriorating area of the community and no one really taking an interest.” 

 

Past Experiences with Neighborhoods 
“I just thought back to my past and how we had our block clubs and our block 

associations, the camaraderie it brought about and the connections for just neighborhood 
improvement and well being for our kids.” 

“I remember as a kid, they used to actually as a neighborhood do things to beautify the 
neighborhood.  It was kind of infectious that when someone was doing something with their 
home and their property and because of the neighborhood – everybody would do it.  So I hope 
we can get to the point where we can have enough uniformity that we can do things as a 
neighborhood and spend a little money, our own money on our property and build it up.” 

 

KTD Neighbor Experiences 
“When I meet a neighbor, I see if there’s anything that we have in common.  I look to see 

if there’s any need that maybe I could address.” 

“When my neighbors here went on vacation for about three weeks, I’d get the mail in for 
them.  I’ve got their cell phone number so I can call them if anything happened.  I was never 
close with them before that – so it is helping to build some bonds here that I think are just 
wonderful.  People are getting to know one another.” 

“Every time I would move in a neighborhood, if it was somebody I don’t know or didn’t 
know before, I would take something like a pie to go welcome.” 

“I introduced myself because I was working, I was going in and out all the time and there 
were some situations I wanted them to be aware of.  And I wanted to know who lived next door 
to us and around us.” 

“When my neighbor first came in, and at the time I had the mentality I’m going to 
welcome these new folks in, let them know we’re here if they need any help with anything. So I 
went over there and introduced myself. He thanked me, he appreciated it, but he told me that he 
was a private person; that he was just moving into the neighborhood and his philosophy that he 
doesn’t bother people so he doesn’t want people to bother him. I didn’t want him to think that we 
were trying to intrude on his privacy or his new life. Then one day he said, “Do you need any 
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help with anything?”  Slowly we developed a kind of quiet friendship. So I would tell him when 
I’m going to leave, and I’d say if you would kind of keep an eye on the place.” 

 

Privacy and Security 
“There was an old man that was stabbed. I got leery of the neighbors. I’d speak to those 

neighbors that I knew, but other people – I didn’t reach out to. There’s been some things that 
happened and it makes you leery of who’s moving in next door. I believe in God but I believe 
God wants me to use wisdom and to be careful about things and people.” 

“What I see with this group here like I said before is a desire to get back to where you 
could leave your door unlocked.  They want that security and watch out and you immediately 
notice somebody strange.” 

“A lot of the neighbors just mostly keep to themselves. They do their own thing.” 

“As we began to see that older age group begin to leave the neighborhood, I kind of took 
a private type of stance, because as I would see people come moving in – and I didn’t know who 
they were. I didn’t know if they were friendly or not.  I know a lot of people are so private 
today.” 

“If you want to talk to me you can come talk to me.  I’m not going to butt into your life.” 

“Now people have become so private, but I think it’s a defense mechanism.  You know, 
they don’t want you to know what they have, they don’t want you to know too much about them 
because one they don’t want you to come and ask them to do anything you know; and it’s 
unfortunate it’s gotten that way but that’s the way of life.” 

 

Fear 
“The association is helping to give me backbone. Fear can just ruin your life. It can 

paralyze you.  I’m not going to live like that.” 

“I was just getting gas last night and got really frightened. I startle easily. I’ve had some 
very off-color remarks made. I don’t like to be out at nighttime up in those stores. I just don’t 
feel that safe.” 

“Somebody tried to rob us. And then every night I would get up just to look out the 
window. It was like I was scared. It was like we’ve been invaded.” 

“They come in with a sense of trying to intimidate, and I think a lot of that comes from 
their fear of not knowing what to expect, how they're going to be accepted. If I'm going to be 
accepted badly, I'm going to behave badly.” 

 

Prejudice and Bias 
“I try to operate on the system that every person is entitled to dignity and respect. Person 

by person I try to adjust. When you get right down to the nitty gritty everybody has a prejudice 
and it may not show, but it can be felt.” 
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“I have come to this neighborhood with a lot of prejudice and a lot of biases. I think God 
is working on humbling me. I’m coming into it with my eyes open. It’s not about what we have. 
It’s who we are and what we do while we’re here.  I think there are lots of reasons why I’m here 
and in this house and in this community.” 

“There may be a few good ones in there and you miss those because of the other stuff, the 
bad stuff.” 

 

Reporting Trouble 
“We’ve got a neighborhood watch going. If we see something going on we can call the 

police and report it - but at least we can alert one another as to this is going on.” 

“I see something going on, I call the police and I don’t worry about it. I’ve always just 
been afraid to call the police because I’ve had neighbors that have had scanners. Now that 
they’ve told me, you just tell them you’re with this association, and you tell them you don’t want 
this over the scanner – and they will do it.” 

“I’m not afraid to tell somebody that they are playing their radio too loud. The speed – 
I’m not afraid to call the cops and tell them to come get them or if there is a lot of loud noises. 
Whether I confront them directly depends on what I think that person’s personality is. I ache in 
the morning if I have to wrestle somebody. Sometimes the badge and gun get a little bit more 
attention than the average Joe.” 

 

Rental Properties 
“The association has changed my attitude about our area. You think about your property 

value and a lot of people don’t own their homes around here. So they aren’t thinking about that 
stuff, property value.” 

“A lot of the homes in this area are rentals, and rentals are going to attract more transient 
type of people.” 

“I would really like to see a better relationship, more activity within the residents because 
we are so oriented toward rental properties. I think the landowners ought to become more 
involved, more aware that an effort is being made, and I think that's probably why I became 
familiar with the landowner next door. Awareness – communication is a real key; and if you 
don't know who to communicate with, it probably isn't going to happen.” 

 

Challenges 
“I don’t know if it was kids or whoever, they spray painted the garage. They wrote it out 

and then he had wiped it, scrubbed it off. It was like every day, they would put something on the 
thing. Then I was like, “just leave it alone because they’re going to keep coming back.”  It’s still 
up there. We don’t even mess with it - you don’t know who’s doing these things.” 

“My house needs a lot of work on it, but that’s some financial problems that I’ve got.” 
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“Some of people don’t feel a need to go to the meetings. They are satisfied – they take 
care of their houses, they do this.  They are usually older people and others are renters, but they 
work nights. So they can’t.” 

 

Awareness 
“I encourage the neighbors to just be aware of what is happening.” 

“It is helping to just get to know the neighbors. It makes a big difference knowing who 
you live next door to or across the street from.” 

“I don't think anybody wants anybody in their face, but let them know there is a face.” 

 

Building Community 
“I consider a neighborhood as where I could come to you, you could come to me, we can 

help each other out instead of we just going past, hi, and that’s it. I don’t even know your name.” 

“To me a neighborhood is something that grows; something that develops; a place where 
you love to be, you enjoy to be; you bring your family.” 

“I just want to see the neighbors that are doing this just to stay together and to stay 
formed and just to have a strong bond there to keep our neighborhood strong.” 

“We should do more to build relationships with each other, because there tends to be 
more caring about each other when you have a relationship with each other.” 

“We have neighbors coming together, leaving contact numbers, getting to know more 
people in your neighborhood.” 

“People wouldn’t care as much if they didn’t know that someone cared. It makes a bond.  
You need the neighborhood bond to have a better neighborhood.” 

 

Visible Changes 
“We just want the neighborhood to look good – not like a dump.  Things are cleaning up 

a lot.  We’ve come a long way with it.” 

“Whether it had to do with the potholes in the streets or an abandoned house being gone 
or some of the traffic moved out, we didn't care as long as it was something and we could 
noticeably jot down this is what happened this month and last month this happened. It was really 
pretty exciting.” 

“If I show an interest to you in how you living over there and your yard, help you keep it 
clean, then they’ll do it, too. Before I would walk past somebody’s house or whatever or the 
sidewalk and see trash and I just keep walking. But now I do pick up stuff even if it’s not on my 
property.” 

“My theory is keeping things picked up and respectable and responsible for – has nothing 
to do with income.” 
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Experiences in the KTD Association 
“Before the neighborhood association came about, I never thought about the 

neighborhood. My neighbors, the person the left and to the right of me, the people directly across 
the street – probably like this little square area but past that, it's not like we had any really true 
contact with each other outside of saying "hi" and "goodbye."” 

“I felt very much like an outsider. I was needing to be welcomed and embraced.  They 
just had another agenda at the time. I try to look at those things and not take it personally, but 
that’s how I felt the first time.” 

“I used to think the association was like a bickering thing. I can hear that stuff every day 
all day. I already knew about half of the people they were talking about. But then they started to 
get the ball rolling. One lady was having a problem, a serious problem that she would be in tears. 
But then they went down to city hall, talked to the mayor, talked to the police chief, and it’s 
straightened out. The lady is feeling so much better. I’m glad that happened.” 

“I got to meet a few other people that were further down the street that I would talk and 
connect with better.” 

“We've got a connection in that regard on how to bring on more people on the block to be 
involved so that they can see the benefit in the work that you put into it, especially if you plan to 
stay in the neighborhood or even to have property improvement and whatever. It's all for the 
better good. But to have people to come out to understand that it's a benefit for us all, that's the 
hardest sell, especially to the younger people.” 

“I've become more familiar with who the neighbors are, and in that it gives me a little 
more comfort and knowledge of knowing kind of what might be expected. And I've seen some 
improvements. People have started to take more pride and connect more with one another.” 

“Because of the neighborhood association I’m getting to know them more now. There 
was a time where we had people move in or move out. They weren’t there long enough to know 
who they were. And now we have, I think, some neighbors that are fairly stable. But the 
interaction is not as much. It’s getting better because of the neighborhood association. And I 
want to know the neighbors, you know.  I want the neighbors to know us.” 

“I like having the voice of our city officials, because as an association, when you call 
them they better come. And we’ve got some things done because of that. It gives me an avenue 
to be involved with the political system with actually not being involved. I like that avenue 
because I don’t want to have to go down to city hall, I don’t want to have to go to your rallies.  
We can bring it up at the association. I’ve come to learn that the association, as an association, 
has a stronger voice than an individual.” 

 

Suggestions for the KTD Association 

“I think if we would get together more often, we would know each other more.  Then we 
would trust each other more.” 

“At the beginning of each meeting I would have some introductions and maybe even an 
ice-breaker just to be able to connect on a personal level. Even maybe nametags with our name 
and address.” 
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“I would like more involvement. I would like more people coming out and being more 
hands on actively involved in things. A lot of what we still do is try to bring people out. If we 
could more equally divide the work, then I think we would grow more and prosper more and not 
promote burnout.  It's a lot of work, but I don't think people truly understand if we divided the 
work, if everybody had a hands-on involvement and we divided the work, it wouldn't be as 
much.” 

“I think when you come to a neighborhood you need to lay it down. Welcoming packet, 
these are what you can do and what you can’t do. This is a neighborhood association, would you 
do be interested in doing this?” 

“I would change our process so it’s a little bit more formal. There have been some 
meetings that we have gone over things two and three times that we already talked about in other 
meetings. If you have secretary reports and things like that, you can say, you know, we covered 
that. And you can set yourself action items. I like that because assign somebody to do that and 
run it down and then it’s done and you can close it out and keep rolling.” 

“I would want to get more people involved. Because we have the same kind of group of 
people. At first there was a lot of people. In the first couple of meetings, when we were talking 
about getting things done, they wanted them done like the next day. “Why didn’t this get done 
yesterday?” They don’t realize that, like John Dreher says, everything has to go through a 
process.” 

 

Overcoming Adversity 
“I’m going to do my level best to make it a home and be a part of this community. I’m 

not going to be chased in and become a prisoner of my home because I encounter some bad 
behavior on the part of other people. I am going to do my best to seek out people with whom I 
can develop relationships with and have friendships with, and I think that’s so important.” 

“Deterioration of the neighborhood has never been a force to make me want to leave.” 

“I think the world has become a place that if you find something wrong with your 
neighborhood or where you live, the easiest thing to do is leave. The toughest thing to do is to 
stay there and make it better. I read a little quote that says, “adversity does not build character, it 
reveals it.” I like that. And what I hope is over time, if we’ve had adversity in this community, 
it’s not going to build character for the community but it’s going to reveal the character that we 
already have. That’s my hope for this association because we have good people, we have strong 
leaders, and they’re not made; it’s already there; it’s just being brought out.” 
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Appendix C: Metadata for Parcel Dataset 

Horizontal coordinate system  
Projected coordinate system name: NAD_1927_StatePlane_Illinois_East_FIPS_1201  
Geographic coordinate system name: GCS_North_American_1927  

Details  
Grid Coordinate System Name: State Plane Coordinate System 1927  

SPCS Zone Identifier: 1201  
Transverse Mercator Projection  

Scale Factor at Central Meridian: 0.999975 
Longitude of Central Meridian: -88.333333 
Latitude of Projection Origin: 36.666667 
False Easting: 500000.000000 
False Northing: 0.000000 
 

Planar Coordinate Information  
Planar Distance Units: survey feet  
Coordinate Encoding Method: coordinate pair  

Coordinate Representation  
Abscissa Resolution: 0.000128  
Ordinate Resolution: 0.000128 

Geodetic Model  
Horizontal Datum Name: North American Datum of 1927  
Ellipsoid Name: Clarke 1866  
Semi-major Axis: 6378206.400000  
Denominator of Flattening Ratio: 294.978698  

Bounding coordinates  
Horizontal  

In decimal degrees  
West: -87.679502  
East: -87.528728  
North: 40.227759  
South: 40.086123  

In projected or local coordinates  
Left: 682947.312495  
Right: 724674.687486  
Top: 1297527.125007  
Bottom: 1246270.000015 
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Appendix D: Example Raw (Unstructured) Data Files for Model Objects 

 
Table 9. Row Excerpt from Parcel Data (13166parcels.csv) 
HouseID X Y BlockName BlockGroupName PARCEL_ID 

0 696788.25 1262927.79 171830001001021 171830001001 2969 
1 695772.30 1259700.80 171830001002017 171830001002 1394 
2 695846.21 1259800.77 171830001002017 171830001002 1395 
3 699342.50 1257996.72 171830001002039 171830001002 801 
4 699354.35 1258067.47 171830001002039 171830001002 813 
5 702442.85 1256717.10 171830003002014 171830003002 3552 
6 707106.23 1269468.04 171830004001010 171830004001 4237 
7 708410.46 1270161.17 171830004001010 171830004001 4311 
8 707935.89 1269434.92 171830004001010 171830004001 4316 
9 706175.22 1269669.20 171830004001010 171830004001 4736 

10 709026.43 1268988.14 171830004001010 171830004001 4798 
11 705632.51 1268624.17 171830004001010 171830004001 4936 
12 705417.17 1268617.81 171830004001010 171830004001 4939 
13 705040.87 1268609.17 171830004001010 171830004001 4949 
14 704617.36 1268594.16 171830004001010 171830004001 4956 
15 706186.89 1268805.73 171830004001010 171830004001 5011 
16 704883.19 1269196.26 171830004001010 171830004001 5028 
17 704008.35 1268344.67 171830004001010 171830004001 5282 
18 704274.89 1268277.71 171830004001010 171830004001 5480 
19 704431.87 1268336.88 171830004001010 171830004001 5523 
20 706863.05 1268243.72 171830004001010 171830004001 5563 
21 704433.25 1268196.73 171830004001010 171830004001 5571 
22 706094.13 1268062.77 171830004001010 171830004001 5679 
23 705959.20 1268058.08 171830004001010 171830004001 5684 
24 710047.18 1268516.30 171830004001014 171830004001 5352 
25 709083.23 1266953.29 171830004001022 171830004001 700 
26 709018.58 1266944.83 171830004001022 171830004001 707 
27 708956.80 1266942.42 171830004001022 171830004001 711 
28 708894.44 1266939.07 171830004001022 171830004001 712 
29 708832.41 1266936.68 171830004001022 171830004001 716 
30 708771.48 1266933.99 171830004001022 171830004001 720 
31 708710.30 1266932.07 171830004001022 171830004001 723 
32 708647.00 1266930.44 171830004001022 171830004001 727 
33 708589.61 1266928.71 171830004001022 171830004001 730 
34 708516.92 1266944.40 171830004001022 171830004001 733 
35 708580.82 1267454.21 171830004001022 171830004001 3582 
36 709552.40 1268121.71 171830004001022 171830004001 5592 
37 709343.40 1268114.57 171830004001022 171830004001 5600 
38 709001.85 1267996.86 171830004001022 171830004001 5608 
39 708575.04 1267969.71 171830004001022 171830004001 5748 
40 708783.98 1267404.67 171830004001022 171830004001 5804 
41 709542.05 1267932.54 171830004001022 171830004001 5806 
42 708492.80 1267890.48 171830004001022 171830004001 5876 
43 709569.58 1267840.88 171830004001022 171830004001 5891 
44 708602.82 1267771.87 171830004001022 171830004001 5960 
45 708919.55 1267692.58 171830004001022 171830004001 5990 
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Table 10. Row Excerpt from Owner Data File (7576owners.csv) 
OwnID HouseID MoveCode FAMNAME FamCount

8 47 Left UPPERMAN 1
9 48 Stayed LANCON 1

10 52 Stayed JACKSON 14
11 56 Stayed STEWART 9
12 57 Stayed PARKER 14
13 59 Stayed ROBINSON 20
14 60 Stayed POPE 5
15 62 Stayed TAPIA 2
16 64 Stayed BUTLER 15
17 65 Stayed GARZA 4
18 68 Stayed WEST 7
19 70 Stayed ELLIS 17
20 72 Stayed PEREZ 18
21 73 Stayed COX 19
22 77 Left KIDWELL 5
23 78 Left SANKS 2
24 79 Stayed SCHNEIDER 3
25 80 Stayed COLLIER 4
26 81 Left WILLIAMS 44
27 84 Stayed MORGAN 13
28 87 Stayed LORENZ 1
29 88 Left SMITH 99
30 89 Stayed DAVIS 73
31 91 Stayed BRUNS 1
32 92 Stayed CITIZEN 2
33 93 Left BAKER 8
34 94 Stayed SHADLEY 1
35 95 MovedFrom WILLIAMSO 9
36 96 Stayed BLEDSOE 1
37 97 Stayed GRIFFITH 3
38 99 Stayed HARRINGTO 1
39 100 Stayed LUCAS 11
40 101 Stayed GEADES 2
41 103 Left KNIGHT 7
42 108 Stayed KEGLEY 3
43 109 Left GARMAN 2
44 112 Stayed HANER 2
45 113 Stayed BAKER 8
46 114 Stayed BRADFORD 1
47 116 Stayed BAYS 2
48 117 Stayed CROOM 1
49 118 Stayed CROOK 3
50 119 Stayed ESTRADA 1
51 120 Stayed WILSON 32
52 122 Left RODRIQUEZ 1
53 132 Stayed PAXTON 3
54 133 Stayed RAMIREZ 3
55 135 Stayed WILLIAMS 44
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Table 11. Row Excerpt from Block Data File (764blocks.csv) 
BlockID BlockName BlockGroupName Parcels Owners Renters Vacant OwnWprob RentWprob CentroidX CentroidY

0 171830001001000 171830001001 11 0 5 6 1.00 0.50 697203.11 1263745.78
1 171830001001003 171830001001 8 1 2 5 1.00 0.00 696466.22 1263725.16
2 171830001001004 171830001001 3 0 2 1 0.00 0.13 696135.78 1263678.68
3 171830001001005 171830001001 13 0 10 3 0.00 0.38 695705.50 1263298.51
4 171830001001007 171830001001 28 3 19 6 0.83 0.33 695299.28 1262523.27
5 171830001001008 171830001001 32 9 13 10 0.50 0.45 695705.58 1262549.73
6 171830001001009 171830001001 16 0 16 0 0.00 0.00 696098.46 1262568.80
7 171830001001010 171830001001 18 0 15 3 0.00 0.55 696089.15 1263333.61
8 171830001001012 171830001001 5 0 5 0 0.00 0.78 696762.37 1263330.01
9 171830001001013 171830001001 4 0 4 0 1.00 0.64 696943.71 1263331.44

10 171830001001014 171830001001 10 0 10 0 1.00 0.70 697212.94 1263333.15
11 171830001001015 171830001001 7 4 0 3 0.00 0.00 697212.63 1262914.58
12 171830001001016 171830001001 5 0 3 2 0.00 0.00 697478.24 1262916.69
13 171830001001018 171830001001 5 2 3 0 0.00 0.00 697690.40 1262663.36
14 171830001001019 171830001001 4 0 2 2 0.00 0.20 697480.40 1262643.62
15 171830001001020 171830001001 15 9 5 1 0.00 0.74 697215.44 1262395.77
16 171830001001021 171830001001 14 1 12 1 1.00 0.60 696880.61 1262574.99
17 171830001001024 171830001001 8 0 5 3 1.00 0.82 696101.51 1261785.57
18 171830001001025 171830001001 14 3 7 4 0.80 0.50 695729.92 1261767.29
19 171830001001026 171830001001 9 0 5 4 0.00 0.95 695459.49 1261780.73
20 171830001001028 171830001001 4 1 3 0 1.00 1.00 695271.74 1261368.92
21 171830001001029 171830001001 8 2 3 3 0.50 0.93 695520.33 1261358.07
22 171830001001030 171830001001 10 0 10 0 0.00 0.75 695786.01 1261337.09
23 171830001001031 171830001001 7 0 5 2 0.00 0.75 696094.61 1261381.98
24 171830001001033 171830001001 2 0 1 1 0.00 0.76 696893.61 1261426.85
25 171830001001036 171830001001 17 2 12 3 0.00 0.08 697585.39 1261792.64
26 171830001001037 171830001001 11 4 0 7 0.00 0.00 697692.02 1262308.41
27 171830001001038 171830001001 9 4 0 5 0.00 0.00 697484.59 1262288.91
28 171830001001039 171830001001 3 1 1 1 0.00 0.00 697592.28 1261374.04
29 171830001001044 171830001001 11 1 1 9 1.00 0.67 696115.28 1260894.41
30 171830001001045 171830001001 10 0 8 2 1.00 0.57 695789.88 1260845.16
31 171830001001046 171830001001 18 4 10 4 1.00 0.80 695524.11 1260861.13
32 171830001001047 171830001001 16 1 12 3 1.00 0.73 695257.17 1260867.98
33 171830001002000 171830001002 18 7 5 6 0.71 0.83 699684.19 1259605.85
34 171830001002001 171830001002 21 11 6 4 0.44 0.42 699299.78 1259571.11
35 171830001002002 171830001002 8 0 8 0 0.50 0.50 698890.38 1259719.58
36 171830001002003 171830001002 11 0 5 6 1.00 0.33 698495.26 1259771.45
37 171830001002004 171830001002 14 2 12 0 0.00 1.00 698127.92 1259579.90
38 171830001002009 171830001002 15 1 14 0 1.00 1.00 697594.58 1260872.08
39 171830001002015 171830001002 16 1 4 11 0.00 0.67 695654.22 1260177.69
40 171830001002017 171830001002 6 0 6 0 0.00 0.80 695686.56 1259541.66
41 171830001002024 171830001002 20 5 11 4 1.00 0.77 698428.01 1259062.40
42 171830001002025 171830001002 15 5 10 0 0.86 0.83 698508.96 1259441.94
43 171830001002026 171830001002 4 1 3 0 0.00 0.90 698939.22 1259373.16
44 171830001002027 171830001002 7 1 0 6 1.00 0.00 698931.56 1259076.07
45 171830001002028 171830001002 24 9 13 2 1.00 0.45 699511.41 1259071.80
46 171830001002029 171830001002 5 4 0 1 1.00 1.00 699518.87 1258742.85
47 171830001002031 171830001002 13 6 4 3 0.86 0.00 698447.94 1258763.59
48 171830001002036 171830001002 12 5 4 3 0.67 0.50 698438.18 1258430.46
49 171830001002037 171830001002 20 11 7 2 0.91 0.86 698960.70 1258428.52
50 171830001002038 171830001002 24 18 4 2 1.00 0.80 699523.24 1258406.57
51 171830001002039 171830001002 24 13 7 4 0.80 0.57 699538.82 1258013.80
52 171830001002040 171830001002 19 13 3 3 0.92 0.45 698558.70 1257636.34
53 171830001002041 171830001002 18 5 11 2 1.00 0.93 698451.69 1258028.79
54 171830001002045 171830001002 15 13 1 1 0.91 1.00 699573.68 1257682.43
55 171830001002046 171830001002 27 20 7 0 0.88 1.00 699961.22 1256855.02
56 171830002001000 171830002001 8 3 0 5 0.00 0.00 701594.83 1263969.79
57 171830002001001 171830002001 8 5 2 1 0.00 0.00 701277.10 1263958.36
58 171830002001002 171830002001 9 1 2 6 0.00 0.00 700920.59 1263937.06
59 171830002001005 171830002001 6 4 2 0 0.33 1.00 699966.99 1263493.08
60 171830002001006 171830002001 15 4 0 11 0.20 0.00 700270.39 1263522.01
61 171830002001007 171830002001 14 3 6 5 0.33 0.25 700589.62 1263533.93
62 171830002001008 171830002001 16 10 2 4 0.00 0.50 700929.60 1263518.41
63 171830002001009 171830002001 16 7 7 2 0.14 0.40 701277.31 1263530.15
64 171830002001010 171830002001 15 5 7 3 0.00 0.00 701598.38 1263532.75
65 171830002001011 171830002001 15 6 4 5 0.14 0.50 701607.51 1263017.38



 

 
Table 12. Column Excerpt20 from BlockGroup Data File (28blockGroups.csv) 
BlockGroupID BlockGroupName ChildProb WhiteChild NonWhiteChild Stayed MovedNear MovedFar Inc1 Inc16 White1 White16 Nonwhite1 Nonwhite16

0 171830001001 0.1237 0.1205 0.1290 0.2643 0.5495 0.1863 0.3651 0.0000 0.4104 0.0000 0.2903 0.0000
1 171830001002 0.2453 0.2295 0.2949 0.4231 0.4458 0.1311 0.1646 0.0000 0.1189 0.0000 0.3077 0.0000
2 171830002001 0.2677 0.0000 0.3063 0.6738 0.1943 0.1319 0.2283 0.0000 0.2188 0.0000 0.2297 0.0000
3 171830002002 0.1633 0.0000 0.1633 0.6897 0.2808 0.0296 0.4694 0.0000 0.4694 0.0000 0.4694 0.0000
4 171830002003 0.3590 0.3071 0.5634 0.5000 0.3491 0.1509 0.1054 0.0171 0.1107 0.0000 0.0845 0.0845
5 171830003001 0.3051 0.2623 0.3695 0.6480 0.3079 0.0441 0.1417 0.0000 0.0951 0.0000 0.2118 0.0000
6 171830003002 0.3924 0.4129 0.3176 0.6277 0.3203 0.0519 0.0785 0.0000 0.0871 0.0000 0.0471 0.0000
7 171830004001 0.5656 0.4344 0.6038 0.3313 0.4847 0.1840 0.4861 0.0074 0.2459 0.0000 0.5561 0.0095
8 171830004002 0.3306 0.3109 0.3871 0.5616 0.2785 0.1600 0.0569 0.0153 0.0412 0.0206 0.1022 0.0000
9 171830005001 0.3230 0.2745 0.5269 0.5173 0.3017 0.1810 0.1508 0.0000 0.0961 0.0000 0.3808 0.0000

10 171830005002 0.1880 0.0809 0.4918 0.6535 0.2977 0.0488 0.0470 0.0385 0.0636 0.0520 0.0000 0.0000
11 171830006001 0.3984 0.3538 0.4483 0.4960 0.3291 0.1749 0.1138 0.0000 0.0538 0.0000 0.1810 0.0000
12 171830006002 0.1900 0.1656 0.2464 0.6566 0.2956 0.0477 0.2969 0.0000 0.3313 0.0000 0.2174 0.0000
13 171830006003 0.3649 0.3120 0.4142 0.4436 0.4214 0.1350 0.2452 0.0000 0.1600 0.0000 0.3246 0.0000
14 171830007001 0.2862 0.2500 0.8250 0.6437 0.2302 0.1261 0.0283 0.0629 0.0302 0.0336 0.0000 0.5000
15 171830007002 0.2396 0.2207 1.0000 0.5968 0.2532 0.1500 0.0945 0.0242 0.0968 0.0248 0.0000 0.0000
16 171830007003 0.2632 0.2545 0.3939 0.5492 0.3142 0.1366 0.0207 0.0000 0.0220 0.0000 0.0000 0.0000
17 171830008001 0.3661 0.3300 0.6410 0.4013 0.3571 0.2416 0.1518 0.0000 0.1717 0.0000 0.0000 0.0000
18 171830008002 0.2529 0.2584 0.1633 0.6018 0.2958 0.1024 0.0765 0.0059 0.0699 0.0062 0.1837 0.0000
19 171830009001 0.2429 0.2469 0.2090 0.5608 0.3419 0.0973 0.2429 0.0063 0.2078 0.0071 0.5373 0.0000
20 171830009002 0.2901 0.2764 0.5000 0.6145 0.2345 0.1511 0.1225 0.0000 0.1152 0.0000 0.2353 0.0000
21 171830010002 0.3680 0.3339 0.5068 0.6253 0.3318 0.0430 0.1280 0.0093 0.1279 0.0116 0.1284 0.0000
22 171830010003 0.2745 0.2934 0.2321 0.4789 0.4327 0.0884 0.1338 0.0000 0.0998 0.0000 0.2098 0.0000
23 171830011001 0.4176 0.4098 0.4333 0.4502 0.3321 0.2177 0.0769 0.0000 0.1148 0.0000 0.0000 0.0000
24 171830012001 0.1403 0.1345 0.2083 0.4771 0.3866 0.1363 0.2529 0.0000 0.2619 0.0000 0.1458 0.0000
25 171830012002 0.2524 0.2491 0.3111 0.5895 0.2587 0.1518 0.0443 0.0000 0.0468 0.0000 0.0000 0.0000
26 171830013001 0.2481 0.2457 0.2714 0.5537 0.2948 0.1514 0.0363 0.0233 0.0335 0.0207 0.0643 0.0500
27 171830105001 0.2010 0.2010 0.0000 0.6955 0.2142 0.0902 0.1154 0.0000 0.1154 0.0000 0.1154 0.0000  

 

                                                 
20 Only the 1st and 16th of the 16 income brackets are shown – for the entire BlockGroup, for the White racial category, and for the NonWhite racial category. 



 

 
Appendix E: Observed Migration Patterns 

 
Table 13. Owner Migration by BlockGroup21 from 2001 to 2003 

index FromBG 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
0 171830012001 1 12
1 171830007001 1 1 1 5 1 1 86
2 171830002001 1 32
3 171830006001 1 20
4 171830012002 1 2 4 6 1 1 1 1 117
5 171830003001 1 2 1 1 1 1 1 52
6 171830006002 1 26
7 171830002002 11
8 171830008002 1 20
9 171830005001 1 4 5 6 8 140

10 171830010003 1 1 1 1 1 1 90
11 171830009001 1 1 1 1 50
12 171830008001 3 1 1 38
13 171830005002 1 1 1 23
14 171830002003 1 1 1 1 41
15 171830013001 4 7 133
16 171830007003 3 1 1 1 1 4 1 81
17 171830007002 2 1 1 3 1 66
18 171830011001 7
19 171830003002 1 1 53
20 171830105001 7
21 171830001001 10
22 171830009002 1 1 35
23 171830004002 1 1 1 1 1 1 1 1 87
24 171830001002 1 1 36
25 171830006003 1 1 51
26 171830010002 2 1 1 1 93
27 171830004001 1 12
28 OUTSIDE 23 79 20 22 134 58 28 2 19 150 91 46 44 21 45 123 94 79 7 62 5 15 52 80 36 49 79 9  

 
                                                 
21 BlockGroups are ordered according to the HashMap index at left. This index is generated in the process of HashMap formation and is used as a key to link to 
each BlockGroup model object. This re-ordering (in contrast to the sorting by name in Table 12) is important for model initialization (see Main Active Object 
Class Code in Appendix G). 



 

Table 14. Owner Migration by BlockGroup from 2003 to 2005 
index FromBG 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

0 171830012001 6
1 171830007001 2 1 2 54
2 171830002001 1 1 1 33
3 171830006001 1 15
4 171830012002 2 3 5 1 97
5 171830003001 2 1 1 1 51
6 171830006002 1 2 1 30
7 171830002002 10
8 171830008002 1 12
9 171830005001 1 1 1 2 5 2 110
10 171830010003 1 1 1 1 1 1 1 1 2 58
11 171830009001 1 1 33
12 171830008001 2 1 27
13 171830005002 1 3 20
14 171830002003 1 1 1 30
15 171830013001 2 1 1 3 6 92
16 171830007003 1 3 3 3 1 60
17 171830007002 2 1 1 38
18 171830011001 1 12
19 171830003002 1 1 38
20 171830105001 3
21 171830001001 1 10
22 171830009002 28
23 171830004002 2 2 1 2 1 1 56
24 171830001002 2 1 21
25 171830006003 1 37
26 171830010002 2 2 1 2 69
27 171830004001 1 1 1 13
28 OUTSIDE 19 51 20 9 98 44 20 9 15 129 59 23 22 13 25 117 64 45 6 37 4 10 25 44 17 39 70 7  
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Appendix F: Java Classes for Data Processing 

Processing Package 

CreateDataStructure.java 
package processing; 
 
import io.Serializer; 
import io.TextFile; 
 
import java.io.IOException; 
import java.util.HashMap; 
 
import structure.BlockContainer; 
import structure.BlockGroupContainer; 
import structure.CensusMoves; 
import structure.DataContainer; 
import structure.OwnerContainer; 
import structure.ParcelContainer; 
import structure.ParcelStatus; 
 
public class CreateDataStructure { 
 /* 

* @param args: 28blockgroups.csv, 764blocks.csv, 13166parcels.csv, 7576owners.csv,  
* dataStructure.ser 

 * @throws IOException 
*/ 

 public static void main(String[] args) throws IOException { 
  //create the Data Container and add the hashmap 
  DataContainer dc = new DataContainer(); 
  HashMap<String,BlockGroupContainer> blockGroups = new HashMap<String,BlockGroupContainer>  

(); 
  HashMap<String,BlockContainer> blocks = new HashMap<String,BlockContainer>(); 
  HashMap<String,ParcelContainer> parcels = new HashMap<String,ParcelContainer>(); 
  HashMap<String,OwnerContainer> owners = new HashMap<String,OwnerContainer>(); 
  dc.blockGroups = blockGroups; 
  dc.blocks = blocks; 
  dc.parcels = parcels; 
  dc.owners = owners; 
  //get the blockGroups.csv Data file and throw away the header row 
  TextFile in1 = new TextFile( args[0] ); 
  in1.remove(0); 
  for(int i=0; i<in1.size(); i++){ 
   String[] row = in1.getRowArray(i); 
   BlockGroupContainer bgc = new BlockGroupContainer(); 
   //field 0 is id, field 1 is "BlockGroupName" 12-char string 
   bgc.key = row[1].trim();  
   //create Hashmap 
   blockGroups.put(bgc.key, bgc); 
   //fields 2-4 are child fractions among total, white and nonwhite HHs 
   bgc.tcf = Double.parseDouble(row[2].trim()); 
   bgc.wcf = Double.parseDouble(row[3].trim()); 
   bgc.ncf = Double.parseDouble(row[4].trim()); 
   //now we're on field 5, "Stayed" 
   bgc.censusMoves = new CensusMoves(Double.parseDouble(row[5].trim()), 
     Double.parseDouble(row[6].trim()),  
     Double.parseDouble(row[7].trim())); 
   //now we're on field 8 
   for(int j=0; j<16; j++){ 
    bgc.incomeGroup[j]=Double.parseDouble(row[j+8].trim()); 
    bgc.whiteIncome[j]=Double.parseDouble(row[j+24].trim()); 
    bgc.nonwhiteIncome[j]=Double.parseDouble(row[j+40].trim()); 
   } 
  }//blockGroup loop 
  //import blocks.csv Data File as args[1] 
  TextFile in2 = new TextFile(args[1]); 
  in2.remove(0); 
  for(int i=0; i<in2.size(); i++){ 
   String[] row = in2.getRowArray(i); 
   BlockContainer bc = new BlockContainer(); 
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   bc.key = row[1].trim(); //blockName 
   blocks.put(bc.key, bc); //create hashMap 
   bc.bgName = row[2].trim(); //blockGroupName, aka bgc.key 
   bc.parcelNum = Integer.parseInt(row[3].trim());  
   bc.parcelStatus = new ParcelStatus(Integer.parseInt(row[4].trim()), 
     Integer.parseInt(row[5].trim()), 
     Integer.parseInt(row[6].trim())); 
   bc.owp = Double.parseDouble(row[7].trim()); 
   bc.rwp = Double.parseDouble(row[8].trim()); 
   bc.cenX = Double.parseDouble(row[9].trim()); 
   bc.cenY = Double.parseDouble(row[10].trim()); 
  } 
  //import parcels.csv Data File as args[2] 
  TextFile in3 = new TextFile(args[2]); 
  in3.remove(0); 
  for(int i=0; i<in3.size(); i++){ 
   String[] row = in3.getRowArray(i); 
   ParcelContainer pc = new ParcelContainer(); 
   pc.key = row[0].trim(); //parcelID, same as i 
   parcels.put(pc.key, pc); //create hashMap 
   pc.xPos = Double.parseDouble(row[1].trim()); 
   pc.yPos = Double.parseDouble(row[2].trim()); 
   pc.bName = row[3].trim(); //blockName, aka bc.key 
   pc.bgName = row[4].trim(); //blockGroupName, aka bgc.key 
   pc.pCode = row[5].trim(); //parcel_ID for GIS reference 
  } 
  TextFile in4 = new TextFile(args[3]); 
  in4.remove(0); 
  for(int i=0; i<in4.size(); i++){ 
   String[] row = in4.getRowArray(i); 
   OwnerContainer oc = new OwnerContainer(); 
   oc.key = row[0].trim(); //ownerID, same as i 
   owners.put(oc.key, oc); //create hashMap 
   oc.pName = row[1].trim(); //matches pc.key 
   oc.moveCode = row[2].trim(); 
   oc.lastName = row[3].trim(); 
   oc.lastNameCt = Integer.parseInt(row[4].trim()); 
  } 
  //assign lists 
  for (String key: dc.parcels.keySet()){ 
   ParcelContainer pc = dc.parcels.get(key); 
   if(dc.blocks.containsKey(pc.bName)){ 
    BlockContainer bc = dc.blocks.get(pc.bName); 
    bc.parcelList.add(pc); 
   } 
  }//end parcel loop 
  for(String key: dc.owners.keySet()){ 
   OwnerContainer oc = dc.owners.get(key); 
   if(dc.parcels.containsKey(oc.pName)){ 
    ParcelContainer pc = dc.parcels.get(oc.pName); 
    pc.owner = oc; 
   } 
  }//end owner loop 
  for(String key: dc.blocks.keySet()){ 
   BlockContainer bc = dc.blocks.get(key);    
   BlockGroupContainer bgc = dc.blockGroups.get(bc.bgName); 
   bgc.blockList.add(bc); 
  }//end block loop 
   
  //args[4] is dataStructure.ser as a persistent data structure 
  Serializer.store(dc, args[4]); 
 } 
} 
 

CreateModelInstances.java 
 
package processing; 
 
import io.Serializer; 
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import java.io.FileNotFoundException; 
import java.io.IOException; 
import java.util.ArrayList; 
 
import structure.BlockContainer; 
import structure.BlockGroupContainer; 
import structure.DataContainer; 
import structure.OwnerContainer; 
import structure.ParcelContainer; 
 
import caseTown.Block; 
import caseTown.BlockGroup; 
import caseTown.Household; 
import caseTown.ModelObjects; 
import caseTown.Parcel; 
 
public class CreateModelInstances { 
 
 /** 
  * @param args: dataStructure.ser, modelObjectsFinal.ser 
  * @throws IOException  
  * @throws FileNotFoundException  
  * @throws ClassNotFoundException  
  */ 
 public static void main(String[] args) throws FileNotFoundException, IOException,  

ClassNotFoundException { 
  // TODO Auto-generated method stub 
  ArrayList<BlockGroup> blockGroupList = new ArrayList<BlockGroup>(); 
  ArrayList<Block> blockList = new ArrayList<Block>(); 
  ArrayList<Parcel> parcelList = new ArrayList<Parcel>(); 
  ArrayList<Household> householdList = new ArrayList<Household>(); 
  ArrayList<Household> ownerList = new ArrayList<Household>();  
  ArrayList<Household> renterList = new ArrayList<Household>();  
  ArrayList<Parcel> vacantParcels = new ArrayList<Parcel>();  
   
  DataContainer dc = (DataContainer) Serializer.load(args[0]); 
   
  for (String bgKey: dc.blockGroups.keySet()){ 
   BlockGroupContainer bgc = dc.blockGroups.get(bgKey); 
   BlockGroup bg = new BlockGroup(); 
   blockGroupList.add(bg); 
   bg.name = bgKey; 
   bg.incomeGroup = bgc.incomeGroup; 
   bg.whiteIncome = bgc.whiteIncome; 
   bg.nonwhiteIncome = bgc.nonwhiteIncome; 
   bg.wcf = bgc.wcf; 
   bg.ncf = bgc.ncf; 
   for (BlockContainer bc: bgc.blockList){ 
    Block b = new Block(); 
    b.name = bc.key; 
    b.xCen = bc.cenX; 
    b.yCen = bc.cenY; 
    b.parcelStatus = bc.parcelStatus; 
    int r = b.parcelStatus.rent; 
    int v = b.parcelStatus.vacant; 
    b.myBlockGroup = bg; 
    blockList.add(b); 
    bg.blockList.add(b);  
    for (ParcelContainer pc: bc.parcelList){ 
     Parcel p = new Parcel(); 
     p.name = pc.key; 
     p.myBlock = b; 
     p.xPos = pc.xPos; 
     p.yPos = pc.yPos; 
     b.xAvg += p.xPos; 
     b.yAvg += p.yPos; 
     parcelList.add(p); 
     b.parcelList.add(p);  
     OwnerContainer oc = pc.owner; 
     double rand = Math.random(); 
     if (oc != null){ 
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      Household h = new Household(); 
      h.name = oc.key; 
      h.myParcel = p; 
      p.myHousehold = h; 
      p.ownerOccupied = true; 
      if (bc.owp > rand) h.white = true; 
      householdList.add(h); 
      ownerList.add(h); 
      bg.householdList.add(h);  
     } 
     else if (r > 0) { 
      if (r > v){ 
       Household h = new Household(); 
       h.myParcel = p; 
       p.myHousehold = h; 
       if (bc.rwp > rand) h.white = true; 
       householdList.add(h); 
       renterList.add(h); 
       bg.householdList.add(h);  
       r = r-1; 
      }//end if rentals dominate 
      else v = v-1; //parcel stays empty 
     }//end if rentals exist 
     if (p.myHousehold == null) vacantParcels.add(p); 
    }//end parcel loop 
    b.xAvg = b.xAvg/b.parcelList.size(); 
    b.yAvg = b.yAvg/b.parcelList.size(); 
   }//end block loop    
  }//end blockGroup loop 
 
  ModelObjects mo = new ModelObjects(); 
  mo.blockGroupList = blockGroupList; 
  mo.blockList = blockList; 
  mo.parcelList = parcelList; 
  mo.householdList = householdList; 
  Serializer.store(mo, args[1]); //output serializer filename 
 } 
} 
 

BlockDistance.java 
 
package processing; 
 
import io.Serializer; 
 
import java.io.FileNotFoundException; 
import java.io.IOException; 
import java.io.Serializable; 
 
import caseTown.Block; 
import caseTown.ModelObjects; 
 
public class BlockDistance implements Serializable { 
 private static final long serialVersionUID = 1L; 
  
 public static void addDistances (ModelObjects mo){ 
  int size = mo.blockList.size(); 
  mo.blockDistance = new double[size][]; 
  for(int row = 0; row < size; row++){ 
   Block fromB = (Block) mo.blockList.get(row); 
   fromB.seq = row; 
   double fromX = fromB.xAvg; 
   double fromY = fromB.yAvg; 
   mo.blockDistance[row] = new double[row+1]; 
   for(int col = 0; col < row+1; col++){ 
    Block toB = (Block) mo.blockList.get(col); 
    double toX = toB.xAvg; 
    double toY = toB.yAvg; 
    double xDist = fromX - toX; 
    double yDist = fromY - toY; 
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    double d = Math.hypot(xDist, yDist); 
    mo.blockDistance[row][col]=d; 
   } 
  } 
 } 
 /** 
  * @param args: modelObjectsFinal.ser 
  * @throws ClassNotFoundException  
  * @throws IOException  
  * @throws FileNotFoundException  
  */ 
 public static void main(String[] args) throws FileNotFoundException, IOException,  

ClassNotFoundException { 
  // TODO Auto-generated method stub 
  ModelObjects mo = (ModelObjects)Serializer.load(args[0]); 
  addDistances(mo); 
  Serializer.store(mo,args[0]); 
 } 
} 
 

AssignChildrenIncome.java 
 
package processing; 
 
import io.Serializer; 
 
import java.io.FileNotFoundException; 
import java.io.IOException; 
import java.io.Serializable; 
 
import caseTown.BlockGroup; 
import caseTown.Household; 
import caseTown.ModelObjects; 
 
public class AssignChildrenIncome implements Serializable { 
 
 private static final long serialVersionUID = 1L; 
  
 public static void addAttributes (ModelObjects mo){ 
  int bgs = mo.blockGroupList.size(); 
  double[] tip = new double[16]; 
  double[] wip = new double[16]; 
  double[] nip = new double[16]; 
  double[] max = {10,15,20,25,30,35,40,45,50,60,75,100,125,150,200,250}; 
  double[] min = {5,10,15,20,25,30,35,40,45,50,60,75,100,125,150,200}; 
  for (int index=0; index<bgs; index++){ 
   BlockGroup bg = (BlockGroup) mo.blockGroupList.get(index); 
   double[] tir = bg.incomeGroup; 
   double[] wir = bg.whiteIncome; 
   double[] nir = bg.nonwhiteIncome; 
   for (int j=0; j<16; j++){ 
    for (int k=0; k<j+1; k++){ 
     tip[j] += tir[k]; 
     wip[j] += wir[k]; 
     nip[j] += nir[k]; 
    } 
   }//assign cumulative probs for each income group 
   for (int j=0; j<16; j++){ 
    tip[j] = tip[j]*1/tip[15]; 
    wip[j] = wip[j]*1/wip[15]; 
    nip[j] = nip[j]*1/nip[15]; 
   }//scale so they wind up at exactly one 
   int size = bg.householdList.size(); 
   for (int i=0; i<size; i++){ 
    //int randomIndex = (int) Math.random()*(size-1); 
    Household h = (Household) bg.householdList.get(i); 
    double r = Math.random(); 
    if (h.white && (bg.wcf>r)) h.children = true; 
    if (!h.white && (bg.ncf>r)) h.children = true; 
    double minP = 0; 
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    double maxP = 1; 
    boolean[] fit = new boolean[16]; 
    for (int k=0; k<16; k++){ 
     if (h.white) maxP = wip[k]; else maxP = nip[k]; 
     if ((r<maxP)&&(r>=minP)){ 
      fit[k]=true; 
      h.income = Math.random()*(max[k]-min[k])+min[k]; 
     } 
     if (h.white) minP = wip[k]; else minP = nip[k]; 
    }//find the fitting category 
   } 
  } 
 } 
 /** 
  * @param args 
  * @throws ClassNotFoundException  
  * @throws IOException  
  * @throws FileNotFoundException  
  */ 
 public static void main(String[] args) throws FileNotFoundException, IOException,  

ClassNotFoundException { 
  // TODO Auto-generated method stub 
  ModelObjects mo = (ModelObjects)Serializer.load(args[0]); 
  addAttributes(mo); 
  Serializer.store(mo,args[0]); 
 } 
} 
 
 

Structure Package 

DataContainer.java 
 
package structure; 
 
import java.io.Serializable; 
import java.util.HashMap; 
 
public class DataContainer implements Serializable { 
 
 /** 
  *  
  */ 
 private static final long serialVersionUID = 1L; 
 public HashMap<String, BlockGroupContainer> blockGroups; 
 public HashMap<String, BlockContainer> blocks; 
 public HashMap<String, ParcelContainer> parcels; 
 public HashMap<String, OwnerContainer> owners; 
} 
 

BlockGroupContainer.java 
 
package structure; 
 
import java.io.Serializable; 
import java.util.ArrayList; 
 
public class BlockGroupContainer implements Serializable { 
 
 /** 
  *  
  */ 
 private static final long serialVersionUID = 1L; 
 public String key; 
 //total, white, nonwhite fraction of HHs with children 
 public double tcf, wcf, ncf;  
 //overall, white, and nonwhite income group fractions 
 public double[] incomeGroup = new double[16]; 
 public double[] whiteIncome = new double[16]; 
 public double[] nonwhiteIncome = new double[16]; 
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 public CensusMoves censusMoves; 
 public ArrayList<BlockContainer> blockList = new ArrayList<BlockContainer>(); 
} 
 

BlockContainer.java 
 
package structure; 
 
import java.io.Serializable; 
import java.util.ArrayList; 
 
public class BlockContainer implements Serializable { 
 
 /** 
  *  
  */ 
 private static final long serialVersionUID = 1L; 
 public String key; 
 public String bgName; 
 public int parcelNum; 
 public double owp, rwp, cenX, cenY; 
 public ParcelStatus parcelStatus; 
 public ArrayList<ParcelContainer> parcelList = new ArrayList<ParcelContainer>(); 
} 
 

ParcelContainer.java 
 
package structure; 
 
import java.io.Serializable; 
 
public class ParcelContainer implements Serializable { 
 
 /** 
  *  
  */ 
 private static final long serialVersionUID = 1L; 
 public String key; 
 public double xPos; 
 public double yPos; 
 public String bName; 
 public String bgName; 
 public String pCode; 
 public int addressNum; 
 public String street; 
 public OwnerContainer owner; 
} 
 

OwnerContainer.java 
 
package structure; 
 
import java.io.Serializable; 
 
public class OwnerContainer implements Serializable { 
 
 /** 
  *  
  */ 
 private static final long serialVersionUID = 1L; 
 public String key; 
 public String pName; 
 public String moveCode; 
 public String lastName; 
 public int lastNameCt; 
} 
 

ParcelStatus.java 
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package structure; 
 
import java.io.Serializable; 
 
public class ParcelStatus implements Serializable { 
 
 /** 
  *  
  */ 
 private static final long serialVersionUID = 1L; 
 public int own; 
 public int rent; 
 public int vacant; 
  
 public ParcelStatus(int own, int rent, int vacant){ 
  this.own = own; 
  this.rent = rent; 
  this.vacant = vacant; 
 } 
} 
 

CensusMoves.java 
 
package structure; 
 
import java.io.Serializable; 
 
public class CensusMoves implements Serializable { 
 /** 
  *  
  */ 
 private static final long serialVersionUID = 1L; 
 public double stayed; 
 public double movedNear; 
 public double movedFar; 
  
 public CensusMoves(double stayed, double movedNear, double movedFar){ 
  this.stayed = stayed; 
  this.movedNear = movedNear; 
  this.movedFar = movedFar; 
 } 
} 
 
 

CaseTown Package 

ModelObjects.java 
 
package caseTown; 
 
import java.io.Serializable; 
import java.util.ArrayList; 
 
public class ModelObjects implements Serializable { 
 
 /** 
  *  
  */ 
 private static final long serialVersionUID = 1L; 
 public ArrayList blockGroupList = new ArrayList(); 
 public ArrayList blockList = new ArrayList(); 
 public ArrayList parcelList = new ArrayList(); 
 public ArrayList householdList = new ArrayList(); 
 public double[][] blockDistance; 
 public ArrayList vacantParcelList; 
  
 public ArrayList vacantParcels(){ 
  vacantParcelList = new ArrayList(); 
  int size = parcelList.size(); 
  for (int i=0; i<size; i++){ 
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   Parcel p = (Parcel)parcelList.get(i); 
   if (p.myHousehold==null) vacantParcelList.add(p); 
  } 
  return vacantParcelList; 
 } 
 
} 
 

BlockGroup.java 
 
package caseTown; 
 
import java.io.Serializable; 
import java.util.ArrayList; 
 
public class BlockGroup implements Serializable { 
 
 /** 
  *  
  */ 
 private static final long serialVersionUID = 1L; 
 public ArrayList blockList = new ArrayList(); 
 public ArrayList householdList = new ArrayList(); 
 public String name; 
 public double[] incomeGroup = new double[16]; 
 public double[] whiteIncome = new double[16]; 
 public double[] nonwhiteIncome = new double[16]; 
 public double incAvg, wcf, ncf; 
  
 public double calcBlockGroupIncome(){ 
  int size = householdList.size(); 
  incAvg = 0; 
  for (int i=0; i < size; i++){ 
   Household h = (Household)householdList.get(i); 
   incAvg += h.income; 
  } 
  incAvg = incAvg/size; 
  return incAvg; 
 } 
} 
 

Block.java 
 
package caseTown; 
 
import java.io.Serializable; 
import java.util.ArrayList; 
 
import structure.ParcelStatus; 
 
public class Block implements Serializable { 
 
 /** 
  *  
  */ 
 private static final long serialVersionUID = 1L; 
 public ArrayList parcelList = new ArrayList(); 
 public BlockGroup myBlockGroup; 
 public String name; 
 public ParcelStatus parcelStatus; 
 public double xAvg, yAvg, xCen, yCen; 
 public int seq; 
 public double incAvg; 
  
 public double calcBlockIncome(){ 
  incAvg = 0; 
  int pSize = parcelList.size(); 
  int hSize = 0; 
  for (int i = 0; i<pSize; i++){ 
   Parcel p = (Parcel)parcelList.get(i); 



 120

   if (p.myHousehold != null){ 
    Household h = p.myHousehold; 
    incAvg += h.income; 
    hSize ++; 
   } 
  } 
  incAvg = incAvg/hSize; 
  return incAvg;  
 } 
 
} 
 

Parcel.java 
package caseTown; 
 
import java.io.Serializable; 
 
public class Parcel implements Serializable { 
 
 /** 
  *  
  */ 
 private static final long serialVersionUID = 1L; 
 public Block myBlock; 
 public String name; 
 public Household myHousehold; 
 public boolean ownerOccupied; //default is false 
 public double xPos; 
 public double yPos; 
 public double priorOwnerProb; 
  
 public boolean priorOwnerOccupied; //for rent-own transition 
  
 public boolean setPrior(){ 
  double toss = Math.random(); 
  if (toss>priorOwnerProb) priorOwnerOccupied = true; 
  return priorOwnerOccupied; 
 }  
} 
 

Household.java 
 
package caseTown; 
 
import java.io.Serializable; 
 
public class Household implements Serializable { 
 
 /** 
  *  
  */ 
 private static final long serialVersionUID = 1L; 
 public Parcel myParcel; 
 public String name; 
 public double income; 
 public boolean white; 
 public boolean children;  
} 
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Appendix G: AnyLogic Model Structure 

Main Active Object Class 

 
Figure 37. Screenshot of Main Active Object Class Structure 

 
Main Active Object Parameters 
integer minConnect = 3; 
real localProb, nwConst, nwInc, nwDist, nwNorm, nwRace, nwChild //estimated 
real ownMoveRate = 0.1; 
real rentMoveRate = 10*ownMoveRate; 
real annualArrivals = 500; 
real annualLeavers = annualArrivals; 
real rentToOwnProb = 0.5; 
real ownToRentProb = 0.5; 
integer parcelSetSize = 15; 
real locConst, locAfford, locSN, locNorm; //estimated 
real priorOwnerProb = 0.5; 
integer nbrRuns = 25; 
real dMax = 34736.97; //maximum block distance in feet 
real minInc = 5; 
real maxInc = 250; 

 
Main Active Object Variables 
real avgIncome, avgDegree, localFrac; 
integer totDirError, totMoveError; 
real avgDirError, avgMoveError; 
real objective; 
integer totalOwnerToOwnerMoves, totalOwnerMoveError,  
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int[][] moveFromTo = new int[29][29]; 
Matrix(29,29) moveFromToMatrix, moveFromToDat1Matrix, moveFromToDat2Matrix; 
int[][] moveFromToError1 = new int[29][29]; 
int[][] moveFromToError2 = new int[29][29]; 
Matrix(29,29) moveFromToError1Matrix, moveFromToError2Matrix; 
integer totalError1, totalError2; 
int[] bgTotalTies = new int[28]; 
int[][] bgCrossTies = new int[28][28]; 
Matrix(28,28) bgNetMatrix; 

 
Main Active Object Code 
Startup code 
initialize.startupSequence(); //call the startup sequence 
 
Additional class code 
caseTown.ModelObjects mo = (caseTown.ModelObjects) initialize.mo; 
final static int[][] moveFromToDat1 = { 
{0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,12}, 
{0,1,0,0,0,0,0,0,0,1,1,0,0,0,0,5,0,0,0,0,0,0,0,1,1,0,0,0,86}, 
{0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,32}, 
{0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,20}, 
{0,1,0,0,2,0,0,0,0,4,0,0,0,0,0,6,0,1,0,0,0,0,0,0,1,1,1,0,117}, 
{0,0,0,0,1,0,0,0,0,2,0,0,0,0,1,1,0,0,0,0,0,0,0,1,0,1,0,1,52}, 
{0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,26}, 
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,11}, 
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,20}, 
{1,4,0,0,5,0,0,0,0,6,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,140}, 
{0,0,0,0,1,0,0,0,0,1,0,1,0,0,0,0,0,0,0,1,1,0,0,0,1,0,0,0,90}, 
{0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,50}, 
{0,3,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,38}, 
{0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,23}, 
{0,1,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,41}, 
{0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,133}, 
{0,3,0,0,0,0,0,0,1,1,1,0,1,0,0,4,1,0,0,0,0,0,0,0,0,0,0,0,81}, 
{0,2,0,0,1,0,0,0,0,1,0,0,0,0,0,3,0,1,0,0,0,0,0,0,0,0,0,0,66}, 
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7}, 
{0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,53}, 
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7}, 
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10}, 
{0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,35}, 
{0,1,0,0,1,0,0,0,1,0,0,0,1,0,1,0,0,1,0,0,0,0,0,1,0,0,1,0,87}, 
{0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,36}, 
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,51}, 
{0,0,0,0,2,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,93}, 
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,12}, 
{23,79,20,22,134,58,28,2,19,150,91,46,44,21,45,123,94,79,7,62,5,15,52,80,36,49,79,9,0} 
}; 
 
final static int[][] moveFromToDat2 = { 
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6}, 
{0,2,0,0,1,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,54}, 
{0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,33}, 
{0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,15}, 
{0,2,0,0,3,0,0,0,0,0,0,0,0,0,0,5,0,1,0,0,0,0,0,0,0,0,0,0,97}, 
{0,0,0,0,0,2,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,51}, 
{0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,30}, 
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10}, 
{0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,12}, 
{0,1,0,0,1,0,1,0,0,2,0,0,0,0,0,5,2,0,0,0,0,0,0,0,0,0,0,0,110}, 
{1,0,0,0,1,0,1,0,0,1,0,0,0,0,0,1,0,1,1,0,0,0,0,1,2,0,0,0,58}, 
{0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,33}, 
{0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,27}, 
{0,0,0,0,0,0,0,0,0,0,1,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,20}, 
{0,1,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,30}, 
{0,2,0,0,1,0,0,0,1,0,3,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,92}, 
{0,0,1,0,3,0,0,0,0,3,0,0,0,0,0,3,1,0,0,0,0,0,0,0,0,0,0,0,60}, 
{0,2,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,38}, 
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12}, 
{0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,38}, 
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3}, 
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{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,10}, 
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,28}, 
{0,2,0,0,2,0,1,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,1,0,0,0,0,56}, 
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,1,0,0,0,0,0,0,0,0,21}, 
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,37}, 
{0,2,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,2,0,69}, 
{0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,13}, 
{19,51,20,9,98,44,20,9,15,129,59,23,22,13,25,117,64,45,6,37,4,10,25,44,17,39,70,7,0} 
}; 
 
public boolean needRepeat() { 
  calcRunStats(); 
  return Engine.getReplication() < nbrRuns;} 

 
Main Active Object Algorithmic Functions 
real calcAvgIncome() 
double income = 0; 
double avgIncome; 
int numH = household.size(); 
for (int i=0; i<numH; i++){ 
  Household h = (Household)household.get(i); 
  income += h.getHousehold().income; 
} 
avgIncome = income/numH; 
return avgIncome; 
 
void calcError1() 
totalError1 = 0; 
totalOwnerToOwnerMoves = 0; 
for(int i = 0; i < 28; i++){ 
for(int j = 0; j < 28; j++){ 
moveFromToError1[i][j] = (int) abs(moveFromTo[i][j] - moveFromToDat1[i][j]); 
totalError1+=moveFromToError1[i][j]; 
totalOwnerToOwnerMoves += moveFromTo[i][j] ; 
}} 
totalOwnerOwnerMoveError = (int) abs(totalOwnerToOwnerMoves - 139) ; 
int sumErr = totalError1+totalOwnerOwnerMoveError; 
int n = (int)Engine.getReplication();  
totDirError += totalError1;  
totMoveError += totalOwnerOwnerMoveError; 
 
void calcNetStats() 
double totInc, myInc, myLocalFrac, totLocalFrac; 
int numH = household.size(); 
int numF, totF, totLocals, myLocals; 
totF = 0; totInc = 0; totLocals = 0; myInc = 0; myLocalFrac = 0; totLocalFrac = 0; 
for (int i=0; i<numH; i++){ 
  Household h = (Household)household.get(i); 
  myInc = h.getHousehold().income; 
  totInc += myInc; 
  caseTown.BlockGroup bg = (caseTown.BlockGroup) h.getMyBlockGroup(); 
  int m = initialize.mo.blockGroupList.indexOf(bg); 
  numF = h.Network.size(); 
  bgTotalTies[m]+=numF; 
  totF += numF; 
  myLocals = 0; 
  for (int j=0; j<numF; j++){ 
    Household hj = (Household)h.Network.get(j); 
    caseTown.BlockGroup bgj = (caseTown.BlockGroup) hj.getMyBlockGroup(); 
    int mj = initialize.mo.blockGroupList.indexOf(bgj); 
    bgCrossTies[m][mj]+=1; 
    if (bg==bgj) myLocals++; 
  } 
  totLocals += myLocals; 
  myLocalFrac = ((double)myLocals)/((double)numF); 
  totLocalFrac += myLocalFrac; 
} 
avgIncome = totInc/numH; 
avgDegree = ((double)totF)/numH; 
avgLocalFrac = (double) totLocalFrac/numH; 
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double cell; 
for(int i = 0; i < 28; i++){ 
  for(int j = 0; j < 28; j++){ 
    cell = ((double)bgCrossTies[i][j])/((double)bgTotalTies[i]); 
    bgNetMatrix.set(i,j,cell); 
  } 
} 
 
void calcRunStats() 
int n = (int)Engine.getReplication(); //nbrRuns; 
avgDirError = (double) totDirError/n; 
avgMoveError = (double) totMoveError/n; 
objective = avgMoveError + avgDirError; 
 
void convertArrayToMatrix() 
for(int i = 0; i < 29; i++){ 
  for(int j = 0; j < 29; j++){ 
    moveFromToDat1Matrix.set(i,j,moveFromToDat1[i][j]); 
    moveFromToDat2Matrix.set(i,j,moveFromToDat2[i][j]); 
    moveFromToMatrix.set(i,j,moveFromTo[i][j]); 
    moveFromToError1Matrix.set(i,j,moveFromToError1[i][j]); 
    moveFromToError2Matrix.set(i,j,moveFromToError2[i][j]); 
  } 
} 
 
void resetMoveArray() 
for(int i = 0; i < 29; i++){ 
for(int j = 0; j < 29; j++){ 
moveFromTo[i][j]=0; 
}} 
 

Main Active Object Timers 
moveIn 
Cyclic Timer 
Timeout: exponential(annualArrivals) 
Expiry action: 
caseTown.ModelObjects mo = (caseTown.ModelObjects) initialize.mo; 
int sizeV = mo.vacantParcelList.size(); 
if (sizeV>0){ 
  caseTown.Household hj = new caseTown.Household(); 
  mo.householdList.add(hj); 
  hj.income = DistrUniform.sample(minInc,maxInc); 
  //find a placeholder parcel at random 
  int j = uniform_discr(0, sizeV-1); 
  caseTown.Parcel pj = (caseTown.Parcel)mo.vacantParcelList.get(j); 
  caseTown.Parcel pMax = pj; 
  hj.myParcel = pj; 
  Household h = create_household(); 
  h.stateHousehold = hj; 
  h.arrive(pj); 
  h.run(); 
  double toss = DistrUniform.sample(0,1); 
 if (toss>priorOwnerProb) h.priorOwner = true; 
  double maxUtil = 0; 
  sizeV = mo.vacantParcelList.size(); 
  int sizeRE = (int) min(sizeV, parcelSetSize); 
  for (int i=0; i<(sizeRE); i++){ 
    int startP = h.ParcelSet.size(); 
    for (int k=0; h.ParcelSet.size()<startP+1; k++){ 
      j = uniform_discr(0, sizeV-1); 
      pj = (caseTown.Parcel)mo.vacantParcelList.get(j); 
      if (pj.myHousehold==null && !h.ParcelSet.contains(pj)){ 
        h.ParcelSet.add(pj); 
        double jUtil = h.locUtility(pj); 
        if (jUtil > maxUtil) { 
          maxUtil = jUtil; 
          pMax = pj; 
        }//endif 
      }//endif 
    }//endfor 
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  }//endfor 
  h.leave(); //empty the placeholder parcel 
  h.arrive(pMax); 
  caseTown.Parcel p = h.getMyParcel(); 
  caseTown.BlockGroup bg = h.getMyBlockGroup(); 
  int m = mo.blockGroupList.indexOf(bg); 
  if(p.ownerOccupied==true) moveFromTo[28][m]++; 
  for (int n = 0; n < minConnect; n++){ 
    h.connect(); 
  } 
  calcAvgIncome(); 
} 
 
moveOut 
Cyclic Timer 
Timeout: exponential(annualLeavers) 
Expiry action: 
caseTown.ModelObjects mo = (caseTown.ModelObjects) initialize.mo; 
int numH = household.size(); 
if (numH>0){ 
  int j = uniform_discr(0,household.size()-1); 
  Household h = (Household)household.item(j); 
  caseTown.BlockGroup bg = h.getMyBlockGroup(); 
  int m = mo.blockGroupList.indexOf(bg); 
  for (int i=0; i<h.Network.size(); i++){ 
    Household hi = (Household) h.Network.get(i); 
    hi.Network.remove(h); 
    //household is removed from network, not vice versa 
  } 
  h.leave(); 
  if(h.priorOwner==true) moveFromTo[m][28]++; 
  household.remove(h); 
  dispose_household(h); 
  //household is NOT removed from the java ArrayList 
  calcAvgIncome(); 
} 
 
firstPeriod 
Expire Once 
Timeout: 2.0 
calcError1(); 
convertArrayToMatrix(); 
resetMoveArray(); 

 
Initialize Active Object Class 

Initialize Active Object Code 
Additional class code 
Main main = (Main)(Engine.getRoot()); 
 
public static caseTown.ModelObjects mo; 
 
public static final String filename =  
"C:\\Saradocs\\PhD\\Model\\SaraWorking\\modelObjectsFinal.ser"; 

 
Initialize Active Object Algorithmic Functions 
void startupSequence() 
loadSerializedData( filename ); 
//filename is defined in Initialize additional class code 
 
createHousehold(); 
//create households from the imported list, not autocreate 
 
setParcelPrior(); 
createNetwork(); 
main.calcNetStats(); 
mo.vacantParcels(); 
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void loadSerializedData() 
mo = (caseTown.ModelObjects)io.Serializer.load(filename); 
 
void createHousehold() 
int nbrHH = mo.householdList.size(); 
for(int i=0; i<nbrHH; i++){ 
  Household h = main.create_household(); 
  h.stateHousehold = (caseTown.Household) mo.householdList.get(i); 
  h.run(); 
} 
 
void setParcelPrior() 
int nbrP = mo.parcelList.size(); 
for(int i=0; i<nbrP; i++){ 
  caseTown.Parcel p = (caseTown.Parcel) mo.parcelList.get(i); 
  p.priorOwnerProb = main.priorOwnerProb; 
  p.setPrior(); 
} 
 
void createNetwork() 
int nbrH = main.household.size(); 
for (int i = 0; i < nbrH; i++){ 
  Household hi = main.household.item(i); 
  for (int j = 0; j < main.minConnect; j++){ 
    hi.connect(); 
   } 
} 
 

Household Active Object Class 

 
Figure 38. Screenshot of Household Active Object Class Structure 
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Household Active Object Parameters 
real threshold = DistrUniform.sample(0,1); //idiosyncrasy in criteria for network connection 
real locThreshold = DistrUniform.sample(0,1); //idiosyncrasy in current location satisfaction 

 
Household Active Object Variables 
Vector ParcelSet = new Vector(); 
Vector Network = new Vector(); 
boolean priorOwner; 
caseTown.Household stateHousehold; 

 
Household Active Object Code 
Additional class code 
Main main = (Main)(Engine.getRoot()); 
caseTown.ModelObjects mo = (caseTown.ModelObjects) main.initialize.mo; 

 
Household Active Object Algorithmic Functions 
caseTown.Household getHousehold() 
return (caseTown.Household) stateHousehold; //assigned in initialize.createHousehold() 
 
caseTown.Parcel getMyParcel() 
return getHousehold().myParcel; 
 
caseTown.Block getMyBlock() 
return getMyParcel().myBlock;  
 
caseTown.BlockGroup getMyBlockGroup() 
return getMyBlock().myBlockGroup; 
 
void moveSequence(caseTown.Parcel pNew) 
caseTown.BlockGroup bg = getMyBlockGroup(); 
int i = mo.blockGroupList.indexOf(bg); 
leave(); 
arrive(pNew); 
caseTown.Parcel p = getMyParcel(); 
bg = getMyBlockGroup(); 
int j = mo.blockGroupList.indexOf(bg); 
if(priorOwner==true && p.ownerOccupied==true){  
  main.moveFromTo[i][j] ++; 
}//end owner moving 
if(priorOwner==true && p.ownerOccupied==false){ 
  main.moveFromTo[i][28] ++; //j of 28 is leaving owner status 
}//end owner leaving 
if(priorOwner==false && p.ownerOccupied==true){ 
  main.moveFromTo[28][j] ++; //i of 28 is new owner status 
}//end owner arriving 
connect(); //definitely adds a tie 
disconnect();//does not necessarily remove a tie 
 
void leave() 
caseTown.Parcel p = getMyParcel(); 
caseTown.BlockGroup bg = getMyBlockGroup();  
p.myHousehold = null; 
mo.vacantParcelList.add(p); 
if (p.ownerOccupied == true) { 
  p.priorOwnerOccupied = true; 
  p.ownerOccupied = false; 
  priorOwner = true; 
} 
caseTown.Household h = getHousehold(); 
h.myParcel = null; 
bg.householdList.remove(h); 
 
void arrive(caseTown.Parcel p) 
caseTown.Household h = getHousehold(); 
p.myHousehold = h; 
h.myParcel = p; 
mo.vacantParcelList.remove(p); 
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caseTown.BlockGroup bg = getMyBlockGroup(); 
bg.householdList.add(h); 
double ro = main.rentToOwnProb; 
double or = main.ownToRentProb; 
 
//rent-own prior status 
boolean ho = priorOwner; 
boolean po = p.priorOwnerOccupied; 
 
if((ho==true)&&(po==true)){ 
  p.ownerOccupied = true; 
} 
else if((ho==false)&&(po==true)){ 
  double toss = DistrUniform.sample(); 
  if(toss>ro) p.ownerOccupied = true; 
} 
else if((ho==true)&&(po==false)){ 
  double toss = DistrUniform.sample(); 
  if(toss>or) p.ownerOccupied = true; 
} 
 
void connect() 
Household hi = Household.this; 
double util, p, t, r; 
double lp = main.localProb; 
double br = DistrUniform.sample(0,1); 
int startN = Network.size(); 
int j; 
caseTown.BlockGroup bg = (caseTown.BlockGroup)getMyBlockGroup();  
 
//the for condition enables just ONE new connection 
for (int f=0; Network.size() < (startN+1); f++){ 
    j = uniform_discr(0, main.household.size()-1); 
    Household hj = (Household) main.household.item(j); 
    caseTown.BlockGroup bgj = (caseTown.BlockGroup) hj.getMyBlockGroup(); 
    if (((lp > br)&&(bg == bgj))||((lp<br)&&(bg!=bgj))) { 
      util = nwUtility(hj); 
      p = Math.exp(util)/(1+Math.exp(util)); 
      r = DistrUniform.sample(0,1); //time of day 
      t = r; //*Math.max(threshold, hj.threshold);//ensure mutual preference 
      if (p > t && !Network.contains(hj)){ 
        hi.Network.add(hj); 
        hj.Network.add(hi); 
      } 
    } 
} 
 
void disconnect() 
Household hi = Household.this; 
double util, p, t; 
int jMin = 0; 
Household hMin = (Household) Network.get(0); 
double minUtil = 0; //initialization only; 
int startN = Network.size(); 
for (int j=0; j<startN; j++){ 
  Household hj = (Household) Network.get(j); 
  util = nwUtility(hj); 
  if (j==0) minUtil = util; 
  if (minUtil<util) { 
    minUtil = util; 
    jMin = j; 
    hMin = hj; 
  } 
} 
p = 0; //Math.exp(minUtil)/(1+Math.exp(minUtil)); 
t = Math.max(threshold, hMin.threshold); 
if (p < t){ 
  hi.Network.remove(hMin); 
  hMin.Network.remove(hi); 
} 
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real nwUtility(Household hi) 
Household hi = Household.this; 
double ii = hi.getHousehold().income; 
double C = main.nwConst; 
double ad = main.nwDist; 
double ai = main.nwInc; 
double ar = main.nwRace; 
double ak = main.nwChild; 
double b = main.nwNorm; 
double dMax = main.dMax; 
double ij, i, d, r, k, util; 
boolean wi = hi.getHousehold().white; 
boolean wj = hj.getHousehold().white; 
boolean ki = hi.getHousehold().children; 
boolean kj = hj.getHousehold().children; 
 
if (wi==wj) r=1; else r=0; 
if ((ki==kj)&&(ki==true)) k=1; else k=0; 
 
d = getBlockDistance(hj)/dMax; //divide by max blockdist (ft) 
ij = hj.getHousehold().income; 
i = Math.abs(ii-ij)/245; //245 is max-min income 
util = (C - ad*d - ai*i + ar*r + ak*k)/b; 
 
return util; 
 
real locUtility(caseTown.Parcel p) 
double hi, bi, ai; 
double afford, attract, netFrac, u; 
double wAff, wAtt, wSN, C, normB; 
 
wAff = main.locAfford; 
wAtt = main.locAttract; 
wSN = main.locSN; 
C = main.locConst; 
normB = main.locNorm; 
 
hi = getHousehold().income; 
 
caseTown.Block b = (caseTown.Block)p.myBlock; 
bi = b.calcBlockIncome(); 
ai = main.avgIncome; 
 
if (p == getMyParcel()) afford = 0; 
else { 
  afford = (hi-bi)/bi; 
  afford = min(0, afford); //only if bi > hi 
} 
attract = (bi-ai)/ai; 
 
caseTown.BlockGroup bg = (caseTown.BlockGroup)b.myBlockGroup;  
 
int n = Network.size(); 
int bn = 0; 
for (int j=0; j<n; j++){ 
  Household hj = (Household)Network.get(j); 
  caseTown.BlockGroup bgj = (caseTown.BlockGroup)hj.getMyBlockGroup(); 
  if (bg == bgj) bn++; 
} 
if (n==0) netFrac = 0; 
else netFrac = bn/n; 
u = (C + wAff*afford + wAtt*attract + wSN*netFrac)/normB; 
 
return u; 
 
real getMoveRate() 
caseTown.Household h = getHousehold(); 
caseTown.Parcel p = getMyParcel(); 
boolean po = p.ownerOccupied; 
if (po == true) return main.ownMoveRate; 
else return main.rentMoveRate; 
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Household Active Object Timer 
 
evalMove 
Cyclic Timer 
Timeout: exponential(getMoveRate()) 
Expiry Action: 
caseTown.Parcel p = getMyParcel(); 
double myUtil = locUtility(p); 
double prob; 
prob = exp(myUtil)/(1+exp(myUtil)); 
 
int sizeV = mo.vacantParcelList.size(); 
if (prob < locThreshold && sizeV >0){ 
  double maxUtil = myUtil; 
  caseTown.Parcel pMax = p; 
  ParcelSet.clear(); 
  int sizeRE = (int) min(sizeV,main.parcelSetSize); 
  for (int i=0; i<sizeRE; i++){ 
    int startP = ParcelSet.size(); 
    int j; 
    for (int k=0; ParcelSet.size()<startP+1; k++){ 
      j = uniform_discr(0, sizeV-1); 
      caseTown.Parcel pj = (caseTown.Parcel)mo.vacantParcelList.get(j); 
      if (pj.myHousehold==null && !ParcelSet.contains(pj)){ 
        ParcelSet.add(pj); 
        double jUtil = locUtility(pj); 
        if (jUtil > maxUtil) { 
          maxUtil = jUtil; 
          pMax = pj; 
        }//endif 
      }//endif 
    }//endfor 
  }//endfor 
  if (pMax != p){ 
    moveSequence(pMax); 
  }//endif 
  ParcelSet.clear(); 
}//end unhappy condition 
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Appendix H:  System Dynamics Basics 

This appendix outlines some of the basics of system dynamics. The “system” part of 

system dynamics implies a consideration of closed-loop systems, in which feedback mechanisms 

are of utmost importance. The first type of feedback mechanism is reinforcing feedback (the 

“vicious” or “virtuous” cycle), implying sustained growth or decline. An example is the learning 

curve illustrated in Figure 39 below:  as cumulative production increases, unit costs decline, and 

prices decline accordingly (the + indicates change in the same direction as the preceding 

variable). Price is inversely related to market share, so as it declines, the market share (demand) 

will increase. As demand increases, then cumulative production increases. The key here is to 

multiply the negative(-) connections; if there are an even number of negative connections, the 

feedback is positive or reinforcing because the connections cancel each other through 

multiplication. If there are an odd number of negative connections, the feedback is negative or 

balancing. 

Cumulative
Production

Unit
Costs

Unit Price

Market
Share

-

+
-

+

 
Figure 39. Example of Reinforcing Feedback Loop 

 
The second type of feedback mechanism is known as a balancing feedback loop.  The 

balancing loop exhibits “goal-seeking” behavior:  rather than growth or decline, the balancing 

feedback seeks to attain equilibrium level.  The presence of delays in the system (illustrated by 

hatchet marks on the arrows) can result in oscillation around the desired state. An example of the 

reinforcing feedback mechanism could be efforts to mitigate pollution, as illustrated in Figure 40 

below.  Suppose there is a desired pollution level that serves as the goal.  The difference between 

this goal and the actual level of pollution results in a pollution gap.  The greater the gap, the 

greater the concern for pollution.  And the greater the concern, the greater the action to reduce 

pollution.  This of course takes time, and so the delay is represented by a hatchet, but over that 

delay the actual pollution level declines.  This decline means the gap is smaller so concerns 

lessen, so actions lessen, and so on. 
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Figure 40. Example of Balancing Feedback Loop 

 

Real-world systems have combinations of balancing and reinforcing loops. You would 

not see one type of feedback loop acting in isolation. S-shaped growth occurs when reinforcing 

and balancing loops are present: there is a period of sustained growth followed by a damping of 

that growth as the system seeks its equilibrium state. Figure 41 illustrates interacting reinforcing 

and balancing effects. 
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Figure 41. Example of Interaction of Reinforcing and Balancing Effects 

 
If feedback loops are the “system,” then stocks and flows are the “dynamics” of system 

dynamics. The presence of a stock and flow structure means that the system can contain inertia, 

memory, or delays. The stocks are at the heart of this. They represent accumulation of something 

(material, energy, or information) and the levels of the stocks characterize the state of the system. 

Flows represent the rates that enter or leave a stock, and thus represent how the stock changes 

over time. In a system “snapshot”, the flows would be invisible, and the stocks would be 

apparent. 
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The classic example is the bathtub, as illustrated in Figure 42 below. There are two 

flows: inflow of water from the faucet (controlled by an inflow valve), and flow out of the 

bathtub down the drain (controlled by an outflow valve). The water in the bathtub is the stock, 

perhaps quantified in terms of gallons, while the rates of flow would be quantified in terms of 

gallons per minute. (In mathematical terms, the stock level is determined by integrating the rates 

of flow.) 
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down Drain

source sink

stock
inflow valve outflow valveWater in

BathtubRate of Inflow
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down Drain
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Figure 42. Stock and Flow Representation of Bathtub Dynamics 

 
Stocks and flows combine with feedback loops to create dynamic systems.  Stocks 

provide information about the system (so the causal arrow would exit a stock), and the stock can 

only be changed through its flows (so the causal arrows lead to flows, not stocks). 

The flow arrows implicitly represent causal arrows leading to the stock variable—for 

instance, in a causal loop structure, an increase in the rate of outflow would lead to a decrease in 

the stock and thus be represented by a negative connection. 

Excellent introductions to system dynamics are available that also demonstrate the user-

friendly Vensim (Sterman 2000) and STELLA (Hannon and Ruth 2001) icon-based software. In 

advocating the above system representation, the father of system dynamics has observed that 

“nature only integrates” (Forrester 1996).22  

                                                 
22 The more complete context for Forrester (1996, p. 27)’s assertion is as follows: “One might ask how it is possible 
to teach behavior of complex dynamic systems in K-12 when the subject has usually been reserved for college and 
graduate schools. The answer lies in having realized that the mathematics of differential equations has been standing 
in the way.” ... “Differential equations are difficult, weak, confusing, and unrealistic. They often mislead students as 
to the nature of systems. Mathematicians have had difficulty defining a derivative and there is a reason. Derivatives 
do not exist except in a mathematician’s imagination. Nowhere in nature does nature take a derivative. Nature only 
integrates, that is, accumulates. Casting behavior in terms of differential equations leaves many students with an 
ambiguous or even reversed sense of the direction of causality. I have had MIT students argue that water flows out 
of the faucet because the level of water in the glass is rising; that seems natural to them if the flow has been defined 
as the derivative of the water level in the glass.” 


