Expanding the genetic code

Only 20 amino acids are used in the biosynthesis of proteins. No fundamental reason other amino acids cannot be used in proteins.

Chemical synthesis (with or without chemical ligation) can be used to introduce a range of functional groups. Chemical synthesis is often not economical and limited to short peptides. Need to fold the protein following synthesis and purification.

Some may be introduced biosynthetically by adjusting the growth condition. E.g., inducing protein expression in the presence of selenomethionine would incorporate selMet in place of Met.

“Non-natural” amino acids may be introduced to expand the chemical properties available in native enzymes. Acidity, nucleophilicity, H-bonding potential. May also be used to selectively modify protein for biophysical, chemical, structural studies.
<table>
<thead>
<tr>
<th>Analog</th>
<th>Target AARS</th>
<th>Whole cells</th>
<th>Purified proteins</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azetidine-2-carboxylic acid</td>
<td>ProRS</td>
<td></td>
<td>(144)</td>
<td></td>
</tr>
<tr>
<td>3,4-Dehydroproline</td>
<td>ProRS</td>
<td>60% (145)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perthiaproline</td>
<td>ProRS</td>
<td></td>
<td></td>
<td>Drug carrier</td>
</tr>
<tr>
<td>Canavanine</td>
<td>ArgRS</td>
<td></td>
<td>(147)</td>
<td>Measure of stress resistance</td>
</tr>
<tr>
<td>Ethionine</td>
<td>MetRS</td>
<td></td>
<td>(148)</td>
<td></td>
</tr>
<tr>
<td>Norleucine</td>
<td>MetRS</td>
<td>38% (150)</td>
<td></td>
<td>Increased enzyme activity (26)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(151)</td>
<td>Crystallography</td>
</tr>
<tr>
<td>Selenomethionine</td>
<td>MetRS</td>
<td>100% (18)</td>
<td>(19)</td>
<td></td>
</tr>
<tr>
<td>Aminohexanoic acid</td>
<td>MetRS</td>
<td></td>
<td>(149)</td>
<td>Crystallography</td>
</tr>
<tr>
<td>Telluromethionine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homoallylglucose</td>
<td>MetRS</td>
<td></td>
<td>(24)</td>
<td>Alkene functionality</td>
</tr>
<tr>
<td>Homopropargylglucose</td>
<td>LeuRST252Ya</td>
<td></td>
<td>(151)</td>
<td>Staudinger ligation (134)</td>
</tr>
</tbody>
</table>

Hendrickson et al, ARB 73, 147 (2004)
Biosynthetic incorporation of nonnatural amino acids

1. Transcription

DNA → mRNA → tRNA

2. Translation

mRNA → Ribosome → polypeptide chain

Protein synthesis

tRNA converts genetic information in the form of RNA sequence into the amino acid sequence in protein

Aminoacyl synthetase (E) activates amino acids and loads them onto tRNA

E + ATP + AA → E(AA-AMP) + PPi

E(AA-AMP) + tRNA → AA-tRNA + AMP + E

E : alanyl-tRNA synthetase, cysteinyl-tRNA synthetase, …
tRNA : tRNA^ala, tRNA^cys, …
Loading of tRNA

Amino acyl tRNA synthetase (aaRS) ensures correct amino acids get loaded on each tRNA

- there is a certain amount of promiscuity
- differentiating similar amino acids is chemically difficult—e.g. Val and Ile differ by a single methylene
- isoleucyl-tRNA synthetase (IleRS) may load val onto tRNAile
- there is an editing mechanism

Nonnatural amino acids may be introduced into proteins by engineering novel aaRS/tRNA pairs

The aaRS/tRNA pair needs to be “orthogonal” to the existing sets of aaRS/tRNA to ensure nonnatural amino acids are introduced selectively at predetermined positions only
Engineering novel aaRS

High resolution E coli MetRS structures are available with and without bound methionine

Use cell-based directed evolution to engineer aaRS to bind new amino acid

Link et al, PNAS 103, 10180 (2006)
Engineering tRNA

Novel tRNA would recognize a codon not used in nature termination codon (TGA, TAG, TAA), four base codon

Supressor tRNA ignores the termination codon in an mRNA and instead adds an amino acid

TAG: amber
TAA: ochre
TGA: opal
Designing orthogonality

1. Orthogonal synthetase must load orthogonal tRNA
2. Endogenous synthetase must not load orthogonal tRNA
3. Orthogonal synthetase must not load endogenous tRNA
Putting it together

Nonnatural amino acids with chemically useful groups may be introduced.
Proteins may be further modified chemically to modulate protein-protein recognition or to selectively label the protein.

Potential substrates for metRS

Link et al, CO in Biotech 14, 603 (2003)