HW#4 Part I Solutions

1. Here is a sequence of row operations on $[A|\mathbf{b}]$ achieving upper triangular form.

$$\begin{bmatrix} 2 & 1 & -4 & | & -7 \\ 1 & -1 & 1 & | & -2 \\ -1 & 3 & -2 & | & 6 \end{bmatrix} \xrightarrow{R2 \to R2 - \boxed{\frac{1}{2}}_{R1}} \begin{bmatrix} 2 & 1 & -4 & | & -7 \\ 0 & -\frac{3}{2} & 3 & | & \frac{3}{2} \\ 0 & \frac{7}{2} & -4 & | & \frac{5}{2} \end{bmatrix} \xrightarrow{R3 \to R3 + \boxed{\frac{7}{3}}_{R2}} \begin{bmatrix} 2 & 1 & -4 & | & -7 \\ 0 & -\frac{3}{2} & 3 & | & \frac{3}{2} \\ 0 & 0 & 3 & | & 6 \end{bmatrix}.$$

Now by backward substitution, $x_3 = 2$, $-3x_2 = 3 - 6x_3 \implies x_2 = 3$, and $2x_1 = -7 - x_2 + 4x_3 \implies -1$. Therefore, $\mathbf{x} = (-1, 3, 2)^T$.

- **2.** The total work for Gaussian elimination $\sim 2n^3/3$. If we triple n, that is send $n \to 3n$, then the total work changes as $2n^3/3 \to 2(3n)^3/3 = 27 \cdot (2n^3/3)$. That is, it increases by a factor of 27.
- **3.** The requested Matlab® functions are as follows.

```
function [L,U]=naivege(A)
% function [L,U]=naivege(A)
% Computes the LU factorization without pivoting. A,L,U are n-by-n
% matrices with A=LU, L is unit lower triangular and U is upper triangular.
[n,n]=size(A);
for k=1:n-1
                                    % run over all columns k except last
 for j=k+1:n
    A(j,k)=A(j,k)/A(k,k);
                                    % compute multipliers
    for l=k+1:n
     A(j,1)=A(j,1)-A(j,k)*A(k,1); % eliminate entries
    end
  end
end
L=tril(A,-1)+eye(n,n); U=triu(A);
```

```
function x=LTriSol(L,b)
% function x=LTriSol(L,b)
% Solves the system Lx=b, where L is unit lower triangular n-by-n, b is n-by-1
n=length(b);
x=zeros(n,1);
x(1)=b(1);
for j=2:n
  x(j) = b(j)-L(j,1:j-1)*x(1:j-1);
end
```

```
function x=UTriSol(U,b)
% function x=UTriSol(U,b)
% Solves the system Ux=b, where U is upper triangular n-by-n, b is n-by-1
n=length(b);
x=zeros(n,1);
x(n)=b(n)/U(n,n);
for j=n-1:-1:1
x(j) = (b(j)-U(j,j+1:n)*x(j+1:n))/U(j,j);
end
```

In the command line we then verify that the solution agrees with that found by hand in 1.

4. The script given below makes the required plot and generates the following output:

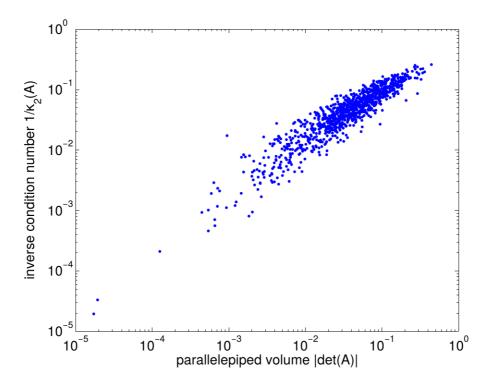
```
>> Set5Problem4
min volume = 5.4007e-05 and corresponding cond(A) = 1.0403e+04
max volume = 4.7534e-01 and corresponding cond(A) = 2.9605e+00
```

The line A = A*diag(1./sqrt(sum(A.*A))) in the script normalizes the columns of A (in the 2-norm). Indeed, the innermost operation A.*A is clearly componentwise squaring, whereas the next sum operation sums A.*A over each column. So sqrt(sum(A.*A)) is a row vector whose entries correspond to the (Pythagorean or 2-norm) lengths of the columns of A. Notice that we compute absDetA = $|\det A|$ directly, since to get det A we would also need to compute det $P = \pm 1$ (since P is a permutation matrix). The figure depicts the abscissa $|\det A|$ versus the ordinate $1/\kappa_2(A)$ (reciprocal two-norm condition number), and it suggests $\kappa_2(A) \sim |\det A|^{-1}$, at least for the class of matrices considered here. Therefore, when the determinant becomes small in absolute value, the condition number becomes large. Please note that, unfortunately, due to a typo, the problem requested a plot of det A (no absolute value) versus $1/\kappa_2(A)$.

```
% Script: Set4Problem4
% Makes plot and output required by Problem 4 of Homework Set 5.
% Integers kminvol and kmaxvol will keep of where min/max volume occurs.
minvol = 1e20; kminvol = 1; maxvol = 0; kmaxvol = 1;
% Preallocation of necessary memory.
volumes = zeros(ktotal,1); invcnds = zeros(ktotal,1);
for k = 1:ktotal
   A = rand(4);
   invcnds(k) = 1/cond(A);
   absDetA = abs(prod(diag(U))); % where detP = 1 or -1.
   volumek = absDetA;
   volumes(k) = volumek;
                                % Simple minded approach here.
   if volumek > maxvol
      maxvol = volumek;
      kmaxvol = k;
   end
   if volumek < minvol
      minvol = volumek;
      kminvol = k;
end
% Strings for output.
minVstr = num2str(minvol, '%1.4e');
condAminVstr = num2str(1/invcnds(kminvol),'%1.4e');
          = num2str(maxvol,'%1.4e');
condAmaxVstr = num2str(1/invcnds(kmaxvol),'%1.4e');
disp(['min volume = ',minVstr,' and corresponding cond(A) = ',condAminVstr])
```

```
disp(['max volume = ',maxVstr,' and corresponding cond(A) = ',condAmaxVstr])
exloglog(volumes,invcnds,'.')
ylabel('inverse condition number 1/\kappa_2(A)')
xlabel('parallelepiped volume |det(A)|')

% Save figure as an eps.
saveas(gcf,'Set5Problem4.eps','epsc')
```



1. For part (a) the magnitude $\|\mathbf{b} - A\mathbf{x}_c\|_{\infty}$ of the residual in the infinity norm is

$$\left\| \left(\begin{array}{c} 3 \\ 6.01 \end{array} \right) - \left(\begin{array}{cc} 1 & 2 \\ 2 & 4.01 \end{array} \right) \left(\begin{array}{c} -10 \\ 6 \end{array} \right) \right\|_{\infty} = \left\| \left(\begin{array}{c} 3 \\ 6.01 \end{array} \right) - \left(\begin{array}{c} 2 \\ 4.06 \end{array} \right) \right\|_{\infty} = \left\| \left(\begin{array}{c} 1 \\ 1.95 \end{array} \right) \right\|_{\infty} = 1.95.$$

Clearly $\|\mathbf{b}\|_{\infty} = 6.01$, whence

$$\frac{\|\mathbf{b} - A\mathbf{x}_c\|_{\infty}}{\|\mathbf{b}\|_{\infty}} = \frac{1.95}{6.01} = \frac{195}{601} \simeq 0.3245.$$

The exact solution is clearly $\mathbf{x}_{\text{exact}} = (1,1)^T$, so the relative forward error is

$$\frac{\|\mathbf{x}_c - \mathbf{x}_{\text{exact}}\|_{\infty}}{\|\mathbf{x}_{\text{exact}}\|_{\infty}} = \left\| \begin{pmatrix} -10 \\ 6 \end{pmatrix} - \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\|_{\infty} = \left\| \begin{pmatrix} -11 \\ 5 \end{pmatrix} \right\|_{\infty} = 11.$$

Therefore, we have error magnification: $11/(195/601) = 6611/195 \simeq 33.9$. For part (c) $\|\mathbf{b} - A\mathbf{x}_c\|_{\infty}$ is

$$\left\| \left(\begin{array}{c} 3 \\ 6.01 \end{array} \right) - \left(\begin{array}{cc} 1 & 2 \\ 2 & 4.01 \end{array} \right) \left(\begin{array}{c} -600 \\ 301 \end{array} \right) \right\|_{\infty} = \left\| \left(\begin{array}{c} 3 \\ 6.01 \end{array} \right) - \left(\begin{array}{c} 2 \\ 7.01 \end{array} \right) \right\|_{\infty} = \left\| \left(\begin{array}{c} 1 \\ -1 \end{array} \right) \right\|_{\infty} = 1.$$

Since $\|\mathbf{b}\|_{\infty} = 6.01$ as before, the relative backward error is

$$\frac{\|\mathbf{b} - A\mathbf{x}_c\|_{\infty}}{\|\mathbf{b}\|_{\infty}} = \frac{1}{6.01} = \frac{100}{601} \simeq 0.1664.$$

Now the relative forward error is

$$\frac{\|\mathbf{x}_c - \mathbf{x}_{\text{exact}}\|_{\infty}}{\|\mathbf{x}_{\text{exact}}\|_{\infty}} = \left\| \begin{pmatrix} -600 \\ 301 \end{pmatrix} - \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\|_{\infty} = \left\| \begin{pmatrix} -601 \\ 300 \end{pmatrix} \right\|_{\infty} = 601.$$

Therefore, we have error magnification: $601/(100/601) = 601^2/100 = 3612.01$. For part (e), notice

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 4.01 \end{pmatrix} \implies A^{-1} = \frac{1}{4.01 - 4} \begin{pmatrix} 4.01 & -2 \\ -2 & 1 \end{pmatrix} = \begin{pmatrix} 401 & -200 \\ -200 & 100 \end{pmatrix}.$$

By inspection then, $||A||_{\infty} = 6.01$, $||A^{-1}||_{\infty} = 601$, so $\kappa_{\infty}(A) = ||A||_{\infty} \cdot ||A^{-1}||_{\infty} = 6.01 \cdot 601 = 3612.01$ Evidently, the error magnification in (c) realizes the largest possible value (the condition number).

2. The following Matlab® function and script perform the required task.

```
% Cauchy matrix based on random vector rand(n,1).
% function C = CauchyMatrix(n);
function C = CauchyMatrix(n);
xi = repmat(rand(n,1),[1 n]);
C = 1./(xi + transpose(xi));
```

```
= C \ ;
                                             % Solve system!
    ferrs(k) = norm(zexact-zc,inf);
                                             % Compute errors, ||zexact||_inf = 1.
    berrs(k) = norm(b-C*zc,inf)/norm(b,inf);
end
% Make table of results.
FID = fopen('Set6Problem2-Table','w');
fprintf(FID,'----
                                                                        -\n');
fprintf(FID,'| n | f.errors | b.errors | m.factor | cond.num |\n');
for k = 1:length(ns)
  fprintf(FID, '| %3.0f | %1.4e | %1.4e | %1.4e | %1.4e | \n',
         ns(k), ferrs(k), berrs(k), ferrs(k)/berrs(k), conds(k));
fprintf(FID,'---
fprintf(FID,'f.errors, b.errors: relative forward and backward errors\n');
fprintf(FID,'m.factor, cond.num: magnification factor and infinity norm condition number\n');
```

The output table is as follows.

Discussion. The condition number $\kappa_{\infty}(C)$ is always greater than the magnification factor, consistent with its interpretation as the largest possible magnification factor over all right-hand sides **b**. Nevertheless, for these solves the magnification factor is close to the largest possible one, and becomes very large with increased n. For n large \mathbf{z}_c is of poor quality (large forward error), despite yielding (as column three of the table shows) a residual $\mathbf{r} = \mathbf{b} - C\mathbf{z}_c$ which has a maximum component $\|\mathbf{r}\|_{\infty} \simeq \|\mathbf{b}\|_{\infty} \varepsilon_{\text{mach}} = O(\varepsilon_{\text{mach}})$ that is nearly machine precision in size ($\|\mathbf{b}\|_{\infty}$ is typically about 10^2 at most). Notice also for n = 4, 8 that the number of correct digits in the forward error is roughly $\log_{10}(1/\varepsilon_{\text{mach}}) - \log_{10}\kappa_{\infty}(C) \simeq 16 - \log_{10}\kappa_{\infty}(C)$, as expected. For n large C is extremely ill-conditioned, and the numerical solution for n = 12, 16 has no correct digits.