H W# 4 Pa It I Solutions

1. Here is a sequence of row operations on [A|b] achieving upper triangular form.

R2— R2—

2 1 —-4|-7 2 1 —4]|-7 2 1 —4]|-7
R3— R3+ % R1 R3—>R3+ R2

1 -1 1|-2 — 0o -3 3| 3 — 0o -3 3| 3

I Y DA 4 B P I

Now by backward substitution, z3 = 2, —3x2 = 3—6x3 = x5 =3, and 221 = —7— 22+ 43 —
—1. Therefore, x = (—1,3,2)7.

2. The total work for Gaussian elimination ~ 2n?/3. If we triple n, that is send n — 3n, then the
total work changes as 2n3/3 — 2(3n)3/3 = 27 - (2n3/3). That is, it increases by a factor of 27.

3. The requested MATLAB® functions are as follows.

function [L,Ul=naivege(A)
% function [L,Ul=naivege(A)
% Computes the LU factorization without pivoting. A,L,U are n-by-n
% matrices with A=LU, L is unit lower triangular and U is upper triangular.
[n,n]=size(A);

for k=1:n-1 % run over all columns k except last
for j=k+1l:n
A(j,k)=A(j,k)/A(k,k); % compute multipliers
for 1=k+1:n
A(j,1)=A(j,1)-A(j,k)*A(k,1); % eliminate entries
end
end
end

L=tril(A,-1)+eye(n,n); U=triu(A);

function x=LTriSol(L,b)
% function x=LTriSol(L,b)
% Solves the system Lx=b, where L is unit lower triangular n-by-n, b is n-by-1
n=length(b) ;
x=zeros(n,1);
x(1)=b(1);
for j=2:n
x(3) = b(§)-L(G,1:j-1)*x(1:j-1);
end

function x=UTriSol(U,b)
% function x=UTriSol(U,b)
% Solves the system Ux=b, where U is upper triangular n-by-n, b is n-by-1
n=length(b);
x=zeros(n,1);
x(n)=b(n)/U(n,n);
for j=n-1:-1:1
x(3) = (b(§)-U(j,j+1:n)*x(j+1:n))/U(j,j);
end

In the command line we then verify that the solution agrees with that found by hand in 1.

>> format compact
>>A=1[21-4;1-11; -1 3 -2]; b = transpose([-7 -2 6]);
>> [L U] = naivege(A);
>> y = LTriSel(L,b);
>> x = UTriSol(U,y)
x =
-1

4. The script given below makes the required plot and generates the following output:

>> SetbProblem4
min volume = 5.4007e-05 and corresponding cond(A) 1.0403e+04
max volume = 4.7534e-01 and corresponding cond(A) = 2.9605e+00

The line A = Axdiag(1l./sqrt(sum(A.*A))) in the script normalizes the columns of A (in the 2-
norm). Indeed, the innermost operation A.#*A is clearly componentwise squaring, whereas the next
sum operation sums A.*A over each column. So sqrt(sum(A.*4)) is a row vector whose entries
correspond to the (Pythagorean or 2-norm) lengths of the columns of A. Notice that we compute
absDetA = |det A| directly, since to get det A we would also need to compute det P = £1 (since
P is a permutation matrix). The figure depicts the abscissa | det A| versus the ordinate 1/k2(A)
(reciprocal two-norm condition number), and it suggests ko(A) ~ |det A|7!, at least for the class
of matrices considered here. Therefore, when the determinant becomes small in absolute value,
the condition number becomes large. Please note that, unfortunately, due to a typo, the
problem requested a plot of det A (no absolute value) versus 1/k2(A).

% Script: Set4Problem4
% Makes plot and output required by Problem 4 of Homework Set 5.

ktotal = 1000;
% Integers kminvol and kmaxvol will keep of where min/max volume occurs.
minvoel = 1e20; kminvol = 1; maxvol = 0; kmaxvol = 1;

% Preallocation of necessary memory.
volumes = zeros(ktotal,l); invends = zeros(ktotal,1);

for k 1:ktotal
A = rand(4);
invends(k) = 1/cond(A);
A = Axdiag(l./sqrt(sum(A.*A)));
[L UP] = 1u(h); % Note detA = det(P)*det (U)
absDetA = abs(prod(diag(U))); % where detP = 1 or -1.
volumek = absDetA;
volumes (k) = volumek;

if volumek > maxvol % Simple minded approach here.
maxvol = volumek;
kmaxvol = k;
end
if volumek < minvol
minvol = volumek;
kminvol = k;
end

end

% Strings for output.

minVstr = num2str(minvol,’%1.4e’);
condAminVstr = num2str(1/invcnds (kminvol),’%1.4e’);
maxVstr = num2str(maxvol,’%1l.4e’);

condAmaxVstr = num2str(1/invcnds (kmaxvol),’%1.4e’);

disp([’min volume = ’,minVstr,’ and corresponding cond(A) = ’,condAminVstr])

disp([’max volume = ’,maxVstr,’ and corresponding cond(A) = ’,condAmaxVstr])
exloglog(volumes,invecnds,’.”)

ylabel(’inverse condition number 1/\kappa_2(A)’)

xlabel(’parallelepiped volume |det(A)|’)

% Save figure as an eps.
saveas (gcf,’Set5Problem4.eps’, ’epsc’)

10° :
< 107} :
-¥C\I
g '
£ 10+ E
3
cC
cC .
0o o
T 107 ettt :
O -
Q "
O
7)
()
g 107]
-5
10 " Lol L M R | " TR R R | " Lol
107° 107" 107 10°° 10 10

parallelepiped volume |det(A)|

HW #4 Part |l Solutions

1. For part (a) the magnitude ||b — Ax. ||« of the residual in the infinity norm is

H(501) _(2 401) (7)HW B H(501) _(206)Hw - H(1.5)Hm -

Clearly ||b|lcc = 6.01, whence

|b— Ax.|lc 1.95 195
b« 6.0 601

~ (.3245.

The exact solution is clearly Xexact = (1, l)T, so the relative forward error is

bl () (1) -4, -

Therefore, we have | error magnification: 11/(195/601) = 6611/195 ~ 33.9 | For part (c) ||b — Axc||~o is

[Coon)= (o) O)= Con) - G)= -

Since ||bl|s = 6.01 as before, the relative backward error is

|b—Axclloo 1 100
Ibll.c 6.01 601

=~ 0.1664.
Now the relative forward error is
Sz =10) - ()L =100)=
Therefore, we have | error magnification: 601/(100/601) = 6012/100 = 3612.01 | For part (e), notice
1= (5 o) = A== 7)< (e)

By inspection then, [Alla = 6.01, A7 a0 = 601, 50 [Koo(A4) = [|A]loc - [| A" [loo = 6.01-601 = 3612.01 |

Evidently, the error magnification in (c) realizes the largest possible value (the condition number).

2. The following MATLAB® function and script perform the required task.

% Cauchy matrix based on random vector rand(n,1).
% function C = CauchyMatrix(n);

function C = CauchyMatrix(n);

xi = repmat(rand(n,1),[1 nl);

C =1./(xi + transpose(xi));

% Script: Set6Problem2, CS/Math 375, UNM Spring 2011
% Makes plot and output required by Problem 2 of Homework Set 6.

ns = [4 8 12 16];

ferrs = zeros(size(ns)); % Preallocate arrays for n,

berrs = zeros(size(ns)); % forward/backward errors,

conds = zeros(size(ns)); % and condition number.

for k = 1:length(ns)
n = ns(k); % Get n
zexact = ones(n,1); } Get exact solution.
C = CauchyMatrix(n); % Create matrix.
conds (k) = cond(C,inf); % Compute cond. num.

b = C*zexact; % Create Rhs.

zZc = C\b; % Solve system!
ferrs(k) = norm(zexact-zc,inf); % Compute errors, ||zexact||_inf = 1
berrs(k) = norm(b-C#*zc,inf)/norm(b,inf);

end

% Make table of results.

FID = fopen(’Set6Problem2-Table’,’w’);

fprintf(FID, ———-—————=—=—————— - - \n?);
fprintf(FID,’| n | f.errors | b.errors | m.factor | cond.num |\n’);
fprintf(FID, ———-—————=—=—————— - - \n?);

for k = 1:length(ns)
fprintf(FID,’| %3.0f | %1l.4e | %1l.4e | 41.4e | %#1.4e |\n’, ..
ns (k) ,ferrs(k) ,berrs(k),ferrs(k)/berrs(k),conds(k));
end
fprintf (FID,’ —=—=——===——————m—m o - - \n?);
fprintf (FID,’f.errors, b.errors: relative forward and backward errors\n’);
fprintf (FID, ’m.factor, cond.num: magnification factor and infinity norm condition number\n’);

The output table is as follows.

n	f.errors	b.errors	m.factor	cond.num
4	4.2077e-14	4.0078e-17	1.0499e+03	4.7000e+03
8	1.2445e-03	3.6004e-17	3.4565e+13	T7.0556e+13
12	3.8399e+00	1.0968e-16	3.5011e+16	1.2123e+18
16	6.1381e+02	5.3444e-15	1.1485e+17	3.4508e+18

f.errors, b.errors: relative forward and backward errors
m.factor, cond.num: magnification factor and infinity norm condition number

Discussion. The condition number ko (C') is always greater than the magnification factor, consistent with
its interpretation as the largest possible magnification factor over all right-hand sides b. Nevertheless, for
these solves the magnification factor is close to the largest possible one, and becomes very large with increased
n. For n large z. is of poor quality (large forward error), despite yielding (as column three of the table shows)
a residual r = b — C'z, which has a maximum component ||r||s =~ ||b||scfmach = O(Emacn) that is nearly
machine precision in size (||b||~ is typically about 10% at most). Notice also for n = 4,8 that the number of
correct digits in the forward error is roughly log;(1/emach) — 10810 Koo (C) =2 16 — logig Koo (C), as expected.
For n large C' is extremely ill-conditioned, and the numerical solution for n = 12,16 has no correct digits.

