HW 6 Solutions Solutions

1. The requested function is as follows.

% Returns slope values defining a clamped/natural spine, based on
% input type = C/N. (x,y) are data values, and alfa and beta are
% first/second derivative values at the endpoints x_1 and x_n.
% function s=GetSplineSlopes(x,y,alfa,beta,type)

function s=GetSplineSlopes(x,y,alfa,beta,type);
n=length(x);
b=zeros(n,1);

% Vectors e,d,f define a tridiagonal matrix A, but
% e(1) and f(n) are wasted space that is not used.
e=zeros(n,1); d=zeros(n,1); f=zeros(n,1);

% Get Dx values and first order divided differences.
for i=1:n-1

Dx (i) x(i+1)-x(i);

ddiv(i) = (y(i+1)-y(i))/Dx(i);

end

% Build up rows 2 to n-1 (same for all splines).
for i=2:n-1

b(i)=3*(Dx(i-1)*ddiv(i) + Dx(i)*ddiv(i-1));

e(i) = Dx(i); d(i) = 2*(Dx(i)+Dx(i-1)); £(i) = Dx(i-1);
end

switch type, % See class notes on WebCT for the formulas used here.
case 'C’,
% Rows 1 and n particular for clamped spline.
d(1) = 1; b(1) = alfa;
d(n) = 1; b(n) = beta;
case ’'N’,
% Rows 1 and n particular for natural spline.
d(1) = 2; £(1) = 1; b(1)=3*ddiv(1) -Dx(1) =*alfa;
e(n) = 1; d(n) = 2; b(n)=3*ddiv(n-1)+Dx(n-1)*beta;
otherwise,
error=(’Variable type not C or N’)
end

% System is tridiagonal, so use tridiagonal solve.
% (Note: TriDiLU, LBiDiSol, UBiDiSol from WebCT.)
[1, u] = TriDiLU(d,e,f);

tmp = LBiDiSol(1,b);

s = UBiDiSol(u,f,tmp);

2. A script which generates the requested plots follows.

% Script: Set9Problem2
% Makes plots for Problem 2 of Homework Set 9.

parts = [’a’,’b’,’c’];
ns = [9 17];
for j = 1:length(parts)
part = parts(j);
for k = 1:length(ns)
n = ns(k);
switch n,
case 9,
figrow = 1;
case 17,
figrow = 2;
otherwise,
error (’Problem 2 requires n equal to 9 or 17’)
end
x = transpose(linspace(0,1,n));
y = exp(-2#x) .*sin(10*pi*x);
switch part
case ’a’,
% Zero curvature conditions/natural spline.
alfa = 0; beta = 0;
s = GetSplineSlopes(x,y,alfa,beta,’N’);
fignum = 1;

Natural spline with zero curvature andn =9 Clamped spline with exact derivatives andn =9

0 02 04 06 08 1
X
Natural spline with zero curvature and n = 17

—f(x)
- - -spline
* data

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X

(a) Plot for Problem 2a. (b) Plot for Problem 2b.

Clamped spline with false derivatives andn =9
1

—f(x)
- - -spline
* data

—f(x)
t | - - —spline
* data

0 0.2 0.4 0.6 0.8 1
X

(¢) Plot for Problem 2c.

Figure 1: Plots for Problem 2a,b,c.

Multiplication of both sides by Az;Awx; 1 then yields
Azipy (8i 4+ 2801 — 3ylzi, wig1]) = Az (—Siqpo — 28541 + 3y[Tig1, Tigo))
Finally, moving all s terms to the left side and all divided differences to the right, we arrive at
Aziprsi +2(Axi00 + Axy)sip + Axisiva = 3ylzi, i1 | Aipr + 3y[xi, i) Az
This equation holds for i = 1,..., N — 1, and in all constitute rows 2 through N — 1 of the linear systems
which determines the s which defines the clamped spline. We complete the system by adding s; = « as the
1st row and sy = 3 as the nth row.

4. The required script follows. Its output is shown in Fig. 2.

% Script: Set9Problemd
% Data from the problem statement follows.

x=transpose([4.7 4.
y=transpose([1.3 1.
n=length(x);

04.62.32.34.74.18.36.08.67.85.45.44.7]);
92.53.13.93.15.85.83.02.92.02.41.51.3]);
/% Set up arc length based on piecewise linear interpolant.
lambda=zeros(n,1);
lambda(1)=0;
for i=2:n

lambda(i)=lambda(i-1)+sqrt ((x(i)-x(i-1))"2 + (y(i)-y(i-1))"2);

end

% Array for dense evaluation.
L=transpose(linspace(min(lambda) ,max(lambda),500));

% Zero curvature conditions.
alfax = 0; betax = 0; alfay = 0; betay = 0;

sx = GetSplineSlopes(lambda,x,alfax,betax,’N’);

Cx = pwchermite_coeffs(lambda,x,sx);

X = eval_pwpoly(lambda,Cx,L);

sy = GetSplineSlopes(lambda,y,alfay,betay,’N’);

Cy = pwchermite_coeffs(lambda,y,sy);

Y = eval_pwpoly(lambda,Cy,L);

figure(4); explot(X,Y,’b-’,x,y,’r*’)

title(’Zero curvature natural spline’); xlabel(’x’); ylabel(’y’)
saveas (gcf, UpsideDownGhostSpline.eps’, ’epsc’)

Zero curvature natural spline

7 . . - - :

Figure 2: Plot for Problem 4.

HW 6 Solutions Solutions

1. The following script sets up and solves both described least-squares problems. Its output also follows.

% Script: Set10Probleml
ns = [6 8]; H = hilb(10);
for k = 1:length(ns);
n = ns(k);
A = H(:,1:n); AtA = A’*A;
c = ones(n,1); b = A*c; Atb = A’xb;
x = AtA\Atb; 7 Solve the normal equations
rel_ferr = norm(x-c,inf); 7% Note forward err same as relative forward err.
rel_berr = norm(Atb-AtA*x,inf)/norm(Atb,inf);
kappa = cond(AtA,inf);

disp([’ ’1)
disp([’Choice of n: ’,num2str (n) n
disp([’Forward error in inf norm:’,num2str(rel_ferr,’%0.5g’) iD)
disp([’Error magnification: ? ,num2str(rel_ferr/rel_berr,’%0.5g’)])
disp([’kappa_inf of A"tA: ’ ,num2str (kappa, ’%0.5g’) n

end

>> format compact; warning off MATLAB:nearlySingularMatrix; Set1OProbleml

Choice of n: 6

Forward error in inf norm:9.3258e-05
Error magnification: 4.6915e+11
kappa_inf of A"tA: 1.2002e+13
Choice of n: 8

Forward error in inf norm:2.1503
Error magnification: 1.2344e+16
kappa_inf of A"tA: 2.204e+17

For (a) n = 6, the numerical solution is correct to about 4 digits, and the infinity-norm condition number
Koo (AT A) ~ 1.2002e + 13. If koo(B) ~ 10%, then, when numerically solving Bx = g, we may lose k
digits relative to the 16 or so in double precision (see Sauer, page 95). That is relative forward errors of
Size Emach * Koo (B) are possible. Therefore, we expect to have a solution accurate to 3 digits, and the actual
solution is a bit better. The error magnification is less than the condition number (the upper bound). For (b)
n = 8, the numerical solution has no correct digits, nor are we guaranteed any since k. (AT A) ~ 2.204e + 17.

2. The matrix is A = [a1, az], where

—4 —4
a; = -2 , as — 7
4 -5

We will first construct a “thin decomposition”

(a1, a2] = [a1, q2] (7‘(1)1 he) ;

722
which is equivalent to the equations
a; = rndi, agz = 11291 + 722q2.

From the first equation, r1; = ||ay||2 = 6, which yields

2
B R
11 2
3
Rewrite the second equation as r22qs = as — r12q;. Using qfqg =0, we get 112 = qfag = % - % — % = -3,
and
—4 —% —6 —6
ra2q2 = az — (qf a2)qy = 7T 1+3 ~3 = 6 T2 = 6 =9
-5 % -3 -3)

Finally,

-6 _2

1
qz = — 6 |= i
T22 -3 _%

and our “thin decomposition” is then

—4 —4 -2 -2 L
EDTRE I O (8 _g)
4 -5 i1

To get a “thick” QR decomposition, where @ is orthogonal, we construct a third unit vector qz which is
orthogonal to q; and qz. The cross product affords one construction,

.))
s 1 12(1, 2, 2 3
g3 =dq1 X Qg2 = _§ _§ ? :_E‘_EJ‘gk: _g
-5 3 3 ~2
Therefore,
-4 4 11 Ti2 —% —% —% 6 —3
-2 7 - [Q1,CI2,C13} 0 T292 = —g ? _g 0 9
e o0 3 3 3 0 0

Using MATLAB® |, we find the following decomposition.

>> format compact
>> A= [-4 -4; -2 7; 4 -5];
>> [Q R] = qr(A);

>> rats(A)
ans =
-4 -4
-2 7
4 -5
>> rats(Q)
ans =
-2/3 2/3 1/3
-1/3 -2/3 2/3
2/3 1/3 2/3
>> rats(R)
ans =
6 -3
0 -9
0 0

This differs slightly from our hand-constructed decomposition, but both are valid QR decompositions. In-
deed, since [q1,q2. q3] is an orthogonal matrix, so is [q1, —q2, —qas].

4. Using the QR decomposition from above, we see that the least squares problem to solve is

2 2 1 - . .

-2 -z —= 6 —3 3

3 2 0 9 (“) [9

% —% —% 0 0 2 0

Therefore, since) is orthogonal

6 -3 -2 -+ 2 3 -5

o 22 2 i _
0 9 N = ;] 3 9 | = 4

T2

0 0 -z 2 0 -7

The least-squares solution x;, s therefore has components zs = % and r; = %(—5 +3z2) = %(—5 + %) = —%.
By inspection the length of the minimum residual is [|r|[2 = [|QTb — Rxps|l2 = 7.

