HW 5 Solutions

1. Here is the script which performs the iteration. Note that we have not coded a general Gauss-Seidel
iteration here, rather the specific iteration for the particular sparse system at hand.

% Set7Probleml: Script for Homework Set 7, Problem 1.

toler = le-6;

n = 100;

xexact = ones(n,1);

b = ones(n,1); b(1) = 2; b(n) = 2;
X = zeros(n,1);

ferr =1;

niter = 0;

% Gauss-Seidel iteration for first tridiagonal system on p.122 of Sauer.
while ferr >= toler

x(1) = (b(1) + x(2))/3;

for j = 2:n-1

x(§) = (d(G) + x(G-1) + x(j+1))/3;

end

x(n) = (b(n) + x(n-1))/3;

niter = niter + 1;

ferr = norm(x-xexact,inf);
end

% Compute residual and its norm without forming matrix.
r = zeros(n,1);
r(1) = b(1)-3*x(1)+x(2);
for k = 2:n-1
r(k) = b(k) + x(k-1) - 3*x(k) + x(k-1);

end
r(n) = b(n)+x(n-1)-3*x(n);
berr = norm(r,inf);

% display output.

disp([’ '
disp([’ Gauss-Seidel 1
disp([’ '
disp([’n =’ num2str(n) 1)
disp([’toler = ’ num2str(toler) 1)
disp([’iterations ’ ,num2str(niter) D

’ ,num2str (berr,’%4.2e’)])
’ ,num2str (ferr,’%4.2e°)])

disp([’backward error
disp([’forward error

Running the script, we find the following output from the MATLAB® command line.

Gauss-Seidel

n = 100
toler = 1le-06
iterations =20
backward error = 1.19e-06
forward error = 9.54e-07

2. Rearranged to be strictly diagonally dominant, the system is

du+3w=0
u+4v=>5
V42w = 2,

assuming the variables are ordered as u then v then w. The Gauss-Seidel method is then
w1 — —%w(k)
oD — 5 %u(k’+l)

w1 = 1 — Ly(k+D),

With (19, v, (@) = (0,0,0), we find (uM, o™ wl)) = (0, %, %) and (u?,v? w?) = (—%, }gg, %)

3. For question 1, assume the matrix vector multiplication y = Ax is coded as follows.

y(1) = 3*x(1) - 1*x(2); % 3 flops
for k = 2:n-1
y(k) = 3*x(k) - 1xx(k-1) - 1*x(k+1); % 5 flops per k
end
y(@) = 3*x(n) - 1*x(n-1) % 3 flops

Then the first entry of Ax takes 3 FLOPS to compute (2 multiplications, 1 addition). Each of the middle n—2
entries takes 5 FLOPS (3 multiplications, 2 additions). The last entry takes 3 FLOPS (2 multiplications, 1
addition). So the total count is
5(n—2)+6=>5m—4=0(n).

However, this counting assumes that we view the multiplications by 1 as true flops. If y = Ax is (more
reasonably) coded as

y(1) = 3*x(1) - x(2); % 2 flops

for k = 2:n-1

y(k) = 3*x(k) - x(k-1) - x(k+1); % 3 flops per k

end
y(@) = 3*x(n) - x(n-1) % 2 flops

then the counting is 3n — 2 total flops, again O(n). For question 2, each entry of Bx takes n — 1 additions
and n multiplications to compute (the cost of a “dot product”). There are n entries. So the total count is

2n? —n = O(n?).
4. For (a) we require y, = p(xy) for k =1,2,...,n, that is
c1 + coxy +03:v,2€+-~~+cn.732_1 = Yk for k=1,2,...,n.

As matrix multiplication between a row and column vector, the last equation reads

C1
C2

(1, zg, x3, .mZ‘l) B =y, fork=1,2,...,n.
c?L

Collecting all rows into a matrix system, we then get V¢ =y, where

—1
1 oz a3 - 2
1 x a3 - af!
V =
1 =z, 1:% e a:ﬁ_l

is the Vandermonde matriz. For (b) the following MATLAB® function and script perform the required task.

% Returns expansion coefficients that solve the n-node interpolation
% problem using a monomial basis.
% Inputs: x (vector of nodes), y (vector of samples)
% Output: ¢ = V\y, where is V is the Vandermonde matrix.
% Can uncomment last lines to optionally display n and cond(V,inf).
% function c¢ = interpvandmon(x,y)

function ¢ = interpvandmon(x,y)

n = length(y); ¢ = zeros(n,1); V = zeros(n,n);

for k = 1:n
V(:,k) = x.7(k-1);
end
c = V\y;
disp([’n = ’,num2str(n,’%02.0f’),’ and cond(V,inf)=’,num2str(cond(V,inf),’%1.4e’)])

% Script: Set7Problemdb
% Makes plot and output required by Problem 4(b) of Homework Set 7.

% Data, nodes, and function values.
D4 = [[0 1]; [1 4]; [2 1]; [3 1]]; x = D4(:,1); y = D4(:,2);

% Form and solve Vandermonde monomial system.
¢ = interpvandmon(x,y);

% Dense set of points for plotting.
z = transpose(linspace(-0.5,3.5,500));

% Use Horner’s to evaluate interpolating polynomial on z, and then plot p vs z.
p = c(1) + z.%(c(2) + z.*(c(3) + z*c(4)));

explot(z,p)

axis([-0.5 3.5 -6 6])

hold on

title(’y = p(x) where p(x) interpolates data (0 1) (1 4) (2 1) (3 1)?)
xlabel(’x’)

explot(x,y,’r.”)

saveas (gcf, ’Set7Problem4b.eps’, ’epsc’)

The output from the script is shown in Fig. 1, and indeed the plot is identical to Fig. 1, page 4, from the
lecture interpl. For (c) we use the display option in interpvandmon.m to view the relevant condition

y = p(x) where p(x) interpolates data (0 1) (14) (21) (3 1)

Figure 1: PLOT FOR PROBLEM 4(b).

numbers. The following script gives the results.

% Set7Problemé4c: Script for Homework Set 7, Problem 4(c).

format compact

warning(’off’, ’MATLAB:nearlySingularMatrix’) % Turn off warning generated by large condition numbers.
ns = [5 10 15 20];

for k = 1:length(ns)

n = ns(k);

x = transpose(linspace(0,1,n));

y = ones(n,1); % Note sample y values not used.

¢ = interpvandmon(x,y); % Must uncomment last "display" line in interpvandmon.

end

Output from MATLAB® command line:

>> Set7Probleméc

n = 05 and cond(V,inf)=1.7067e+03
n = 10 and cond(V,inf)=4.8184e+07
n = 15 and cond(V,inf)=1.6055e+12
n = 20 and cond(V,inf)=5.0058e+16

HW 5 Solutions Part 11

1. Given D3 = {(0,-2),(2,1), (4,4)}, the nodal points are x1 = 0,75 = 2, x3 = 4 and the Lagrange basis is

(z-2)(x—-4) 1
B (x —0)(x —4) 1

L) = Gge—p ~ 1Y
(z-0)(z—-2) 1

Li(z) = TS —+§1:(:r—2)

Therefore, the interpolating polynomial is
p(x) =—2-Li(xz) +1-Lo(x) +4- Lz(x)

1 1 1
= —Z(m —2)(z—4) - Zx(z: —4)+ §x(1‘ —2).

Collecting like powers, we then find
(T)——I(T—2)(.T—4)—1$(T—4)+1I(I—2)
p(@) = —7(1%¢ 5
_ 1o Lo o Lo o
= 4(1: 6z + 8) 4(1‘ 41‘)+2(.1: 2x)
1
=—Z(a:2—6w+8+x2—4$—2m2+4m)
——1(—6x+8)
4
— 23z —4)
=+3506 .

To construct the same polnomial via the Newton method, we form the following divided difference table.

0l-2
| > 3/2
2] 1 > 0
| > 3/2
4| 4
So the polynomial is
3 3 1
p(z) = -2 ¢1(x) + 3 $2(x) + 0 p3(x) = =2+ 5(1? -0)= 5(355 —4), (1)

the same as before.
2. The given and written functions are as follows.

function c=interpnewt(x,y)
% function c=interpnewt(x,y)
% computes coefficients ¢ of Newton interpolant through (x_k,y_k), k=1:length(x)
n=length(x);
for k=1:n-1
yk+1:n)=(y(k+1:n)-y(k))./(x(k+1:n)-x(k));
end
=y

function p = hornernewt(c,x,z)
% function p = hornernewt(c,x,z)
% Uses Horner method to evaluate in nested form a polynomial defined
% by coefficients ¢ and shifts x. Polynomial is evaluated at z.
n = length(c); % 1 + degree of polynomial.
p = c(n);
for k = n-1:-1:1

p = p.*(z-x(k))+c(k);

end

These functions are used by the next script to make the plot of Lz(x) shown in Fig. 1

% Script: Set8Problem2
% Makes plot required by Problem 2 of Homework Set 8.

% Interpolation points and data.
x = transpose([1:11]);
y = zeros(11,1); y(3) = 1;

% Get expansion coefficients of interpolating polynomial expressed in Newton basis.
c = interpnewt(x,y);

% Make a plot of the interpolating polynomial.

z = transpose(linspace(1,11,500));

p = hornernewt(c,x,z);

explot(z,p)

hold on

explot(x,y,’rx’)

title(’Lagrange basis function L_{3}(x)’)

xlabel(’x’)

axis tight;

saveas(gcf, ’Set8Problem2.eps’,’epsc’) % Save figure as an eps.

Lagrange basis function Ls(x)

Figure 1: PLOT FOR PROBLEM 2.

3. The following script makes either plots for the uniform points or the Chebyshev points, based on flag pts.

% Script: Set8Problem3

% Makes plots for Problem 3 of Homework Set 8. Choose Uniform or Chebyshev points based on following flag.
%pts = ’Uniform’;

pts = ’Chebyshev’;

n = 11;
switch pts
case ’Uniform’
x = transpose(-4+8*[0:n-1]/(n-1));
case ’Chebyshev’
x = transpose(4*cos(pi*(2%[1:n]-1)/(2*n)));
otherwise
’No points selected.’
end

% Get y samples and construct coefficients for polynomial with respect to Newton basis.
1./(x.72+1);
interpnewt(x,y);

% Get arrays for plotting.
transpose(linspace(-4,4,500));
hornernewt (c,x,z);
ones(size(z))/factorial(n);
for k 1:n

g = g.x(z-x(k));
end

jae]
wonn

% Make the plots.
figure(4); clf;
subplot(3,1,1)
explot(z,p,’b-’,x,y,’rx’)
title([pts,’ interpolant p(x) for 1/(x~2+1)’])
subplot(3,1,2)
explot(z,1./(z."2+1)-p, b=’ ,x,zeros(size(x)),’rx’)
title(’Signed error 1/(x"2+1) - p(x)’)
subplot(3,1,3)
explot(z,g,’b-’,x,zeros(size(x)), ’rx’)
title(Cg(x) = (1/n)\Pi_{k=1}"n (x-x_k)’)
xlabel(’x’)
switch pts
case ’Uniform’
saveas (gcf, ’Set8Problem3_unif.eps’, ’epsc’)
case ’Chebyshev’
saveas (gcf, ’Set8Problem3_cheb.eps’, ’epsc’)
end

Two plots in Fig. 2 depict the results. For each case, we see at least qualitatively that g(z) and the error
e(z) = f(z) — p(z) have the same shape. They are not exactly the same, of course, because f(11)(c,) is
not a constant function and e(z) = g(x)f(c,). (Note that ¢, = c(z) for the Chebyshev points would be
different function than the ¢, for the uniform points.) Also from the plots, it is evident that the magnitude
|3 (¢,)| must be about 10% on the interval, since the y-scale of the plot for e(z) is about this factor larger
than the y-scale for the g(z) plot (both for the uniform and Chebyshev examples).

4. The nth derivatives of f(z) =1/(z + 5) is

(—1)"n!

(n) _
f (il?) - (’E + 5)7z+1 ’

(2)

as is easily checked by induction. Therefore, using the error formula for polynomial interpolation, we find

1 (x —0)(x —2)(z —4)(z — 6)(x — 8)(z — 10) (—1)%!

r+5 —pg,(l') = n ’ (Ca:+5)7’

where ¢, € [0,10]. Now, the worst case estimate for the magnitude of the 6th derivative is clearly

5 6! 6!
1F O (cp)| = T <& for ¢, € [0,10]. (3)

Uniform interpolant p(x) for 1/(x2+1) Chebyshev interpolant p(x) for 1/(x2+1)

2 1
1 H -
0.5}

07
-1 0

4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4

Signed error 1/(x2+1) - p(x) Signed error 1/(x2+1) - p(x)
1 0.1
09
0

-1
23 2 4 o0 1 2 3 a R e

-
2

- -2
-4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4
X X
(a) Plots for uniform points. (b) Plots for Chebyshev points.

Figure 2: PLOTS FOR PROBLEM 2.

Therefore, we have the general bound

1
r+5

A

— ps(7)

— 57 k]

which may be applied to the points in question. Specifically, for x = 1, f(z) = % and

1 1-0)(1—2)(1—4)(1—6)(1—8)(1—10
‘g—ps(l)‘SK)(1 —2)()F(7)(1—8)()|
9
1-1-3-5-7-9
945 189
= = ~1.2 1072,
7815 15625 — L2006 x 10
For x =5, f(x) = 11—0 and
1 |(5—0)(5—2)(5—-4)(5—6)(5—8)(5—10)|
—- _ 5)| <
’10 Ps(5)] < 57
5.3-1-1-3-5
e
9 9

~ 2.8800 x 1073,

55 3125

