HW #6

1. In class we discussed both the clamped and natural spline interpolants through N data points.
The clamped spline is determined by prescribing the derivatives at the endpoints, while the natural
spline is determined by prescribing zero, or otherwise fixed, curvatures (second derivatives) at the
endpoints. For example, the clamped spline interpolant of the data {(z;, yj)}é-vzl is determined by
the equations
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The unknowns in the system (1) are the components of the vector s, and more explicitly this
tridiagonal system is s1 = «, sy = 5, and fori =1,...,N — 2

Azi18i + 2(Az; + Azig1)siv1 + Axisipo = 3 (Azi1y[wi, Tig1] + Aziy[zir, Tigo)) - (3)

Write a MATLAB® function s=GetSplineSlopes(x,y,alpha,beta,type) that returns the slopes
s which determine the clamped/natural spline, based on type = C/N, through the data x,y with
first /second derivative information alpha,beta at the left and right endpoints respectively.

2. The functions pwchermite_coeffs and eval_pwpoly were discussed in class and are available
from the web-site. Use these functions and GetSplineSlopes (with necessary modifications)
to compute and plot the following splines through the data x=transpose(linspace(0,1,n)),
y=f (x) for f(z) = e 2 sin(107z).

1. The natural spline for n = 9 and n = 17 (two separate plots). In each plot show the spline
interpolant (solid line), the data (stars), and the function y = f(z) (dashed line).

2. Repeat, using the clamped spline with the correct end conditions
a= f(0),8 = f(1).
3. Repeat, using the clamped spline with the the end conditions

a=-1,=-1.

3. Derive the equations for the coefficients of the clamped spline given in Problem 1. Credit will
only be given for a clear and complete derivation.
4. Suppose you are given a set of data points (z;,y;) in the plane that describe a curve that

is not a function of x, and we want to interpolate the data. The basic idea is to think of the
curve as parametrized by arclength \: (z(\),y(\)). Here we use A to denote arclength in lieu of



the typical s, since s was earlier used for slope (derivative) information. Thus the discrete data
correspond to discrete values of arclength A;. That is, z; = z();) and y; = y();). To determine
A;j we use the arclength of the piecewise linear interpolant. For example, the data (zq1,y1) = (1,1)
(72,92) = (2,2) (23,y3) = (1,4) is viewed as corresponding to arclength values \; = 0, g = v/2,
A3 = V2 + /5. Once we have determined the );, we can fit a cubic spline through {()\j,:nj)}é-\;l
and a second cubic spline through {()\;, yj)}j-vzl, and then plot the resulting curve. An interesting

example of the technique is the need to approximate curves for the automatic control of sewing
machines. Consider the following data.

x=[4.7 4.0 4.6 2.3 2.3 4.7 4.1 8.3 6.0 8.6 7.8 5.4 5.4 4.7];
y=[1.3 1.9 2.5 3.1 3.9 3.1 5.8 5.8 3.02.92.02.41.51.3];

Fit the data (as a function of arclength) by with two natural cubic splines and then plot (z(A), y(\))

as well as the data points. For this you will need the functions eval pwpoly and pwchermite coeffs
available on the web-site.



Problem 1. Computer problem 8, Section 4.1, page 200 of Sauer’s textbook. (Hint: Hilbert
matrix is given by H;; =1/(i+j — 1) fori,j =1,2,3,...)

Problem 2. Find (by hand) a QR factorization of the matrix given in problem 2(b) from Section
4.3, page 224 of Sauer’s textbook. Use the Gram-Schmidt procedure described in Sauer’s textbook,
and compare your answer with the factorization returned by qr in MATLAB® .

Problem 3. Use your results from Problem 2 to solve (by hand) the least squares problem given
in problem 7(b) from Section 4.3, page 224 of Sauer’s textbook. Also report the length of the
minimum residual.



