- 1. Sauer, Exercise 4a, page 85 (by hand).
- **2.** Sauer, Exercise 7, page 85 (use the estimate $2n^3/3$ for full Gaussian elimination obtained in class and similar estimate for upper-triangular matrix).
- **3.** Write the following MATLAB® functions.
 - 1. function [L,U]=naivege(A) that returns the lower triangular matrix L and an upper triangular matrix U such that A = LU, obtained by Gauss elimination without pivoting.
 - 2. function \mathbf{x} =utrisol(U,b) that solves the upper triangular system $U\mathbf{x} = \mathbf{b}$ using backward substitution.
 - 3. function \mathbf{x} =ltrisol(L,b) that solves the lower triangular system $L\mathbf{x} = \mathbf{b}$ using forward substitution.

Use the above Matlab® functions to solve the system from 1. Remember, to use the LU decomposition to solve $A\mathbf{x} = \mathbf{b}$ you take the two steps:

- 1. Solve $L\mathbf{y} = \mathbf{b}$
- 2. Solve $U\mathbf{x} = \mathbf{y}$
- **4.** This problem explores the relationship between condition number and the volume of a random parallelepiped in 4-dimensional space whose sides are unit vectors. Let \mathbf{a}_1 , \mathbf{a}_2 , \mathbf{a}_3 , \mathbf{a}_4 be vectors which emanate from a given vertex of the parallelepiped and describe its sides. By a well-known result from geometry, the volume of the parallelepiped is then $|\det([\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \mathbf{a}_4])|$. Your program for this problem should do the following.
 - (a) Generate 4 random column vectors of size 4-by-1, viewing them as the 4 columns of a 4-by-4 random matrix A = rand(4).
 - (b) Normalize the columns A = A*diag(1./sqrt(sum(A.*A))). Provide some comments to explain what this operation does.
 - (c) Compute the volume of the parallelepiped defined by the normalized vectors. Your program must use the LU factorization for computing the determinant (that is do not use the command $\det(A)$ here).
 - (d) Compute the condition number $\kappa(A)$ with cond(A).
 - (e) Repeat the process 1000 times, and produce a scatter plot of $\det(A)$ versus $1/\kappa(A)$.

What are the maximum and minimum values found for $|\det(A)|$? What is the condition number corresponding to each of these values? How can you explain the extreme values of the condition number and the corresponding values of the determinant?

- 1. Exercise 6(a,c,e), page 93, Sauer's textbook (by hand).
- **2.** Given a vector $\mathbf{x} \in \mathbb{R}^n$ with distinct elements (that is, $x_j \neq x_k$ for $j \neq k$), the Cauchy matrix C(x) is the n-by-n matrix with entries

$$c_{ij} = \frac{1}{x_i + x_j}.$$

Write a Matlab® function which returns the Cauchy matrix for a random input vector $\mathbf{x} = \text{rand}(\mathbf{n},\mathbf{1})$. This can be achieved in one line with repmat. For n=4,8,12,16, do the following. Compute the corresponding C(x). Define $\mathbf{z}_{\text{exact}} = [1,1,\ldots,1]^T = \text{ones}(\mathbf{n},\mathbf{1})$, and then compute $\mathbf{b} = C\mathbf{z}_{\text{exact}}$. Using Matlab's backslash, numerically solve the equation

$$C\mathbf{z} = \mathbf{b}$$
,

thereby producing a computed solution \mathbf{z}_c . In exact arithmetic $\mathbf{z}_c = \mathbf{z}_{\text{exact}}$ of course, but in IEEE double precision \mathbf{z}_c will not equal $\mathbf{z}_{\text{exact}}$. The quantity $\|\mathbf{z}_c - \mathbf{z}_{\text{exact}}\|_{\infty}$ is the forward error. Construct a table which, for each n, collects the relative forward error, relative backward error, magnification factor, and (infinity-norm) condition number of C. Discuss your results.