Problem 1. Prove that the closed Newton-Cotes rule @ y¢o(n) will compute the integral
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exactly for k = 1,2,---,m. Here the quadrature nodes are the fixed points z; = (j —1)/(m — 1)

for j =1,2,---,m. Therefore, the weights wy, w2, - - -, wy, satisfy
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These conditions define a linear system. Write a function ComputeClosedNewtonCotesWeights to
solve this system for the weights (returning vector of coefficients), and compare your computed
weights with those given by M. Abramowitz and I. Stegun (in ClosedNewtonCotesWeights these
weights are hardcoded). For comparison you can use a norm of the following defference vector:

norm(ComputeNewtonCotesClosedWeights(m)-NewtonCotesClosedWeights(m))

Problem 2. Exercise 5.2.4(c), Sauer’s textbook, page 263.

Problem 3. The three-point Gauss-Legendre formula for approximating integrals has the form

/Ik+1 f(x)dx = h[wi f(xr + c1h) + wa f (vg + cah) + w3 f(zr + c3h)], h =z — xy,
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Consider nonlinear system:

w1 + wo + wy =1,
wicy + wace + waeg = 1/2,
wi e + wack + wack = 1/3,
w13 + wach + wach = 1/4,
w1 €} + wacy + wacy = 1/5,
w1 €S + wach + wach = 1/6.

These conditions ensure that over the interval [0;1] the rule integrates exactly all polynomials of
degree at most 5. (a) Numerically solve the system using Newton’s method.
(b) Using your results from (a), write a function to implement a composite Gauss-Legendre rule

to approximate the integral
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/ e’ cos (bx)dx
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using 2, 4, 8, 16, and 32 subintervals. Compare with the exact answer, and plot the partition
number versus the error.

Problem 4. In class we discussed both the error estimate
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for the three-point, closed, Newton-Cotes (Simpson) rule, as well as the error estimate
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for the four-point, closed, Newton-Cotes (Simpson 3/8) rule, where in each case My is a bound
on |f®¥(z)| for z € [a,b]. As remarked, the Simpson 3/8 rule has a slightly better error bound,
but requires one extra function evaluation. The similar scaling in these estimates suggests that the
Simpson rule is superior to the Simpson 3/8 rule if our measure is accuracy per function evaluation.

That the Simpson rule is indeed better in this measure may be confirmed in the composite-rule
setting. For example, both QS\?)C(S) and Q%)C(Al) are based on 3(3—1)+1=2(4—1)+1 = 7 points,
whence each requires seven function evaluations.

(a) Approximate f02 arctan(z)dzr with each of the seven-point composite rules above, computing
errors against the exact answer obtained by the Fundamental Theorem of Calculus.

(b) Use the general error formula [Eq. (12) of the notes quad3] to prove that, in the composite-
rule setting, the error estimate for the Simpson rule is better (in terms of accuracy per function
evaluation) than the one for the Simpson 3/8 rule.



Problem 1. Code functions for Fuler, Trapezoid, and RK4 methods. For the problem from
Example 6.25 (Sauer, p. 334) use these function to demonstrate dependence of local and global
truncation error for every of these methods on a grid step (in one plot described below)

h =0.5, 0.3, 0.1, 0.03, 0.05, 0.01, 0.003, 0.005, 0.001, 0.0005.

Compare with derived formulas and discuss. For this use one (!) plot for each type of error
(local and global) in coordinates log(error) vs log(h), explain why you have straight lines in such
coordinates for any power-like function A" and what has to be the slope in this case.

Problem 2. Code two functions for a Backward Euler method using for the first one fixed point
iterations and Newton’s method for the second one.

Use this function to reproduce Figure 6.22 for Example 6.25 (see above), compare errors (local
and global) for Euler, Backward Euler (use any subroutine of two coded before), Trapezoid, and
RK4 methods for steps h = 0.3, h = 0.1, h = 0.01.



