- 1. Section 2.5, Computer Problem 5(a), p. 116 of Sauer's textbook.
- 2. Exercise 2.5.2(c), p. 116 of Sauer's textbook.
- 3. How many floating point operations does it take to compute
 - 1. the product $A\mathbf{x}$, where A is the sparse $n \times n$ matrix in Problem 1?
 - 2. the product $B\mathbf{x}$, where B is a full $n \times n$ matrix?

In both cases assume **x** is an $n \times 1$ column vector.

4. This problem concerns polynomial interpolation based on expansion

$$p(x) = c_1 + c_2 x + c_3 x^2 + \dots + c_n x^{n-1}$$

in the monomial basis in tandem with the Vandermonde approach.

- (a) Assume that the data $\{(x_k, y_k) : k = 1, ..., n\}$ is given, where the nodes x_k are distinct. Derive the linear system $V\mathbf{c} = \mathbf{y}$ that uniquely determines the coefficients c_k .
- (b) Write a MATLAB® function (calling sequence function $\mathbf{c} = \text{interpvandmon}(\mathbf{x}, \mathbf{y})$) that returns the vector of expansion coefficients $\mathbf{c} = (c_1, \dots, c_n)^T$ defining the interpolant, given input vectors $\mathbf{x} = (x_1, \dots, x_n)^T$ and $\mathbf{y} = (y_1, \dots, y_n)^T$. Use your function to reproduce the plot given in the notes for the data set $D_4 = \{(0,1); (1,4); (2,1); (3,1)\}$.
- (c) Find the infinity-norm condition number of the matrix V for n = 5, 10, 15, 20 equally spaced points on the interval [0, 1].

- 1. Exercises 3.1.1(c) and 3.1.2(c), p. 149 of Sauer's textbook.
- 2. Use the Matlab® function

```
[frame=single,framerule=0.2pt,framesep=5pt]
  function c=interpnewt(x,y)
% function c=interpnewt(x,y)
% computes coefficients c of Newton interpolant through (x_k,y_k), k=1:length(x)
n=length(x);
for k=1:n-1
    y(k+1:n)=(y(k+1:n)-y(k))./(x(k+1:n)-x(k));
end
c=y;
```

along with your own routine for evaluation (calling sequence p=hornernewt(c,x,z), see the rewrite of Sauer's nest from the class website) to find and plot the polynomial that is zero at $x=1,2,4,\ldots,11$ and satisfies p(3)=1. Note that this is the Lagrange basis function $L_3(x)$ for the set of nodal points $\{x_j\}_{j=1}^{11}=\{1,2,3,\ldots,11\}$.

3. Use your routines from **Problem 2** to interpolate the data sets $\{(x_j, y_j) : j = 1, ..., n\}$, where $y_j = f(x_j)$ with $f(x) = 1/(x^2 + 1)$.

1.
$$x_j = -4 + 8\frac{j-1}{n-1}$$
, $n = 11$.

2.
$$x_j = 4\cos\frac{\pi(2j-1)}{2n}$$
, $n = 11$.

In each case, return 3 plots:

- The data and the interpolant on [-4,4]. The interpolants should be plotted on a dense collection of points, say 500 equispaced points. Include on your plots markers of some kind that illustrate the data points (for example, a MATLAB® plot option like 'r.').
- The error e(x) = f(x) p(x) for $x \in [-4, 4]$.
- The function $g(x) = \frac{1}{n!} \prod_{k=1}^{n} (x x_k)$ for $x \in [-4, 4]$.

Discuss your results.

4. Exercise 3.2.4, p. 156 of Sauer's textbook.