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Protein design has traditionally relied on an expert’s ability to assimilate a

myriad of factors that together influence the stability and uniqueness of a protein

structure. As many of these forces are subtle and their simultaneous optimization

is a problem of great complexity, sophisticated sequence prediction algorithms

have been developed to aid in the design of novel proteins by providing quantita-

tive analysis of the sequence–structure relationship. This review discusses some of

the major developments in computational protein design, focusing on common

inputs to the calculation and several often used search methods. We also highlight

accomplishments in computational protein design, ranging from simple core

redesign of an existing protein, to the design of new functionalities (catalytic or

ligand-binding), and finally to a large-scale design of de novo proteins.

Introduction

The genome of an organism contains the complete biochemical blueprint for its

makeup and to a large extent determines the type of chemical processes that take

place inside the organism. The availability of fully sequenced genomes, therefore, is

an important step towards elucidating the fundamental chemical and biomolecular

events that are the underpinnings of life. Unfortunately, the information encoded in

the genome defies easy interpretation, as it is proteins not nucleic acids that perform

most of critical cellular functions. Proteins are evolutionarily engineered nano-

machines that carry out catalytic, structural and signaling functions essential to life.

Gaining a predictive molecular understanding of their functions is a goal pursued by

many, including molecular biologists, chemists, engineers and material scientists.

Because the function of a protein may be largely dictated by its structure, structure

determination is critical for fully understanding its function. While the primary

sequence of a protein is easily determined from the nucleic acid sequence, it is

notoriously difficult to accurately predict the three dimensional structure of a protein

based on its sequence alone. While great advances are being made in the field of

structure prediction, the current inability to reliably predict the three-dimensional

structure of a protein based on its sequence implies that the structure of individual

DOI: 10.1039/b313669h Annu. Rep. Prog. Chem., Sect. C, 2004, 100, 195–236 195



proteins must still be determined experimentally, which limits structural elucidation

only to those proteins that can be crystallized or are soluble enough for NMR studies.

A related yet different challenge that has seen many breakthroughs in recent years

is protein design, which is the topic of the present review. Whereas structure

prediction starts with the primary sequence and tries to deduce the corresponding

three-dimensional structure, protein design starts with a target structure and searches

for protein sequences that are compatible with the fold. This ‘‘inverse protein

folding’’1 problem can indirectly test many of the same theoretical and computational

inputs used in studying protein folding, including the physical potential used to

evaluate the sequence–structure compatibility. Predictions from a protein design

study are tested experimentally by synthesizing the proposed sequences and verifying

that they adopt the target fold. Protein design teaches us much about the molecular

nature of interactions between amino acids by testing the assumptions and techniques

used during the prediction–synthesis–analysis cycle. The successful design of a new

protein can help us critically evaluate the quality of algorithms used and hone our

skills to design novel proteins with atomic precision. The insights learned from these

efforts will help elucidate how simple protein modules come together to create

complex protein assemblies.

At the same time, protein design is considered an easier task than protein folding

because of the redundancy in solution. Since more than one protein sequence can fold

to a given structure, the odds of finding a sequence compatible with the structure is

thought to be accordingly higher. This degeneracy, however, also complicates protein

design since sequences folding to very similar structures may be broadly distributed in

sequence space. As a result, proteins having essentially the same structure may have

little or no sequence similarity. In addition, part of what makes protein structure

prediction difficult is the covalent connectivity of the peptide backbone. As the

protein folds, distant residues are brought into proximity to form hydrogen bonds or

to participate in hydrophobic interactions. However, the covalent connectivity of the

backbone requires that residues close in sequence also become close in physical space,

and this constraint may lead to a situation where not all noncovalent interactions are

simultaneously satisfied, an effect referred to as ‘frustration’.2 However, protein

design has inherently greater latitude than protein folding, since such noncovalent

frustration may often be resolved by changing the sequence which is at the discretion

of the protein scientist.

The practical aspect of protein engineering is an important driver for the discipline.

Novel protein molecules may have therapeutic potentials that are absent in natural

proteins or satisfy demands unmet by wild type proteins. New proteins may be

engineered for stability, expression, and function. A stable therapeutic molecule may

be overexpressed in large quantities in the laboratory, whereas wild type protein

may resist such overproduction due to undesirable chemical properties, e.g., thermal

instability or tendency to aggregate. Targeted expression of an engineered protein

may reverse the harmful effects of a mutated protein—a notion central to gene

therapy. Some proteins in nature are remarkable catalysts, performing difficult

chemical reactions with ease, e.g., stereospecific bond formations during cholesterol

biosynthesis.3 It is hoped that through artificial molecular evolution and rational

design, novel protein catalysts may be discovered to help with chemical reactions that

are currently difficult to achieve in the laboratory. There are also efforts to design
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novel protein-based molecular sensors4,5 and biomaterials to serve as a foundation

for the next-generation electronics.6 The field of protein design and protein engineer-

ing bridges science and engineering with potential breakthroughs for both.

This review surveys the current state of quantitative protein design. We start with

an overview of some of the major accomplishments in heuristic protein design to

place the recent interest in computational protein design in perspective. We sum-

marize some of the key discoveries made regarding protein structures, which have

critically contributed to the success of heuristic protein design as well as to the later

development of sequence prediction algorithms. Even as the field of computational

protein design is gaining momentum, many of these simple rules continue to play an

important role in the planning, execution and analysis of all protein design projects.

Next, we describe the inputs to computational design including the force field and

rotamer model of side chains. Computational techniques frequently used in protein

design are discussed, which are the workhorses of quantitative protein engineering.

This is followed by success stories in quantitative protein design, where designed

proteins have been experimentally tested against prediction. We conclude with

potential applications of some of the same tools used in computational design to the

design of non-biological folding polymers.7

Knowledge-based protein design

Early works in protein design sought to apply the intuitive knowledge gleaned from

biochemical experiments and structural databases to the construction of small protein

motifs or modules. While many noncovalent interactions are important to protein

folding, the burial of hydrophobic residues is thought to be one of the most important

driving forces.8 As such, the binary patterning of a protein sequence designed to hide

hydrophobic side chains in the protein core and expose hydrophilic side chains on the

protein surface (‘‘hydrophobic in, polar out’’) is a heuristic rule often followed during

protein design. Using a knowledge-based top-down approach to protein design,

researchers have built both simple a-helices and more complex a-helical bundles,

sometimes introducing novel functionalities into the fold as well. The most impressive

are those designs where the majority of the residues in a sequence have been

engineered en masse, thus critically pushing the boundaries of our knowledge. Due to

the largely cooperative nature of protein folding, it is unlikely that one would succeed

in designing a large stably folding sequence unless the designing principles are at least

qualitatively accurate. These empirical studies in turn have further fine-tuned our

understanding of the sequence–structure relationship, and have laid the foundation

for the more ambitious quantitative protein design that is discussed in later sections.

Most natural proteins have abundant secondary structures (helices, sheets and

ordered loops), whose mutual interactions determine the tertiary structure of the

protein. As secondary structures are smaller and ostensibly easier to design than

the whole protein, a reductionist approach to protein design may suggest that we

first identify a set of sequences that are individually expected to form distinct

structural motifs, and then stitch them together to make a whole protein. Also

referred to as hierarchical protein design, this modular approach to protein design

was instrumental in achieving early successes in de novo protein engineering.11
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Secondary structure design usually proceeds using statistical information inferred

from known protein structures. For example, Eisenberg et al. applied simple heuristic

rules regarding a-helix formation to design minimal 12 and 16 residue amphiphilic

a-helices composed of Leu, Glu and Lys,9 of which the 12 residue peptide was later

shown to self-associate to form both tetramers and hexamers.9,10 While oligomeriza-

tion was expected given that the helix had separate hydrophobic and hydrophilic

surfaces, the structural heterogeneity of the oligomer had not been predicted. To force

the formation of a unique structure, four identical helical sequences were strung

together with interhelical loops, resulting in a single tetrameric structure with a

hydrophobic core.11 A shorter peptide with two of the same helical elements

connected together (helix–turn–helix) similarly formed a tetrameric helical bundle

through antiparallel dimeric association.12 Despite their stability, these early designed

proteins and another peptide where some of the Leu side chains have been replaced

with Ile exhibited much mobility in the interior, readily undergoing a thermal

transition to a molten globule-like state.13

The a-helical coiled-coil is commonly observed in natural proteins, including DNA

binding proteins. In order to study the formation of native-like helix bundles, a 29-

residue peptide coil-Ser was designed and characterized.14 Although the peptide has a

similar seven residue repeat pattern as observed in GCN4, which forms a parallel

coiled-coil,15,16 the peptide instead formed an unexpected antiparallel coiled-coil

trimer with the helices running up–up–down. Both attractive and repulsive interheli-

cal electrostatic interactions are observed in this arrangement, suggesting that

electrostatic interactions appear to play a minor role in determining the topology. On

the other hand, the antiparallel orientation of the third helix does promote a

mutually favorable arrangement of induced helix macrodipoles. More importantly,

the stoichiometry seems to be influenced by the Leu residue at the a and d positions

in the heptad repeat, since they adopt more favorable conformations in the

observed structure than they would in a modeled parallel trimer. This view was later

validated by the discovery of a coil-Ser variant with Val at the a position that forms

a parallel three-helix bundle,17 as well as GCN4 mutants that form trimers and

tetramers.18

To estimate the relative importance of the individual amino acids in specifying the

protein fold, Creamer and Rose put forth the ‘‘Paracelsus challenge’’: design two

proteins that share 50% or greater sequence identity yet have different protein folds.19

Responding to the challenge, the Regan group successfully transformed the B1

domain of Streptococcal IgG-binding protein G, which is a predominantly b-sheet

protein, to a four-helix bundle protein by mutating 50% of the wild type amino

acids.20 To achieve this feat, they observed that the B1 domain contains both residues

that have high a-helix forming propensities and those that have high b-sheet forming

propensities. Hence, the b-sheet forming residues were selectively mutated to those

that promote a-helix formation. The selection of residues to be replaced was made

based on the expected a-helix hydrophobicity pattern. The resulting sequence,

dubbed Janus, satisfied the intra-monomer salt bridge and surface charge distribution

required to form a Rop-like struture and was shown to indeed form a four-helix

bundle as expected. They also tested whether other variants of Janus with even higher

sequence identity to the B1 domain can be designed. The mutants Janus-55, Janus-61,

Janus-66 and Janus-86 respectively have 55, 61, 66 and 86% sequence identity with the

198 Annu. Rep. Prog. Chem., Sect. C, 2004, 100, 195–236



B1 domain. While Janus-55 and Janus-61 both maintained helical folds (although

with decreased stability), Janus-66 formed aggregates of b-sheet and Janus-86 had a

b-sheet fold similar to the B1 domain. The success in meeting the Paracelsus challenge

illustrated that the stability and fold of a protein may be modulated through careful

manipulation of a limited number of key amino acids.

A de novo protein with a custom-made function was designed by Schafmeister et al.,

who constructed a novel amphiphilic a-helix composed of just five amino acid types

that solubilized membrane proteins by shielding their exposed hydrophobic trans-

membrane domains.21 This 24-residue minimal helix called ‘‘peptitergent’’ has a flat

surface made of Ala’s and Leu’s for hydrophobic interaction on one side, and a

hydrophilic surface consisting mostly of Gln on the other. When mixed with proteins

containing transmembrane domains, e.g., bacteriorhodopsin and rhodopsin, the

peptide helped the proteins remain in solution over two days. The crystal structure of

the peptide shows that the peptide forms a monomeric four-helix bundle with well-

folded structure.22 The design of a de novo protein to address a practical problem was

also reported by Kim and coworkers, whose therapeutic five-helix protein retarded

the HIV-1 infection of human T cells.23 To that end, they noted that viral entry

requires membrane fusion mediated by the gp41 envelope protein. The fusion active

state of the gp41 ectodomain consists of a six-helix bundle comprised of a coiled-coil

trimer of heterodimers.24 Each heterodimer consists of the N-terminal and C-terminal

helices of a polypeptide which folds on itself. Based on this information, they

designed a so-called ‘‘5-helix’’ that binds to the C-terminal region of one of the

heterodimers through an exposed hydrophobic cleft and competes with its association

with the amino-terminus. The designed protein was soluble, maintained requisite

helicity, and showed efficacy against HIV-1 in a culture study. Therefore, simple

design ideas combined with an understanding of how helices are formed can lead to

de novo proteins with useful functions.

As metal ions can play important roles both in catalysis and structure stabilization,

the introduction of metal-binding activity to an existing protein has been the subject

of many investigations (see ref. 25 for review). As a result, novel proteins with affinity

towards zinc,26 iron,27 calcium,28 copper,29 cadmium30 and mercury31 have been

engineered on templates without intrinsic affinity towards the metal. The protein

scaffolds used in these studies included both designed helix bundles32 and natural

proteins such as protein G.33 When used in a designed protein, metal ions can impose

strong constraints on the coordinating residues, thus helping to organize the protein

fold34 and increase the native-like character of the core.35 Some of the engineered

metal-binding proteins have shown catalytic activity, performing such reactions as

the hydrolysis of plasmid DNA.36 Emulating nature in its use of metal-containing

cofactors, several investigators have successfully designed de novo heme-binding

proteins.37 The heme cofactor appears in a variety of proteins, e.g., myoglobin,

hemoglobin, catalase, peroxidase, cytochrome P450, and participates in electron

transfer and charge separation in respiration and photosynthesis. Using a binary

patterned library, Moffet et al. isolated several heme binding proteins with peroxidase

activity that was only a few fold less than the natural enzyme horseradish

peroxidase.38 Rau et al. reported the design of a heme binding four helix bundle with

a ruthenium tris(bipyridine) complex covalently attached to the exterior hydrophilic

surface. The complex exhibited laser-induced long-range electron transfer,39,40 raising
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a hope that novel proteins may be engineered to work as electron transfer agents. In

an encouraging discovery, a 16 amino acid designed peptide was shown to efficiently

incorporate an iron–sulfur cluster as a tetramer and exhibit redox properties typical

of natural bacterial ferredoxins.41

The combinatorial library approach to protein design allows rapid examination of a

large number of sequences by generating and screening libraries of targeted mutants.

Usually, the library of mutants is constructed by using degenerate oligonucleotides

during gene assembly,42 by performing the polymerase chain reaction (PCR) under

mutagenic conditions,43 or by using DNA shuffling.44,45 The library is transformed

into a cell where desired mutants are identified based on biological screening. Study-

ing the factors that affect protein stability and folding by combinatorial mutagenesis,

Lim and Sauer constructed a library of lambda repressor mutants whose core residues

were randomly mutated to other hydrophobic residues.46 The high percentage of

functional mutants in the library showed that there are many ways to repack the core

and supported the hypothesis that hydrophobicity alone is the key determinant of

whether a mutant core sequence is compatible with the wild type fold. In another

combinatorial study designed to measure the cumulative effects of mutations,

Gregoret and Sauer assembled a set of 2048 mutants containing either the wild type

residue or Ala at eleven positions in the lambda repressor.47 The group observed that

roughly 25% of these mutants, many of which contained multiple mutations, were

functional. By comparing the frequencies of pairwise mutations to those of single

mutations, they concluded that the effects of multiple substitutions are largely

additive but there are also residue pairs that are distant in the three-dimensional

structure yet display statistically significant nonadditive effects. When they expressed

a random library of 80- to 100-residue proteins mainly composed of Gln, Leu, and

Arg in E. coli to study whether fine-tuning of sequence is required to achieve a stable

three-dimensional structure, they noted that 5% of the mutants were readily expressed

in soluble form.48 Furthermore, three mutants that were examined biophysically had

significant a-helical content and resisted proteolytic degradation, while one mutant

exhibited highly cooperative unfolding.49 Therefore, these early studies with a binary

patterned peptide library suggested that relatively little sequence information is

required to adopt a folded structure, and a significant fraction of sequences may be

capable of folding to a stable structure.

Probing the importance of binary patterning in attaining a native-like protein

structure, Kamtekar et al. assembled a degenerate library using an expanded binary

code containing a total of eleven residues (Val, Ile, Met, Leu and Phe for the 24

hydrophobic positions; Asn, Asp, His, Gln, Glu, and Lys for the 32 hydrophilic

positions).50 Their library was patterned according the expected distribution of

hydrophobic and hydrophilic side chains in a target four-helix bundle, i.e., hydro-

phobic amino acids at interior buried positions and hydrophilic amino acids at

solvent exposed positions. If binary patterning is the main determinant for protein

folding, as suggested by previous experiments,46,48 then a large percentage of the

sequences in the library should fold to compact native-like structures. Of the 4.7 6
1041 possible amino acid sequences, 48 were randomly sampled and expressed in

E. coli. Roughly y60% of the tested folded to proteins that were soluble and resistant

to intracellular degradation.50 Further analysis of three of the designed proteins by

circular dichroism (CD), chemical denaturation, and size-exclusion chromatography
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showed they were monomeric four-helical bundles. However, stability does not

necessarily imply a unique structure. To examine whether a well-folded interior can

be designed by a binary code strategy, Wei et al. lengthened the helices and

constructed a new library patterned to fold into a 102-residue four-helix bundle.51

When five proteins were randomly selected and characterized by NMR, all but one

showed cross-peaks characteristic of tertiary interactions and well-ordered structures.

Furthermore, the solution structure of one of them showed an antiparallel four-helix

bundle with well-ordered side chains, demonstrating that a native-like structure can

be designed using a binary patterned library.52

On the other hand, when a combinatorial library patterned with alternating

hydrophobic and hydrophilic side chains was constructed to study novel b-sheets, the

resulting proteins were found to self-assemble into large oligomers, such as amyloid-

like fibrils.53 A search through a database of 250,514 protein sequences revealed that

alternating patterns of polar and nonpolar amino acids occur less often than other

patterns with similar compositions.54 Together, these results suggest that sequences

of alternating hydrophobicity are inherently amyloidogenic and may have been

disfavored by evolutionary selection. These observations also highlight the difficulty

of designing novel b-sheets. Whereas most of the hydrogen bonds within a helix are

satisfied locally, the hydrogen bonds required to stabilize a b-sheet are formed

between residues distant in sequence, making the design process inherently more

global. The tendency of some b-sheets to form aggregates and to precipitate out of

solution is a consequence of the fact that a b-strand can interact with its neighbors

both through backbone hydrogen bonds as well as through hydrophobic and hydro-

philic interactions between side chains.55

Novel proteins with engineered properties and functionalities may be discovered

by screening a large, randomly generated peptide library. Library-based protein

engineering, in combination with molecular evolution or directed evolution, uses the

iterative mutation–selection–enrichment cycle to engineer new protein molecules. The

use of sequence libraries and directed evolution in protein engineering has been

spurred by the availability of various library platforms and concurrent development

of high throughput assays. Phage display libraries are a popular platform for protein

engineering56 but others have also used bacterial,57 yeast,58 and ribosomal display.59

In a molecular evolution study, Braisted and Wells tested whether the third helix of

the IgG binding domain of protein A, which does not contact IgG directly, may be

removed without affecting the binding affinity.60 They constructed and screened

libraries of the first two helices to stabilize the truncated domain while maintaining

high binding affinity (Kd y 20 nM). The stability of a mesophilic esterase was

improved in a 96-well plate based parallel assay, resulting in a mutant with higher Tm

by 14 uC.61 Molecular evolution was also used to evolve an RNA polymerase from a

DNA polymerase;62 to endow an antibody with catalytic activity;63–65 and to speed

up the maturation of a red fluorescent protein.66 In a highly sensitive functional assay,

Hilvert and co-workers converted dimeric E. coli chorismate mutase to a monomeric

four-helix-bundle protein with near native activity (Fig. 1).67 Their study also

demonstrated that when residues in an interhelical turn are involved in long-range

tertiary interactions, the fraction of acceptable turn sequences is substantially lower

(v0.05%) than previous studies on other four-helix-bundle proteins had suggested.68

Despite these well-known successes, protein engineering by molecular evolution often
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does not explicitly incorporate knowledge of protein structure. Nor does the success-

ful engineering of a novel protein necessarily help us design other interesting proteins

in a predictable way. On the other hand, a large-scale library screening may be an

efficient way to validate the predictions of rational protein design.

Challenges in de novo protein design

While heuristic protein design has been successful in the discovery of numerous

interesting molecules, protein designers working on de novo protein engineering

continue to face difficult challenges. For one, many of the previously designed

proteins including a well-characterized helix bundle69 and a b sheet protein70 fall

short of behaving truly like natural proteins.71 Their thermal denaturation is not

entirely cooperative and often requires the presence of chaotropic chemicals. For

example, in the case of the Richardson b-sheet protein, despite its sharp 1H NMR

peaks, the protein binds hydrophobic dyes such as ANS to a degree expected for a

poorly folded protein.70 The difficulty in designing well-defined tertiary structures is

Fig. 1 Redesigning the topology of E. coli chorismate mutase from an obligate dimer to a
monomer through molecular evolution. (Re-printed with permission from ref. 67.)
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in part due to imperfect consideration of the physical and chemical interactions

important for stabilizing particular structures. Furthermore, while numerous factors

contribute to the design of a native-like protein, hierarchical, knowledge-based

protein design is unable to capture all the subtleties of protein folding in an atomically

detailed and systematic way that simultaneously optimizes the stability and unique-

ness of a designed structure.

Unable to consider all the degrees of freedom available to a system, hierarchical

design usually models only the most salient features such as hydrophobicity and

optimizes design through an iterative cycle of construction, analysis and improve-

ment. This sort of ‘divide and conquer’ approach disregards the fact that the local

backbone structure is often contingent on its context within the larger tertiary

structure of the protein, and thus it is preferable to consider the properties of the

sequences as a whole. Nevertheless, a hierarchical approach is necessitated by the

huge number of sequence degrees of freedom. Unfortunately, the exponentially large

number of possible sequences (e.g., more than 10130 sequences for a 100-residue

protein) impedes direct rational sequence design. Furthermore, since the protein is

not considered globally in the context of the target fold, such an approach may

obscure the underlying physical principles of structural organization.

The information required for a polypeptide to fold to a unique three-dimensional

structure is encoded in its primary structure, i.e., its amino acid sequence. In addition

to being energetically consistent with the native structure, the sequence must also be

incompatible with other alternative structures. For example, if a sequence that folds

to a monomeric b-sheet protein also folds to an amyloid fiber, its natural function

would be severely compromised. Such ambiguity may have been eliminated during

evolution to ensure structural uniqueness. In general, one would believe that two

similar sequences in nature would not fold to two very different structures. However,

as the works of Regan and coworkers have shown, a large degree of sequence

similarity alone does not guarantee structural similarity.20,72 Recently, a double

mutant Arc protein (‘switch Arc’) was discovered that further demonstrates the subtle

sequence–structure relationship. In ‘switch Arc,’ hydrophilic Asn11 and hydrophobic

Leu12 have been switched with each other, with the concomitant change in the binary

patterning from one that is consistent with a b-strand to one that promotes a-helix.73

As a result, the region surrounding the residues 11 and 12 undergoes a transition from

a b-strand to an a-helix. Surprisingly, the resulting mutant can still homodimerize and

bind DNA. A single mutant Arc-N11L exhibits an even more ambiguous structural

identity, as the region near residue 11 exists both as a b-strand and an a-helix at room

temperature.74 The relative distribution between the two structures depends on the

ambient temperature. Thus, this mutant can be considered an evolutionary inter-

mediate between the wild type protein and ‘switch Arc.’

The sequence–structure relationship is highly context-dependent, making both

protein folding and protein design subject to error. While the secondary structure

propensities of amino acids are important determinants of protein folding, the local

conformational preferences themselves can be influenced through tertiary inter-

actions. The context-dependent secondary structure formation is shown by a variant

of B1 domain of protein G, where an identical stretch of 11 amino acids (‘chameleon

sequence’) folds to an a-helix when placed in one position but to a b-sheet when

moved to a different location.75 So far, all the subtle rules of sequence–structure
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relationships have not been captured in a set of simple rules, making it difficult

to consistently incorporate them during protein design. These difficulties have

motivated the search for new ways of designing novel proteins that is founded on

detailed quantitative analyses. A quantitative approach to protein design would help

ensure that what we know heuristically about protein design is systematically

incorporated in every design project. The development of algorithms to quantitatively

evaluate the quality of a proposed design would also help identify gaps in our

knowledge and point to ways to improve them. The remainder of the review discusses

computation-driven protein design. A theoretical overview is presented first, followed

by discussions of major experimental accomplishments.

Computational approach to protein design

Heuristic protein design relies on human intuition to optimize the sequence–structure

relationship, and its success depends critically on the designer’s ability to assimilate

numerous pieces of information consistently and coherently. Unfortunately, many of

the factors that contribute to protein folding are subtle and cannot be easily visualized

or addressed without detailed consideration of sequence and structure. Noncovalent

interactions, e.g., van der Waals forces, hydrogen bonds, and electrostatic inter-

actions, are some of the most difficult quantities to estimate accurately, as the

strength of each of these depends critically on the distance of separation and geometry

of interaction in the presence of solvent. In addition, one must also consider a large

number of amino acid sequences during protein design. The combinatorial possibi-

lities for all but the simplest design project, therefore, far exceed what a person can

meaningfully inspect by hand and evaluate. As a result, computational algorithms

that can rapidly screen or characterize a large search space are needed in order to

guide protein design with atomic resolution. Powerful optimization methods can

efficiently search through or screen an astronomically large number of unique

sequences in silico before any one of them is actually designed and tested in the

laboratory. Potentially, the lessons learned from computational protein design can be

applied to design other macromolecules. Since the same set of physical forces that

govern the behavior of polypeptides also govern other small and large biomolecules,

models based on physical and chemical interactions may be developed to assist the

design of proteins and other folding heteropolymers. This offers a distinct advantage

when experimental data to guide the heuristic design of such novel molecules is

lacking. Common inputs to computational protein design are discussed below.

Inputs to calculation

Target structure. The target protein structure is often obtained from an existing

high-resolution structure, although it can also be modeled de novo. It may also be a

fold based on an existing structure with additional design requirements modeled in

afterwards, as for example, when optimizing a turn in a protein.76 While fixing the

backbone geometry greatly reduces the computational complexity by decreasing the

total degrees of freedom, it also prevents the mainchain from making adjustments to
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accommodate sequence variations. Several authors, hence, have introduced backbone

flexibility in their design by exploring alternative conformations during the search by

examining closely related structures.77–79 The target structure is specified at atomic

resolution unlike in heuristic protein design where the overall topology of the protein

alone is the primary concern. The selection of a backbone from a known protein

structure guarantees that the target protein is in fact designable. Designability is an

important feature since not all possible protein folds may have sequences that fold

uniquely to them.80 At the same time, the choice of an existing structure as a design

template may still permit a wide range of biological functionalities. Nearly identical

structures have been used by proteins in nature that share no sequence or functional

homology. The TIM barrel topology, for example, is found in 21 unrelated protein

superfamilies,81 suggesting that other novel functionalities may be successfully

introduced to existing folds. Recent theoretical studies by the Shakhnovich group

suggest that designability is correlated with the so-called contact trace, which is a

measure of the fold’s tertiary topology.82,83 As of yet, most protein design usually

proceeds from a fold found in nature.

Residue degrees of freedom. The total number of degrees of freedom per residue for

a given target tertiary structure is specified by the amino acids and by the amino acid

side chain conformations permitted at each position in the sequence. Both qualitative

and quantitative methods of reducing the allowed degrees of freedom have been

investigated and are commonly used during protein design.

Amino acids. The amino acid degrees of freedom refer to the number of different

amino acid states allowed at each randomized position. The state of an amino acid is

determined by both its identity and by its side chain conformation. The side chain

conformations, rotamer states, are usually those inferred from a structural database

and are usually consistent with the bond and torsional angles present in a molecular

potential.84 The simplest amino acids (Ala and Gly) are considered to have just one

rotamer state, whereas amino acids with larger side chains may have as many as 80–

100 different rotamer states. Typically there are on the order of 100’s of such rotamer

states, when summed over the 20 amino acids. While the inclusion of all 20 amino

acids allows the entire sequence space to be searched, studies have suggested a variety

of ways of reducing the amino acid degrees of freedom without compromising the

quality of design. This can greatly influence the success or failure of a project since

one must potentially optimize mN degrees of freedom (m is the number of side chain

conformations per residue, N is the number of residues). When designing a medium-

size protein of 100 residues with all 20 amino acids, this number is far greater than can

be achieved either computationally or experimentally. A straightforward approach is

to reduce the number of states per residue in a site specific manner. The number of

possible sequence states
Q

i

mi, then, may be significantly smaller than mN. Experi-

ments have shown that not all twenty amino acid types are required to construct a

functional protein.85 For example, a de novo 108 residue protein composed of seven

residue types can fold to a native-like four-helix bundle;22 a five-letter amino acid

alphabet can reconstruct 95% of an SH3 domain;86 and a functional enzyme can be

constructed using a total of 13 amino acid types.87 Therefore, a reduction in the
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amino acid alphabet can significantly speed up calculation without limiting the

design scope. Most significantly, targeting amino acid variability in hydrophobic

patterning can dramatically reduce the sequence search space and simultaneously

drive the formation of desired secondary structures. In a validation of the use of

a reduced alphabet during protein design, Marshall and Mayo automated the

selection of amino acids based on the expected local hydrophobicity, and successfully

designed a monomeric and well-folded variant of engrailed homeodomain using a

limited set of side chains.88 As protein design methods continue to improve, one may

even consider monomers other than the naturally occurring amino acids. Though an

expanded monomer set may increase complexity of the problem, nonnatural amino

acids can potentially allow a greater range of functionalities in the designed

protein.89,90

Rotamer library. During atomically detailed design, side chains are free to explore

different conformations. While the side chain dihedral angles (x) may take on values

from 2180 to 1180u, in naturally occurring proteins, they usually adopt discrete

staggered dihedral angles near the torsional energy minima. A side chain con-

formation corresponding to a local minimum energy is referred to as rotamer. Such

rotamer states may be determined via the minimization of a molecular potential, or

more often via analysis of the side chain conformations observed in high-resolution

protein structures. As the bond angles and bond lengths in a side chain are usually

well determined, a set of dihedral angles is sufficient to uniquely describe each

rotamer. The rotamers for all amino acids together make up a rotamer library

(reviewed in ref. 84). The use of a rotamer library significantly reduces the complexity

of calculation by discretizing the search space. Although this discretization represents

only an approximate representation of the full conformational flexibility of the side

chains, it is a useful approximation that is rooted in statistical observation. There

are a variety of rotamer libraries available for protein modeling and protein

design, including backbone-independent, secondary-structure-dependent or back-

bone-dependent libraries.91–103 Backbone-independent rotamer libraries are calcu-

lated from all available side chains of each amino acid regardless of the local

context. Secondary-structure-dependent libraries provide separate sets of side

chain dihedral angles for a-helix, b-sheet or coil secondary structures, while the

side chain conformations of backbone-dependent rotamer libraries present them as

functions of the local backbone conformation, i.e., the backbone dihedral angles w

and y. The choice of a rotamer library constitutes an important part of com-

putational protein design, since it can affect the calculation both qualitatively and

quantitatively.104

Rotamer libraries are usually constructed from a statistical analysis of the side

chain conformations in known protein structures by clustering observed conforma-

tions, or by dividing dihedral angles into bins and associating an average con-

formation in each bin.84 Although the rotamers in a rotamer library usually

correspond to local minima of a potential energy, broad ranges of sidechain dihedral

angles are also observed for some side chains such as Asn and Gln. As different

libraries are constructed using different statistical methods, fluctuations about a

particular rotamer state have also been considered. Ponder and Richards provided

means and standard deviations for their backbone-independent rotamer library.96
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Dunbrack and Cohen used a Bayesian treatment to estimate the variance for each

dihedral angle,103 and Lovell et al. examined skew in the distribution by computing

different half-widths on each side of the mode.105 The existence of nonrotameric side

chains with highly unusual dihedral angles has also received attention.106,107 The

prevailing theories to account for their existence include: interactions with the

backbone, which force the side chain to adopt strained angles; stabilization by highly

favorable interactions, e.g., hydrogen bonding; improper fitting of the side chains to

the observed electron density; and multiple conformations that coexist in equilibrium.

Resolving these ambiguities may require excluding from the analysis those side chains

with high B-factors or steric conflicts in the presence of predicted hydrogen atom

locations, as well as limiting the dataset to high-resolution structures only (e.g., better

than 1.7 Å resolution). Nonetheless, the observation of nonstandard rotamers in the

structural database highlights the limitations of rotamer libraries, in that the range of

available side chain conformations may be overly restricted.

Energy function. The physico-chemical potential for interatomic interactions is a

key element of computational protein design, since it is used to quantify sequence–

structure compatibility. The physical potential determines if a particular combination

of side chains is energetically favorable for a particular backbone structure. There are

several potential functions currently in use for large-scale protein design, e.g.,

Amber,108 CHARMm,109 and Gromos,110 that are based on an all-atom representa-

tion of amino acids. In some cases, a united atom representation in which hydrogens

are subsumed to the heavy-atoms to which they are bonded can speed up the energy

calculation without significantly affecting the results.111 Most potential functions

contain terms involving bond lengths, bond angles and dihedral angles; as well as

two-body terms for interactions between directly contacting amino acids. The Amber

force field, for example, is parameterized using six such terms:108
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In protein design, solvent is usually not treated explicitly but can be addressed

implicitly via pairwise hydrophobic interactions or a variable dielectric constant.112

As an energy function is often used in combination with a rotamer library during

protein design, not all parameterized terms in the potential need to be evaluated

during the calculation. The rotamer library in effect freezes the bond length, bond

angle, and dihedral angle terms in the potential (the first three terms), leaving just the

van der Waals, electrostatic, and hydrogen bonding terms to contend with. A side

effect of fixing the dihedral angles, i.e., discrete rotamer states, is an overestimation of

van der Waals energy at short distances due to the steep repulsive part of the

nonbonded (van der Waals and hydrogen bonding) interactions. This is often

compensated by softening the van der Waals term via a scaling of the van der Waals

radii by a factor slightly less than unity.113,114

A limitation in most of the existing physical potential functions is that they are
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based on pairwise interactions between directly contacting amino acids. The physical

basis of coupling between distant residues is not well-understood and their proper

representation may require high-order energy terms not included in the existing force

fields. Since the inclusion of multibody interaction terms in the potential can rapidly

make the computation intractable, they are frequently omitted during numerical

studies of bio-macromolecules.

If the state of a sequence is denoted by (a1, r(a1); a2, r(a2); … ; aN, r(aN)), where ai,

r(ai) represent the type and the rotamer of a residue, then the energy of a particular set

of amino acids and rotamer states is computed by summing over one- and two-residue

interactions.

E a1,r a1ð Þ; a2,r a2ð Þ; . . . ; aN ,r aNð Þð Þ~
PN

i~1

ei ai,r aið Þð Þz
PN

i~1

PN

jwi

cij ai,r aið Þ; aj ,r aj

� �� �
(2)

The one-body energy e is calculated by summing over the interatomic interactions

between the side chain atoms of amino acid ai when in rotamer state r(ai) with the

backbone. Similarly, the two-body term c, representing the rotamer-rotamer

interaction, is calculated as the sum of all interatomic energies between the atoms

in the side chains of amino acids ai and aj given that their rotamer states are r(ai)

and r(aj).

Using well parameterized molecular energy functions in atomistic molecular

simulations, we would expect to be able to recover (at least partially) some of the

solvation and secondary structure preferences of the amino acids. In protein design

calculations, however, the use of explicit solvent is usually precluded by the fact that

large numbers of possible sequence changes must be evaluated. Since atomistic

calculations involving each potential sequence are not feasible if large portions of the

sequence space are to be searched and/or characterized, these solvation effects and

local structural preferences are often addressed in an implicit manner without the use

of explicit solvent. These terms may be included in design calculations as additional

contributions to the effective energy function or additional constraints on sequence

properties, some of which are discussed below.

Solvation. While protein-solvent interactions are critical to protein folding, an

accurate quantitative analysis of the hydrophobic effect is difficult because of its

fundamentally multibody nature. In addition, the use of explicit solvent models

introduces additional degrees of freedom and can become impractical for protein

design, where averaging over solvent degrees of freedom must be performed for every

sequence considered in the design process. A widely used method of quantifying

solvation effects involves expressing the solvation free energy as the product of the

solvent accessibility of a buried atom (Ai) and its intrinsic atomic solvation

parameter, or ASP (Dsi) in the form:115

DGi ~ DsiAi (3)

A solvent-accessible surface area is defined as the area over which the center of a
water molecule of radius 1.4 Å can move while maintaining unobstructed contact
with the group. The ASP is fit to the free energies of transfer of amino acid analogs
between a hydrophobic medium (octanol, vacuum) and water.116 Such implicit
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models of solvation may also include generalized Born terms, where solvent is treated
as a polarizable dielectric.117–119 The free energy of hydration based on experimental
free energies of solvation for simple aliphatic and aromatic compounds has also been
proposed as a way of including the effects of solvation on protein folding.120,121

Koehl and Delarue have generalized similar models in order to take into account
contributions from protein/protein interactions.122 A revised environmental free
energy term when used together with the van der Waals and electrostatic terms has
helped improve the predictive power of an algorithm, resulting in a higher percentage
of correctly predicted sequences in a controlled test.123,124 A simpler alternative has
also been proposed based on the pairwise sum of the surface area buried by neighbor
atoms with the goal of reducing the total computation time.125

A different approach to estimating the hydrophobic force has been suggested by

Takada et al., who only considered interactions based on Ca and Cb atoms.126

Similarly, an environmental potential energy based on the Cb density r in the vicinity

of each side chain has been parameterized from a set of soluble proteins.127 Since the

locations of Cb atoms are invariant for a fixed backbone, the hydrophobic propensity

effectively takes the form of a one-body energy. This choice of potential is a useful

parameterization of the hydrophobic effect and was shown to correlate well with

commonly used hydrophobicity scales.127,128

Secondary structure preferences.
Helix. The statistical analysis of known protein structures shows that amino acids

appear with different frequency in various secondary structures, which prompted

Chou and Fasman to parameterize their propensities based on 15 protein struc-

tures.129 In a more detailed study, Richardson and Richardson studied 215 a-helices

from 45 globular proteins and tabulated the distribution of all twenty amino acids on

the a-helix.130 They reported that Asn has a strong preference for the N-cap position,

while Pro has a significantly above average frequency at the beginning of a helix

where it serves as a helix initiator. While chemically similar, Gln cannot replace Asn

at the N-cap position, where the side chain does not have the correct geometry to

form a hydrogen bond with the main chain, and Gln is not statistically favored over

other residues as a capping residue. At the opposite end of the helix, Gly was by far

the most common C-cap residue, terminating 34% of all helices. They also noted that

Ala has a relatively smooth and favorable distributions throughout the helix, in

accord with physical measurements that show Ala is a strong helix maker.131 The

helix propensities of all side chains have since been measured in experimental peptides

using host–guest systems.131–133 Measurements of relative helix forming tendencies

were also measured in a 17-residue Ala-based peptide where a specific position was

systematically mutated to five other nonpolar amino acids,134 but with a somewhat

different result than from the host–guest system. In addition to Ala, Leu and Met

have been found to be helix promoting, while branched side chains such as Ile, Val,

and Thr are in general poor helix formers. The distribution of charged residues is

uneven along the helix with acidic and basic residues clustered near the NH2- and

COOH-termini of the helix, respectively. This charge-dependent distribution is

attributed to the resulting neutralization of the induced macrodipole moment that

stabilizes the helix by y0.5 kcal mol21.71 Acidic and basic charged residues on

adjacent turns of a helix can increase the stability of a helix by anothery0.5 kcal mol21
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through intrahelical salt-bridge formation.71 An idealized helix with various built-in

stabilizing interactions is shown in Fig. 2. Computational studies have attributed the

physical source of the a-helix propensity to conformational entropy by correlating the

side chain entropy loss upon helix formation with measured helix propensities.135,136

b-Strand. The b-strand propensities of amino acids have similarly been investi-

gated by a number of groups, who measured their propensities by systematically

substituting a solvent exposed b-strand residue in a host protein such as a zinc-finger

protein or the B1 domain of protein G.137–139 Studies show that b branched amino

acids in general have the highest b-sheet propensities, regardless of the exact chemical

nature of the side chain. Thr, Ile, Val, Tyr and Phe are among the best b-sheet

formers, while charged residues Lys and Glu are among the poorest b-sheet formers.

Furthermore, the b-sheet propensities have been shown to be context-dependent and

vary depending on whether the amino acid is located on an edge strand with one

neighboring b-strand, or on a central strand buffeted by b-strands on both sides.140

Similar to the stabilizing side chain–side chain interactions observed in a helix, cross-

strand pairs also interact with each other, either augmenting or opposing the b-sheet

propensities of the neighboring residues. Smith and Regan studied the interaction

energy between cross-strand pairs of side chains on an antiparallel b-sheet by creating

double mutations on adjacent strands in the B1 domain.141 They measured favorable

interaction energy of nearly 1 kcal mol21 for the Lys–Glu pair and the Phe–Phe pair,

and unfavorable interaction energy of 0.75 kcal mol21 for Thr–Ile pair. Their

measurement was in good agreement with the statistical correlation observed in the

protein structure database. To provide a theoretical foundation for the intrinsic

b-sheet propensities, Street and Mayo derived the Ramachandran plots for each of

the amino acids by modeling them in a dipeptide environment.142 These data were

then used to determine the changes in entropy (DS) and Helmholtz free energy (DA)

on folding into a b-sheet. Both DS and DA correlated well with average normalized

Fig. 2 An idealized helix. See text for explanation of various stabilizing influences. (Re-printed
with permission from ref. 71.)
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experimental propensities, which led the authors to conclude that the b-sheet

propensity arises from the steric interaction of an amino acid side chain with its local

backbone.

Loops and turns. Interhelical loops and b-hairpins form another important class of

structural motif. Loops can be understood as a combination of common helix C-cap

and N-cap motifs joined back to back, and not surprisingly, loop residues often adopt

conformations that are characteristic of residues found near helix termini.143 Turns in

b-hairpins (reviewed in detail in ref. 144) connect two antiparallel b-strands and may

contribute y2–5 kcal mol21 to the overall stability, making the judicious selection of

a turn a critical part of designing a b-sheet. Turns can be classified based on the

number of residues involved and the handedness,145 of which two residue turns with a

left-handed twist, type I’ and II’ turns, are the most often found in b-hairpins.146 The

required main chain torsion angles in a hairpin put the turn residues in the left-

handed region of the Ramachandran plot, and as a result turn sequences often include

Gly, Asn, Asp and Pro that frequently adopt these conformations. In an in vitro

evolution study, Zhou et al. introduced random turn sequences to host proteins of

differing thermodynamic stabilities.147 The percentage of active mutants was lower

for hosts of lower stability and decreased further as the temperature was raised,

demonstrating that optimized b-turns can affect the evolution of marginally stable

proteins.

Negative design. Designing a de novo protein, one must ensure that the new

sequence folds to a unique structure. In so doing, the protein avoids appreciably

populating alternative structures that are significantly different from the target

structure. In the language of the energy landscape theory of protein folding, the

energy landscape must be appropriately ‘‘funneled’’ toward the native state. This

aspect of protein design that includes bias against misfolded structures is referred to

as ‘‘negative design’’.148 An example from protein engineering that demonstrates the

importance of negative design is an antiparallel three-helix bundle designed from

three copies of a helix-forming sequence that were concatenated together. In the

absence of explicit negative design, the resulting protein populated a mix of two

competing topologies, with the third helix on either side of the plane formed by the

first two helices.69 To achieve structural specificity, therefore, the target structure

must correspond to the energy ground state with a significant energy gap separating

the target structure energetically from other possible competing structures.149–152

Raising the energy of alternative conformations is a design strategy used both by

protein engineers and nature alike. In Arc repressor, buried salt bridges confer

conformational specificity at the expense of destabilizing the entire protein.153 The

statistical analysis of edge strands in naturally occurring b-sheet proteins shows

that negative design elements such as b-bulges, prolines, inwardly directed charged

residues, and very short edge strands protect free edge strands and help avoid the

formation of aggregates.154 The introduction of negative design features allowed

Wang and Hecht to convert amyloid-like fibrils to a monomeric b-sheet protein.155

The notion that decreasing energy is correlated with improved foldability has been

shown to be problematic, particularly for models involving reduced representations

of the amino acids where oftentimes negative design is crucial.156 For simple models
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of proteins, foldability criteria that more accurately approximate the free energy of

folding may be used as objective functions in sequence design. For atomically detailed

representations of proteins, however, it is generally regarded that lower energy

sequences are more likely to fold to the desired structure, and the minimization of

interaction energy is at the heart of most design algorithms. This is not unreasonable,

given that most such design algorithms yield tight packing of interior side chains,

consistent with what is observed in naturally occurring structures. Such tightly

packed sequences are likely specific to a particular backbone structure, and it is

unlikely that the same interior packing could be observed in alternative conforma-

tions of the backbone. In a sense, use of explicit representations of the side chains

increases the effective number of monomer types by associating a set of rotamers with

each amino acid, and as the effective number of monomer types increases, it becomes

more straightforward to encode a particular tertiary structure.

Search methods

Protein folding is driven by the free energy difference between the denatured and

native states. Due to the difficulty of computing the free energy differences accurately

with atom-based models of proteins, however, the fitness of a designed sequence

involves only the target structure and is often evaluated based on energies computed

from one or more potential functions that quantify sequence–structure compatibility.

There are well-tested algorithms of finding low-energy sequences, employing either a

stochastic or deterministic approach to the search. Stochastic algorithms include the

Monte Carlo method and its variants, simulated annealing, and genetic algorithms.

Their individual differences notwithstanding, these methods systematically generate

random sequences, evaluate their fitness, and iteratively improve on previous

discoveries until a convergence is achieved. Other search methods include algorithms

that start with initial search parameters and consistently drive toward low energy

sequences. The elimination based methods yield global optima for pairwise additive

potentials. Rather than specific sequences, some methods produce a site-specific

probabilistic description of those sequences that are compatible with the target

structure. The probability profile may then be used to construct a biased peptide

library or to guide the selection of specific sequences.

Monte Carlo. The Monte Carlo (MC) method is one of the most widely used

search methods when studying a system of great complexity. Energy minimization

during protein design is one such area where MC and other similar methods based on

the same principle have made significant contributions.157,158 At each elementary step

in a MC search, a test sequence is generated from the current amino acid sequence in a

partially random manner, and its energy is computed using a physical potential.

These elementary steps may involve changes in both rotamer state as well as amino

acid identity. To bias the evolution of a sequence down the energy landscape towards

the global minimum, the test sequence is either accepted or rejected according to the

Metropolis criterion which depends on an effective temperature of the process.159 The

value of the effective temperature dictates the allowed range of energy changes that

are available at each step in the MC process, with larger changes in energy being more
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probable at higher effective temperatures. If the test sequence is accepted, then it

is used during the next round to generate a new sequence, but if it is rejected, the

test sequence is discarded and the original sequence is re-used to construct

another test sequence. The iteration continues until some convergence criteria have

been met.

Simulated annealing, so called in reference to the gradual cooling of physical

material to achieve internal order, is a MC algorithm with a gradually decreasing

effective temperature which allows progressively lower energy configurations to be

sampled. Simulated annealing has been used to solve NP-complete problems such as

the traveling salesman problem160 as well as such optimization problems as molecular

docking,161 side chain packing,162 and sequence design.163 Other extensions to the

classical MC include MC with quenching (MCQ) and biased MC (BMC). MCQ

provides periodic optimization at the end of each cycle by testing all possible rotamers

of the amino acids. Hence, the rotamer combinations with the lowest interaction

energy are identified before the next MC cycle.164 The main feature that distinguishes

BMC from the classical MC is that the trial moves are biased to increase the

acceptance probability.165 This is achieved by substituting the amino acid at each

chosen site with a probability that is a function of the local energy surface. In a lattice

model calculation, BMC and mean-field biased MC have provided more efficient

sampling, faster permitted cooling rates, and better estimates of the lowest energy

sequence for the target structure.166

Genetic algorithms. The concept of Darwinian evolution based on the survival of

the fittest guided the invention of genetic algorithms as powerful stochastic methods

for optimization.167 Whereas MC and its variants maintain and repeatedly update

one or a few trial configurations serially, genetic algorithms are inherently parallel

algorithms that use a population of would-be solutions to arrive at optimal solutions

through mutations, crossovers and natural selection. In a typical implementation of

the genetic algorithm, a large number (a few tens) of randomly created configurations

(sequence-rotamer states of the protein) are initially assembled to represent a

population. Each configuration is referred to as chromosome in analogy to genetic

information in biology. The obligate inputs to any genetic algorithm include the

genetic representation of solution, objective function and definition of genetic

operators. The chromosomal representation of a solution is flexible and can include

trees, lists, arrays, in addition to the commonly used strings. For each representation,

the genetic operators must be defined with full information regarding how two

chromosomes would swap genetic information. The mutational and crossover rates

must also be specified. An objective function is used to evaluate the fitness of a

chromosome, and may be maximized or minimized during the optimization.

While there are differences in the implementation details, all genetic algorithms

share the common computational framework. At each generation, the chromosomes

are evaluated according to the objective function, and high-scoring chromosomes are

allowed to mate with each other. The resulting offspring replace low-scoring

chromosomes to improve the average fitness of the population while maintaining its

total size. The exact choice of the chromosomes involved in crossovers varies just as

there are a number of ways of selecting the members to be eliminated. Regardless,

high-scoring chromosomes in general have a higher rate of mating and survival than
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low-scoring ones, resulting in an improvement in fitness for the entire population over

time. Once the population has been updated, it undergoes random mutations at a

predetermined rate, which introduces variations in the genetic pool of the population,

before it is subjected to another round of mating, selection, and mutation.

The peptide sequence search can be written as a genetic algorithm by letting each

chromosome represent an amino acid sequence. The crossover step would then

correspond to first identifying two peptide sequences with low energies, cutting them

into two pieces by hydrolyzing the backbone, and ligating the N-terminal piece of one

with the C-terminal piece of the other, and vice versa, to generate two new sequences.

They would replace two other sequences with poor compatibility with the target

structure. Finally, there would be a random substitution in the sequence to model

point mutation. Similarly to the MC search, the strength of a genetic algorithm is in

optimizing a solution on a rugged fitness landscape, as most free energy landscapes

encountered during protein design are, where the algorithm can sample the search

space without getting trapped in local minima. The success of a GA depends on

choosing an appropriate size for the initial population as well as optimizing the rates

of mutation and crossover, and hence the algorithm may have to be run multiple

times before a desired solution is found.

Dead end elimination (DEE). A novel pruning method of identifying rotamers that

correspond to the global minimum energy conformation (GMEC) was proposed by

Desmet et al.,168 which was since adopted by various groups for side chain

modeling123,169 and ligand docking.170 Functionally equivalent to an exhaustive

search, the algorithm guarantees to find the minimum energy solution of an energy

function comprising at most two-body interactions. The DEE theorem can be

succinctly stated as: for two rotamers ir and it at position i, if the following inequality

holds true

E irð Þz
XN

j=i

min
s

E ir,jsð ÞwE itð Þz
XN

j=i

max
s

E it,jsð Þ (4)

where E(ir) is side chain-backbone energy while E(ir,js) is side chain-side chain energy

with other rotamers, then ir is incompatible with the GMEC and can be eliminated

from further consideration. The pruning criterion was later relaxed by Goldstein to

expedite the elimination of sub-optimal rotamers:171

E irð Þ{E itð Þz
XN

j=i

min
s

E ir,jsð Þ{E it,jsð Þ½ �w0 (5)

which is equivalent to eliminating rotamer ir if it has a higher energy than rotamer it
for all possible conformations at other sites. The process is repeated iteratively

throughout the entire protein until no further amino acids or rotamer states may be

eliminated. At that point an exhaustive search among the energies of the typically few

remaining sequences identifies the global minimum. While a significant hurdle exists

in applying DEE to protein design due to the exponentially growing computation

time for large proteins,164 the method has been successfully used in many design

projects172,173 and the algorithm continues to be refined.174
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Mean field theory. While sampling methods are commonly used for optimization,

the computational costs of such algorithms are high as it may take a long time to

reach convergence. One alternative to stochastic sampling is the mean field approach.

Rather than enumerating individual sequences, mean field calculations apply an

optimization algorithm to an ensemble of sequences and try to determine the relative

weights of the interactions that determine the local energy at a site (residue) that are

consistent with a particular thermal average. The effective temperature may be

gradually lowered so as to identify the properties of low energy sequences. Originally

applied to study the Ising model of the spin–lattice and ferromagnetism,175,176 mean

field theory neglects fluctuations in the local energies of each site in a system and the

interactions of a site with its neighbors are calculated as a weighted average. This

results in a self-consistent set of equations determining the site-specific probabilities

of particular states in a system. When describing proteins, these states represent the

type and side-chain conformation of amino acids present at various sites. Mean field

methods have been used both for side chain modeling and sequence design101,177–180

In the mean field approximation for protein design, the effective two-body

potential is the weighted sum of all pairwise interactions. If the sequence of a protein

of N residues is described as a series of parameters (a1, r(a1); a2, r(a2); … ; aN, r(aN))

with ai, r(ai) denoting the amino acid identity and side chain conformation,

respectively, at site i, then the mean field approximation allows the average local

energy ei(ai,r(ai)) at position i to be written as:

ei ai,r aið Þð Þ~
X

j,aj

X

r ajð Þ
wj aj ,r aj
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cij ai,r aið Þ; aj ,r aj
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ze0

i ai,r aið Þð Þ (6)

where cij(ai, r(ai); aj,r(aj)) is the two-body interaction energy between side chains ai

and aj, and ei
0(ai,r(ai)) is the one-body energy that results from side chain backbone

interactions, or the structural propensities of the amino acids. The pair interactions

of site i with its neighbors are weighted with the normalized probabilities wj(aj,r(aj)).

The wj(aj,r(aj)) are themselves Boltzmann functions of the local energies at the

neighboring sites: wj(aj,r(aj)) 3 exp(2bej(aj,r(aj)), where b21 is an effective inverse

temperature. These equations are solved self-consistently for the local fields ej(aj,rj(aj)),

or equivalently the site-specific probabilities wj(aj,r(aj)). The method may be used to

investigate the properties of low energy sequences by solving for the site-specific

probabilities for successively increasing values of the inverse temperature parameter b.

The major advantage of mean-field methods over other algorithms is that by using the

average energy to compute local interactions, an explicit enumeration or sampling of

conformations can be avoided, greatly decreasing the total computation time. In a

benchmarking study, Voigt et al. compared the performance of MC, GA, and self-

consistent mean field algorithms in finding the global minimum as identified by dead-

end elimination. Mean field algorithms performed well on hydrophobic core

calculations (7% incorrect identification of amino acids) but only marginally for

residues in boundary and surface positions (28 and 37% error, respectively).164

Probabilistic approach to sequence design. The use of site-specific amino acid

probabilities, rather than specific sequences, is referred to as probabilistic protein

design. Such a probabilistic approach is motivated by the complexity and uncertainty
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associated with the process of identifying sequences that fold to a particular structure,

e.g., the energy functions used are approximate, side chain conformations are treated

discretely, backbone atoms are often fixed, and solvation properties are treated using

crude approximations. Probabilistic approaches are often used in science and

engineering when we have only incomplete information about a system, as is certainly

the case for protein folding. Nonetheless, probabilistic methods directly provide

useful sequence information that can be used to guide design experiments and identify

structurally important amino acids. The site specific amino acid probabilities can also

highlight residues that are likely to tolerate mutation without adversely affecting

structure. Such mutable sites can then be targeted for mutation in multiple rounds of

protein design during the search for sequences that confer biological activity or other

desired properties to a target tertiary structure.

An entropy based formalism to identify amino acid probabilities for a given

backbone structure has been developed.127,181 The theory borrows concepts from

statistical mechanics to directly estimate the site-specific probabilities and addresses

the whole space of available compositions, and the method is not limited to a small

fraction that is accessible to experiment or to computational enumeration and

sampling. Using this approach, the features of suboptimal sequences may also be

readily examined. Large protein structures (more than 100 residues) can also be easily

accommodated in such calculations. The effective entropy quantifies the variability of

sequences consistent with the target structure. The number of possible sequences

is reduced by decreasing the energy or imposing constraints on the system, which

reduces the conformational entropy, thus diminishing the number of allowed

sequences.

The notion of entropy maximization is central to this methodology, just as it is

fundamental to statistical mechanics and information theory. There are an infinite

number of possible sets of site-specific state probabilities, where the ‘‘state’’ of each

residue is defined by both monomer identity and side chain conformation. The most

probable set of probabilities is determined by optimizing an effective entropy function

subject to any constraints imposed on the system. The method takes as input a target

structure, energy functions, and constraints on amino acid properties. Both global

considerations (e.g., the overall energy of the sequences) and local features (e.g., the

allowed amino acids at particular sites) can be specified via constraints. With the

judicious application of such constraints, the properties of sequences consistent with a

particular tertiary structure and other desired properties may be readily identified.

Again with wi(ai,r(ai)) denoting the amino acid and rotamer state probabilities at

residue position i, the total sequence-conformational entropy Sc (simply referred to as

‘‘conformational entropy’’) is written as

Sc~{
X

i,ai ,r aið Þ
wi ai,r aið Þð Þ ln wi ai,r aið Þð Þ (7)

The sum extends over each sequence position i and all available amino acids a at each

position. Furthermore, for each amino acid, the sum is taken over each of the k

possible rotamer states rk(ai). Although writing the entropy Sc in this manner implies

a factorization approximation and seems to suggest that the site specific probabilities

are independent. In fact, constraints on the sequences cause the probabilities to be
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coupled. The wi(ai,r(ai)) are determined as those that maximize Sc subject to

constraints fm, which are themselves functions of the wi(ai,r(ai)). In order to impose

these constraints during maximization, a variational functional V is defined using the

method of Lagrange multipliers

V ~ Sc 2 b1f1 2 b2f2 2… (8)

where the mth constraint function fm has a particular value fo
m ~ fm({wi(ai,r(ai))}) and

the bm are Lagrange multipliers conjugate to the constraints. The functions fm may be
used to specify a wide variety of properties on the sequences, including the overall
energy of the structure, the patterning of residue properties, and effective energies
that quantify solvation and/or secondary structure propensities of the amino acids.
Different energy constraints each enter in a dimensionless manner in the variational
functional V , obviating difficulties associated the relative weighting of physically-
derived vs. database-derived energy terms. The set of equations to be solved
simultaneously to determine the probabilities and the Lagrange multipliers take
the form:

hV /hwi(ai,r(ai)) ~ 0 (9)

fm({wi(ai,r(ai))}) ~ fo
m (10)

This large set of on the order of 104 coupled, nonlinear equations is solved using
constrained minimization or root finding methods.182 If the only constraints imposed
are those involving the atomistic energy and the normalization of the wi(ai,r(ai)), this
methodology reduces to the mean-field methods discussed in the previous section.

The probabilistic methods described may be used in several ways to guide protein

design. First, a low energy consensus sequence may be identified as the sequence

comprising the most probable amino acid at each position. Although the consensus

sequence would not directly include correlations between residue identities, such

correlation may be better addressed by an iterative series of calculations. For each

iteration, an increasing number of residue identities may be constrained until a unique

sequence is identified. Such an approach has been used in the design of a 114-residue

four-helix metalloprotein.183 The calculated probabilities may also be used to guide a

search algorithm. For example, an efficient Monte Carlo (MC) based method has

been reported that uses predetermined amino acid probabilities to bias the generation

of trial sequences at each step of the Monte Carlo Markov trajectory.166 Finally,

probabilistic methods may be used to quantitatively guide the design of com-

binatorial libraries of proteins, in which an ensemble of sequences is generated in a

manner that best reproduces the calculated site-specific amino acid probabilities.

Efforts in quantitative protein design

In this section, we showcase some of the highlights in computational protein design,

where proteins have been designed with the help of computation, and the experi-

mentally realized proteins have been found to agree with the design specifications. In

some cases, high-resolution structures of these proteins are available in addition to
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biochemical and biophysical data, providing detailed information on the accuracy of

computational prediction. The works reported in the literature include designs and

redesigns of various structural elements such as helices, sheets, turns, and hydro-

phobic cores; as well as introduction of de novo functionalities such as ligand binding

and catalysis. Computational protein design has advanced sufficiently to allow a

medium size protein to be predicted efficiently, and to permit the complete design of

novel proteins.

Core packing and secondary structural elements

Some of the earliest computational work on quantitative protein design involved

redesigning the hydrophobic core of globular proteins.96,162,184,185 Several groups

since then have studied the core-packing problem using both empirical and

theoretical methods. Randomization studies of the hydrophobic core of lambda

repressor, barnase and T4 lysozyme support the view that the protein core is closer to

a ‘‘oil-drop’’ model than a ‘‘jigsaw’’ model, and the most important chemical

properties of core side chains is their overall hydrophobicity.46,186,187 Other studies,

on the contrary, have suggested that good complementarity between contacting side

chains is important to achieve stability and structural uniqueness.188,189 To

demonstrate the power of computational methods in the search of optimum core

packing arrangements, Desjarlais and Handel developed a pair of algorithms that are

together called Repacking of Cores (ROC).77 The first program generates a custom

rotamer library for the target structure, while the second uses a genetic algorithm to

optimize core packing. ROC was applied to repack the core of two proteins 434 Cro77

and ubiquitin.190 While many of the 434 Cro mutants had stability comparable to that

of the wild type, all the ubiquitin mutants studied were significantly destabilized

compared to the wild type. As random mutants, which served as controls, had well-

defined conformations independent of stability, they concluded that core packing

affects protein stability but not the conformational specificity. Redesigning of the

protein core was also reported by Jiang et al., who used Metropolis-driven simulated

annealing and low-temperature MC sampling in a new computer program CORE

to find sequence and side chain conformations of hydrophobic core residues for

hyperstable mutants of four naturally occurring proteins (B1 domain of protein G,

434 cro, myoglobin and methionine aminopeptidase).191

Helix bundles. Helices are some of the most common structural motifs in proteins,

and structures comprising a-helices are fundamental targets of protein design. Most

repacking algorithms assume fixed backbone coordinates. However, X-ray crystal-

lography studies show that the backbone conformations often change in response

to point mutations.192,193 To introduce backbone flexibility, Harbury et al. para-

meterized parallel coiled-coil proteins using three parameters that represent the

supercoil radius, supercoil frequency and the orientation angle of the a position in the

helical heptad.78 The application of a standard molecular force field to a series of

parameterized backbone coordinates then successfully repacked the core of three

parametrized structures (a dimer, a trimer, and a tetramer) with a RMSD of 0.6 Å or

less from their crystal structures. Similarly, the same group designed a sequence to
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fold to a tetramer with a right-handed superhelical twist by parameterizing the target

structure to allow backbone flexibility, and by engineering the optimum main chain

conformation and interior side chain rotamers through computational packing.79 The

designed protein agreed strikingly with the subsequently determined crystal structure

in atomic detail.

As coiled-coils are often involved in mediating protein–protein interactions, a

predictive method of designing new coiled-coil dimers would be invaluable in molding

protein interaction interface. To study the role of buried hydrophobic residues in

determining specificity, Keating et al. designed and estimated the stability of six

heterodimeric coiled-coils derived from GCN4.113 Their computational method

combined extensive conformational sampling with molecular mechanics minimiza-

tion to predict the stability and structure of designed heterodimers to high accuracy.

Havranek and Harbury also investigated the computational design of coiled-coil

structures, but with an emphasis on the incorporation of negative design to dictate

specifity.194 Rather than optimizing the sequence for the target structure alone, they

maximized the free energy difference between the target structure and other

competing states. As an example, for sequences designed to form homodimers, three

other competing states were simultaneously considered, i.e., heterodimers, aggregate

state and unfolded state. Consideration of the full competitor set in general resulted in

sequences that were superior in stability and specificity relative to those obtained

from calculations with one or more of the competing states omitted.

A contiguous three helix bundle protein with unique topology and a native-like

core (a3D) was designed by Bryson et al. in a hierarchical approach combined

with computational optimization of the interior side chain conformations.69,195 The

modeling was initiated by shortening the previously studied Coil-Ser sequence14 to

form three helix turns rather than four, conjoining three copies of this sequence with

hairpin loops, and arranging charged residues on the surface to stabilize antiparallel

packing. Strong helix start/stop sequences ‘‘N–X–(X)–E’’ were then introduced to

help define the topology of the bundle. The resulting protein a3B exhibited some

characteristics of a molten globule, which were attributed to the 15 Leu residues in the

core that can pack in many different conformations with roughly equal energies and

to the coexistence of two alternative topologies involving clockwise and counter-

clockwise turning of the third helix with respect to the first two. To enforce the

counterclockwise topology, they placed positive charged residues at the e and g

positions of the first helix, negative charged residues at the e and g positions of the

second helix, and negative and positive charged residues at the e and g positions,

respectively, of the third helix. The 17 core residues were redesigned using the genetic

algorithm ROC77 in four rounds, systematically fixing eight, eleven, and sixteen

residues at each round. The solution structure of the redesigned protein, after three

conservative residue substitutions have been made to help with cross-peak identifica-

tion, shows a counterclockwise bundle looking down the symmetry axis, with

the backbone RMSD of 1.9 Å from the modeled structure. As in native proteins,

the buried side chains were well packed, each largely populating a single pre-

dominant rotamer state, though in NMR experiments the side chains of some were

observed to be more dynamic than those of natural proteins.196 In a hydrogen-

deuterium exchange experiment, nine amide protons showed protection factors

within 0.5 kcal mol21 of that expected from its thermal stability.
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b-Sheet. A 20-residue three-strand b-sheet protein, Betanova, was designed by the

Serrano group, and structurally characterized by NMR (Fig. 3).197 The design of a

monomeric b-sheet protein is difficult due to the tendency of isolated b-sheet

secondary elements to aggregate. In order to simplify the design, they selected a

template consisting of three strands with four residues per strand and took an

iterative approach to improve their initial design. A sequence compatible with the

target backbone structure was selected based on b-hairpin stability, amino acid

b-sheet propensities, statistical preferences for inter-strand residue pairs, and side

chain rotamer conformations. Also, van der Waals contacts were optimized through

rotamer modeling, favorable inter-strand packing was achieved through a Glu–Lys

ionic pair, and turn sequences were optimized for the canonical type I’ b-turns. As

expected of a protein with native conformation, the resulting Betanova exhibited

cooperative folding/unfolding transitions by CD and fluorescence spectroscopy. The

successful design of a b-sheet protein through a combination of modeling and

structurally stabilizing motifs shows that we now have some understanding of the

principles guiding b-sheet formation.

To better understand the formation of stable b-sheets and proteins, single- or

multiple residue mutants of Betanova were created by Lopez de la Paz et al. using an

automatic design method PERLA (protein engineering rotamer library algorithm).198

The algorithm evaluates the fitness of an amino acid sequence to the target structure

with a scoring function that is based on the ECEPP/2 all-atom molecular force field199

and a combination of statistical terms including entropy and solvation. Dead-end

elimination is used to reduce the sequence space, while mean-field theory is used

to weight different side chain conformers. In the end, candidate sequences are

produced along with modeled structures. When the mutants predicted by the

Fig. 3 Three-stranded b-sheet, Betanova. (Left) Backbone traces of 20 NMR structures.
(Right) Minimized average NMR structure with the residues Trp3, Val5, Tyr10, Asn12, Thr17

forming the hydrophobic core. (Re-printed with permission from ref. 197.)
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algorithm were studied biophysically, some of them were more stable than the wild

type by y1 kcal mol21, in good agreement with the prediction. PERLA was also used

to redesign other b-sheet-containing proteins including the SH3 domain of a-spectrin.

Selected for designed mutagenesis were two solvent exposed four-residue clusters

(Sheet I and II) and clusters of residues involved in two turns and the protein core. As

before, more stable mutants were identified among the selected sequences.200

Recently, PERLA was used to study the formation of amyloid fibrils, thought to be

responsible for the onset of several high profile diseases including Alzheimer’s disease

and spongiform encephalopathies.201 On the assumption that propagation and

stacking of preformed b-sheets would drive the assembly of amyloid fibrils, PERLA

was used to design self-associating hexapeptides with a high propensity to form

polymeric b-sheets. A six-stranded antiparallel b-sheet template with six residues per

strand was constructed from the large single-layer b-sheet of the outer surface protein

A, whose structure had been determined by NMR.202 Sequences predicted to be

amyloidogenic were synthesized and studied by CD and electron microscopy, which

revealed that b-sheet formation is necessary but not sufficient for the formation of

amyloid fibrils. Specific interactions appear to be crucial in the stabilization of fibril

aggregates, since a single amino acid substitution (IleALeu) can completely block

fibril formation. Similarly, Coulombic interactions can modulate the supramolecular

organization of b-sheets, and fibril formation occurs only when the total net charge

of the monomer is ¡1. The presence of a large net charge on the peptide leads to

the formation of amorphous aggregates in competition with the formation of

ordered polymer. The rational design of a peptide-based model system for

amyloidogenesis can facilitate the identification of sequences with a propensity to

form fibril aggregates.

The successful redesign of a b-sheet protein using a genetic algorithm was reported

by Desjarlais and coworkers.203 Their design target is a small WW-domain protein

involved in cell signaling, Pin-1, that is composed of three antiparallel b-strands and

binds polyproline peptide ligands.204 Unlike other design algorithms, the method

used by these authors is unique in that an ensemble of closely related backbone

structures are used as design templates, and the information from different backbone

structures and design algorithm results are integrated using a novel sampling pro-

cedure. The backbone ensemble consisted of nondegenerate structures with the

maximal RMSD of 0.30 Å from the PDB structure 1PIN, generated through a

combination of MC perturbation and refinement algorithms. The amino acid

probability was then calculated by evaluating the partition function of each rotamer

across the structure set, thus exposing each rotamer state to a wide range of local

environments with a unique configuration of backbone structure and side chain

identities. In addition to rotamers, sub-rotamer states stochastically sample within

20u of canonical rotamers, bringing in extra degrees of freedom. Two sequences, each

with 35 and 32% sequence homology to wild type, were obtained from the calculation.

Despite only moderate sequence homology, NOESY data of one of the sequences

showed a structure closely resembling that of the wild type, demonstrating that a

b-sheet protein can be successfully designed with the inclusion of backbone flexibility.

b-Turns. In a quantitative study of b-turn sequences, the Baker group used a

computational approach to redesign the second b-hairpin in protein L.76 The native
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four-residue turn contains three consecutive residues with positive w angles, which

presumably contribute to the low intrinsic stability in the region. The turn was

therefore changed to a canonical b-turn by adding or subtracting two residues. First,

the PDB was searched for alternative hairpins with termini that superimposed with

the region of interest. A design algorithm using a MC search was then applied to

identify amino acid rotamers that would form well-packed structures and result in low

energy sequence–structure combinations. The sequences selected by the algorithm

contained at the two turn positions amino acids commonly observed in the canonical

turn types while differing considerably from wild type sequence. The accuracy of

prediction was verified by determining the crystal structure of one of the redesigned

proteins, which showed the designed turn and the in silico model had the all-atom

RMSD of 1.4 Å from each other.

Protein design automation

Mayo and coworkers have been pioneers of the computation-guided design of de novo

proteins. Their design scheme ORBIT (optimization of rotamers by iterative tech-

niques) applies dead-end elimination to find globally optimal sequences for a given

structure.123 During the final stage of the calculation, a MC search is conducted

starting from the resulting optimum sequences to find other related high-scoring

sequences. In an implementation that couples theory, computation, and experimental

testing, the algorithm was applied to redesign the hydrophobic core of a homodimeric

coiled-coil based on GCN4. A quantitative structure activity relationship (QSAR)

analysis showed a significant correlation with surface area burial, which then

prompted the inclusion of buried surface in the scoring function. Subsequently, the

methodology led to the successful design of a novel protein entirely based on

computation. This bba-motif protein was modeled after the tertiary structure of a

zinc finger DNA binding module of Zif268 but folds stably without the requisite Zn21

metal ion (Fig. 4).172 The design procedure identified a single sequence from over

Fig. 4 Automated sequence design of a bba protein FSD-1. (Left) Zinc finger Zif268 with the
zinc ion shown as sphere. (Right) Computed FSD-1 structure. (Re-printed with permission from
ref. 172.)
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1.9 6 1027 possible sequences by DEE. NMR analysis of the protein showed a

compact, well-ordered structure with the predicted side chain conformations. A

BLAST205 search of a sequence database showed that the designed sequence had less

than 40% homology to any other known sequence, showing that a novel sequence can

be computationally designed completely from scratch.

ORBIT was also used to design a metal-free variant of thermophilic rubredoxin, a

small protein (y6 kDa) naturally stabilized by a tetrahedrally coordinated iron.206

The high-resolution structures of rubredoxin at resolutions of 0.95–1.8 Å served as

design templates. In the calculation, the four conserved Cys at the iron binding site

were optimized in the absence of metal. Two were classified as core residues and thus

mutated to one of seven hydrophobic amino acids (Ala, Val, Leu, Ile, Phe, Tyr and

Trp) whereas the other two were mutated to all amino acids except Gly, Pro, Cys and

Met. Four other neighboring residues were allowed to change conformations to

optimize core packing. The first round of calculation resulted in Thr at the two non-

core Cys positions, while Leu and Ala were selected at the core Cys positions during

the second round using van der Waals radii scaled to 0.7 of their nominal values. The

resulting mutant was found to adopt a fold similar to the wild type based on the

chemical shifts of the amide and a hydrogens, and undergoes cooperative reversible

thermal denaturation at 82 uC.

While binary patterning is commonly used in protein design, the determination of a

residue position as either polar or hydrophobic is not always obvious for globular

proteins. In order to automate the binary patterning procedure during protein design,

Marshall and Mayo developed an algorithm called Genclass, which classifies each

position along a protein backbone to either exposed or buried based on solvent

accessibility.88 They first replaced all the naturally occurring side chains in the target

structure with ‘‘generic’’ side chains, whose size and shape are similar to an average

amino acid. A solvent accessible surface was then generated by applying the Connolly

algorithm with the solvent radius of 1.4 Å.207 Comparison with 29 proteins in the

PDB shows that setting the minimum solvent accessible area for polar residues SAcut

to 23.9 Å2 yields the best agreement between prediction and the database binary

pattern, i.e., the highest percentage (76%) of hydrophobic residues whose generic

surface area is less than SAcut, and polar residues whose generic surface area is greater

than SAcut. The algorithm was then applied to generate a series of engrailed

homeodomain variants, whose design quality was judged based on stability and

conformational specificity. The proteins were experimentally studied using CD and

Tm measurements, dynamic light scattering, NMR and differential scanning

calorimetry. The most successful variant B6 had Tm of 114 uC, was stable at

physiological pH, and exhibited well separated NMR peaks in the aromatic and

amide region. The actual SAcut value of 43 Å used for the construction of B6 was,

however, significantly larger than the predicted optimal value of 23.9 Å, and either

raising or lowering the threshold resulted in suboptimal variants with reduced

stability and tendency to aggregate. Hence, although the study demonstrates that well

folded, stable proteins may be designed using an automated binary pattern prediction

algorithm, it also raises a concern about the prepatterning of hydrophobic and polar

residues, which must be fine-tuned in order to achieve stability and conformational

specificity.
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Combinatorial design

Introduction of a new function to an existing protein can be achieved through

molecular evolution. Starting from a protein library of targeted or random mutants,

mutants with desired properties are screened in a customized functional assay. Some

highly unusual properties may be successfully engineered if the diversity of the library

is high enough, but the size of a library that can be assembled and screened in practice

is far smaller than the full sequence diversity available to a moderately sized protein.

As computational analysis has been shown in a number of cases to be effective in

identifying low energy sequences among exponentially large numbers of potential

sequences, one wonders whether computational analysis can be used to guide protein

evolution in a library-based assay. Such was the idea behind the work of Hayes et al.

who searched for sequences compatible with the active site of TEM-1 b-lactamase

using DEE and simulated annealing.208 Top scoring sequences were compared to

calculate the amino acid probability at 19 positions within 5 Å of the active residues,

which was then used to synthesize degenerate oligonucleotides needed to construct a

library of y200,000 mutants in E. coli. Screening the library for improved resistance

to the antibiotic cefotaxime yielded novel sequences with multiple mutations, all

different from those observed in mutagenesis studies, that conferred over three orders

of magnitudes greater resistance against the antibiotic.

Ligand binding

Computational protein design has been used to engineer new binding affinity as well

as to modulate existing affinity. The availability of high-resolution structures of the

insert domain from the a-chain of integrin aMb2 (Mac-1) in both binding-active

(open) and binding-inactive (closed) conformations allowed the Mayo and Springer

groups to take a computational approach to design integrin mutants with enhanced

affinity to the natural ligand.209 They reasoned that mutations that stabilize the

binding-active conformation would result in higher binding affinity. Using their

DEE-based algorithm, they redesigned 40–45 core residues out of a total of 184

residues to bias the open structure over closed structure. The residues that may be

directly involved with ligand binding or in Mg21 coordination were excluded from the

calculation. The calculated energies of three selected mutant sequences were all lower

than that of wild type in the open configuration and higher than that of wild type in

the closed conformation. This result was independent of the solvation potential used

in the calculation. When the designed mutants were investigated in a functional assay

using cultured cells, they all showed increased binding to the protein ligand iC3b by

10- to 13-fold. This outcome compared favorably with other designed mutants

(F302W, F302R, F302Y), of which only the F302W had a two-fold increase in

activity.

The binding of calmodulin (CaM) has been modulated to improve specificity

towards just one of its many natural targets.210 CaM is an all a-helix protein with

N-terminal and C-terminal domains connected by an a-helix of eight turns. Ca21

binding activates the protein by inducing a large conformational change that

concurrently exposes hydrophobic residues. CaM binds its targets by wrapping its
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two domains around helix ligands.211–213 While the burial of a large amount of

hydrophobic surface contributes to the high affinity of CaM for its targets (Kd ¡

1027 M), the flexibility of its two domains with respect to each other results in low

binding specificity. To improve the specificity of CaM towards one of its targets,

smooth muscle myosin light chain kinase (smMLCK), the CaM–smMLCK complex

was optimized under the assumption that such an optimization would destabilize

contacts between CaM and other targets. Twenty-four buried CaM residues within

4 Å of the target peptide were mutated to Ala, Val, Leu, Ile, Trp, Phe, Tyr, Met and

Glu, while the ligand sequence was kept constant. One of the mutants containing

eight substitutions was shown to have a substantially lower overall energy

(2508.4 kcal mol21 compared to 2467.4 kcal mol21 of wild type). The designed

mutant, which had a superimposable CD spectrum as wild type, bound smMLCK

with Kd of 1.3 ¡ 0.9 nM, which is comparable to that of the wild type (1.8 ¡ 1.3 nM),

but the affinity to six other target peptides was lower by as much as 86-fold. The

absence of explicit negative design in the study, however, leaves the question open

whether a similar approach can be used to discriminate subtly different target

sequences.

PDZ domains are small protein modules involved in signal transduction. They

recognize the C-terminal 4–7 amino acids of target proteins. Of the three classes of

PDZ domains, class I and class II share good structural homology whereas those of

class III have a slightly displaced a-helix relative to the b-sheet when compared to

either class I or II. Class I and class II proteins recognize different residues at position

p(22) (i.e., third residue from the C-terminus)—class I proteins require Thr/Ser at

p(22) while class II proteins recognize an aliphatic residue at the same position.

Reina et al. used computer-aided protein design to mutate PSD-95 from class I to

recognize new target sequences.214 Visual inspection was used to identify positions to

be mutated, ranging from six to twelve different positions depending on the target

ligand. The interaction between these mutant PDZ domains and their respective

ligands were measured by fluorescence polarization assays, which showed that one

mutant–ligand pair had an affinity two orders of magnitude greater than the (wild

type PDZ)–(wild type peptide pair), while two other mutant PDZ–ligand pairs had

similar affinities to that of wild type. Some of the residues predicted by the algorithm

were the same as those identified from an independent study where PDZ domains

with novel specificity were engineered by experimental screening.215

In a demonstration of computation-driven design of novel ligand affinity, Looger

et al. engineered a series of new binding sites for trinitrotoluene (TNT), L-lactose

and serotonin in five proteins from the E. coli periplasmic binding protein super-

family: glucose binding protein, ribose-binding protein, arabinose-binding protein,

glutamine-binding protein, and histidine-binding protein.216 The three target ligands

have little resemblance to the cognate ligands of the wild type proteins and exhibit a

wide range of chemical properties in terms of molecular shape (polar, aliphatic and

aromatic), chirality, functional groups (nitro, hydroxyl and carboxylate), internal

flexibility, charge, and water solubility. The semi-empirical potential function used

for the design includes a Lennard-Jones potential, an explicit geometry-dependent

hydrogen-bonding term and a continuum solvation term to represent the hydro-

phobic effect. Satisfying all potential hydrogen-bond donors and acceptors in the

ligand was critical for high-affinity binding, as expected from the known importance
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of hydrogen bonding in molecular recognition.217 The specificity of ligand recogni-

tion was experimentally verified. All six designed receptors for TNT can distinguish

the absence of a single nitro group and all ten lactate designs exhibited the desired

chiral stereospecifity, selecting L-lactate over the D-lactate enantiomer, pyruvate, and

the prochiral oxidized form of lactate. The serotonin design had a significantly lower

affinity for two related molecules, tryptamine and tryptophan, both of which are

missing a hydroxyl group and/or a carboxylate group. The observed binding affinities

of many of the engineered proteins for their target ligands were in the same range as

the wild type receptors for their cognate ligands (Kd y 0.1–1.5 mM), validating the

computation-driven approach to the design of high affinity and high specificity

binding sites.

Towards catalysts and enzymes

Metal ions are key players at the active sites of many enzymes, and computational

studies have led to the successful design of several metal binding proteins. In a series

of studies using the E. coli protein thioredoxin, a protein that is naturally devoid of

metal centers, Hellinga and coworkers used the rational protein design algorithm

DEZYMER to introduce targeted mutations to bind metal ions and nonheme metal

complexes. In an attempt to recreate one of the earliest evolved biological redox

centers, they engineered a cuboidal [Fe4–S4] binding site in thioredoxin.218 A

mononuclear iron–sulfur center capable of reversible electron transfer was similarly

introduced using DEZYMER by designing a tetrahedral tetrathiolate iron center,

where the coordination is provided by Cys32 and Cys35, forming a disulfide bond

in wild type thioredoxin, and by Cys28 and Cys75 that replace Trp and Ile,

respectively.219 The designed protein, which forms a 1:1 monomeric complex with

Fe(III), undergoes successive cycles of oxidation and reduction, demonstrating that

simple geometrical considerations can be sufficient to reproduce the dominant

electronic structure and reactivity of a metal-based redox center. In a different study,

the active site of nonheme iron superoxide dismutase (SOD) was successfully grafted

into the hydrophobic interior of thioredoxin by re-creating the trigonal bipyramidal

coordination.220 This protein bound iron tightly and had an open coordination

sphere capable of binding an exogenous ligand such as azide and fluoride. However,

its SOD activity, 105 M21s21, was y104 lower than natural enzymes, which was

attributed to suboptimal tuning of the redox potential of the metal center.

Thioredoxin was re-engineered by Bolon and Mayo to perform the hydrolysis of

p-nitrophenyl acetate (PNPA).221 The high stability of wild type thioredoxin allowed

potentially destabilizing mutations required to build an active site to be introduced

without resulting in an unfolded mutant. In order to achieve efficient catalysis,

proximity and orientation of substrate molecules and transition-state stabilization

must be carefully modeled. The need to destabilize the acylated enzyme intermediate

relative to substrate suggested histidine as a potential nucleophile for catalysis.

Therefore, a high-energy state involving a tetrahedral intermediate of histidine–

PNPA was modeled as a series of side chain rotamers. The surrounding protein

sequence was also optimized for binding to the high-energy state in order to reduce

the activation energy and enhance catalytic turnover. Hydrophobic solvent accessible
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surface area of the substrate atoms in the computed high-energy state was used as

a measure of substrate recognition. A high-scoring sequence was synthesized and

the rate of PNPA hydrolysis was measured. Impressively, the pH dependence of

the reaction showed that His does indeed act as a catalytic nucleophile in the

designed protein. The designed mutant falls short of exhibiting enzymatic efficiency,

however, with only an order of magnitude enhancement in the turnover rate over

4-methylimidazole and catalytically inactive wild type thioredoxin, thus emphasizing

the subtlety of computation-driven enzyme engineering.

Large scale design and redesign

Most of the designs presented so far have involved engineering small parts of a

protein, either to introduce a specific functionality or to enhance stability. A directed

sequence design approach works well for studies of this nature since it can thoroughly

examine the available sequence space in search of the optimum sequence. These

methods may also be used for the complete design of a protein sequence, e.g., a

27-residue fully designed protein by Dahiyat and Mayo.172 Recently, the de novo

design of a 216 residue b-barrel protein with idealized geometry was reported,

demonstrating that a directed sequence search can also be applied to significantly

larger proteins.222 The preliminary results suggest a stable tertiary structure, yet the

protein seems to behave unlike natural proteins. For example, there is increased

binding to the hydrophobic dye ANS upon addition of the denaturant guanidinium

hydrochloride (GndHCl) up to 1 M, but the ANS signal disappears when GndHCl

concentration is increased to 2 M.

Using a coarse-grained protein model having simplified side-chain representations,

Jin et al have included information about unfolded structures (negative design) in a

stochastic search for a sequence with a ‘‘funneled conformational energy land-

scape’’.223 Their design principle involves selecting for the global shape of a protein

folding funnel, where sequences are identified having the target structure as the lowest

energy state. A combination of Monte Carlo sequence search and repeated folding

simulations ensures that the ground state is well separated from other structures

sampled during simulation. The authors designed a three-helix-bundle topology

and selected several of the designed sequences for synthesis, one of which had

spectroscopic data (CD and NMR) consistent with a well-defined target structure.

The work provides an elegant synthesis of energy landscape ideas and protein design

methods.

Probabilistic approaches are well suited for large sale protein designs where large

percentages of proteins are simultaneously engineered, since they can recover features

of the ensemble of sequences compatible with the target fold. These methods can be

used to study proteins that may be too large for direct sequence optimization. In a

collaboration between the Saven and DeGrado groups, a statistical, computationally-

assisted design strategy (SCADS) was used to engineer a de novo 114 residue DFsc

with a diiron center (Fig. 5).183 The protein forms a stable four-helix bundle with a

melting temperature of Tm ~ 53 uC in the absence of metal, and remains unfolded

at 98 uC in the presence of metal. A well-ordered interior is evident in the 1D- and

2D-NMR spectra. The tertiary template was modeled after a previously designed due
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ferrin (DF1), an antiparallel dimer of two helix bundles whose structure was solved to

high resolution by NMR and X-ray crystallography.224 In order to generate a

monomer starting from two antiparallel dimers, the helices were extended, two short

loops were added and one of the original loops was deleted. The rearrangement of

topology avoids the long intervening loop between the second and third helices that is

observed in the natural dinuclear metalloproteins. During the calculation, the amino

acid identities of a subset of 26 residues were constrained, where these residues

participate in metal binding, facillitate access to the active site, initiate a helix, or form

a turn sequence. The rest of the protein, a total of 88 residues, was designed using

Fig. 5 Rendering241 of the putative structure of DFsc, a de novo designed 114-residue dinuclear
metalloprotein.183
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SCADS to identify residues compatible with the structure. The calculation converged

to a sequence that was y30% homologous to the sequence of DF1 after two

rounds of calculation. The number of residues that were subjected to simultaneous

randomization was greater than in most other design studies discussed thus far. This

was made possible by the use of an algorithm that computes the site-specific amino

acid probabilities rather than optimizing individual sequences through explicit

enumeration. In addition to being well-structured, the resulting protein also exhibits

catalytic activity with regard to known peroxidase substrates.

In another application of a SCADS-based approach, the hydrophobic trans-

membrane domain of a potassium channel KcsA was re-engineered so as to construct

a water-soluble version of the protein.225 The known crystal structure of a potassium

channel (PDB code 1K4C) comprising four transmembrane helical subunits packed

as a tetramer was used as the template, and this structure comprises four trans-

membrane helical subunits packed as a tetramer. SCADS was then applied to

redesign the exposed surface residues of the transmembrane domain to make the

protein water-soluble. From the protein surface, 35 residues were selected for

mutation. The computation was constrained using the environmental energy (a scale

for the solvation propensities of the amino acids), which was fixed to a value that is

representative of a water-soluble protein of comparable size. A sequence WSK-1 was

identified. The protein is well expressed in soluble form in E. coli. When the protein

was tested by analytical gel filtration, however, the protein was shown to have a

tendency to form larger oligomers in addition to the expected tetramers. Hydro-

phobic patches found on the surface of the modeled protein and were suspected to

cause the observed aggregation. Further redesign resulted in a protein containing 29

designed mutations in each of the four 104-residue protomers and removed the

aggregation problem, leaving the protein mostly tetrameric. The newly designed

protein was shown to have the functionally related toxin binding properties of the

membrane soluble wild type, based on an assay with scorpion toxin that binds

specifically to the extracellular domain of a potassium channel.

In an impressive achievement in protein design, a 97-residue a/b protein Top7 with

a novel fold was successfully designed by Baker and coworkers (Fig. 6).226 Thus a

globular protein fold not found in nature is physically possible. With regard to the

design and realization of novel, nonnatural protein structures, this extends the

previous discovery of a right-handed helical coiled-coil79 and now includes non-

helical proteins. The design protocol consisted of cycling between sequence design

and backbone optimization. At first, a rough two-dimensional diagram was created

to describe the overall topology, and constraints were specified to define the topology.

Three-dimensional models were then generated by assembling residue fragments

from the PDB with secondary structures consistent with the desired topology. A

sequence was designed using the RosettaDesign MC algorithm with a Lennard-Jones

potential, an orientation-dependent hydrogen bonding term, and an implicit

solvation model. The backbone optimization allowed the identification of the

lowest free energy backbone conformation for a fixed amino acid sequence, again

using a MC minimization algorithm. During the backbone optimization, low energy

side chain conformations for a fixed sequence were also explored to replace high

energy conformations caused by backbone adjustment. For each of the five initial

structures, 15 cycles of sequence design and backbone optimization were used to
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obtain low energy sequence–structure pairs. Interestingly, they observed that a

dampened Lennard-Jones repulsive term and a MC optimization without the

minimization step resulted in a stable but molten globule-like core, questioning the

practice of rescaling the atomic radii to soften van der Waals repulsion at short

distances.123 The crystal structure of Top7 at 2.5 Å resolution revealed that Top7

adopts the designed topology with 1.17 Å RMSD over all backbone atoms. The

similarity between the designed and predicted structure is a validation of the utility

and transferability of the energy function, which had been partially parameterized

using known protein structures and sequences.

Beyond peptides and proteins

Whereas proteins use a fixed set of 20 a-amino acids as building blocks, the potential

monomers for non-biological folding polymers, foldamers,7,227 are more numerous in

numbers and diverse in chemical properties, making the three-dimensional structures

of non-biological polymers harder to predict. A key problem in foldamer research is

identifying those heterosequences that are likely to yield interesting, well-formed

folded structures. Nevertheless, the lessons learned from studying proteins have been

applied to the design of novel folding polymers. For example, the stabilization of

protein backbone by a network of hydrogen bonds has inspired the creation of several

foldamers that are similarly stabilized through a hydrogen bonding network,

including vinylogous peptides,228,229 a,a’-di-substituted-a amino acid peptides,230

b-amino acid peptides,231,232 c-amino acid peptides (c-peptides),233 and trispyridy-

lamide scaffold.234 In addition to hydrogen bonding, aromatic stacking can also

stabilize well-defined secondary structures.234,235 Moore and coworkers have shown

that (m-phenylene-ethynylene)n (oligo-PE) where n w8, forms a helical structure in

a variety of solvents.236 The aromatic p–p stacking is thought to provide the main

driving force for the helix formation (Fig. 7). Interestingly, another group has

reported the formation of b-structure using a related backbone.237 The functional

Fig. 6 Designing a de novo protein Top7 with a new topology. Two views rotated by 90u from
each other. (Re-printed with permission from ref. 226.)
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potential of non-biological polymers have also been investigated by several

groups234,238 and the helical oligo-PE can bind small chiral molecules in its interior

tubular cavity.239

The successful design of non-biological foldamers is a natural extension to

quantitative protein design. A theoretical approach similar to one used to design

proteins can be used to design non-biological polymers with novel properties. Non-

biological foldamers may also be elaborated to yield new materials, e.g., helical

nanotubules.240 The generalizability of computational protein design to other related

disciplines will be amply demonstrated in the application of a common theoretical

framework to study both biological and non-biological polymers.

Conclusion

Successful protein design poses many hurdles: the many degrees of freedom involving

both sequence and local structure that lead to the combinatorial complexity of the

search for viable sequences; the subtlety of the underlying physical forces that

stabilize folded structures; and our incomplete understanding of the determinants of

folding. These impediments pose challenges when designing novel proteins since

subtle features of protein folding may be overlooked and result in a sequence that

either fails to fold as expected or has other undesirable properties. Computational

protein design seeks to remedy gaps in our intuition by codifying many fundamental

rules governing protein folding and using efficient algorithms to search and charac-

terize the range of possible sequences for a given target structure. In recent years, this

quantitative approach to protein design has gained momentum with the development

of a number of high quality sequence prediction algorithms, and in many cases, these

efforts have led to milestone successes that have contributed to the design of new

proteins with novel properties. With continued success, we may have a far better

Fig. 7 (Left) Chemical structure of oligo-phenylene-ethynylene (Oligo-PE). (Right) A view of
oligo-PE helix with R ~ H, R’ ~ H from above.
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understanding of proteins and the principles of protein folding in the near future,

bringing within reach the creation of custom-made functional proteins and the re-

engineering of natural proteins to facilitate detailed functional and structural studies.
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