1. The requested MATLAB® functions are as follows.

function [x k] = forward(a,b,c,x0,tol)

function [x k] = forward(a,b,c,x0,tol)

Uses "forward" fixed-point iteration x(k+1) = -(1/a)(b + c/x(k)),
to find a root x of the quadratic equation ax™2 + bx + ¢ = 0. x0
is the initial iterate, and |x(k+1)-x(k)| <= tol/2 controls the
termination. Also returned is the total number k of iteratiomns.
x = -(b + c¢/x0)/a; k = 1; % single iteration so far.

err = abs(x-x0);

while err > 0.5%tol

ST ST e e

x0 = x;
x = -(b + c/x0)/a; k = k+1;
err = abs(x-x0);

end

function [x k] = backward(a,b,c,x0,tol)

function [x k] = backward(a,b,c,x0,tol)

Uses "backward" fixed-point iteration x(k+1) = -c/(b + ax(k)),
to find a root x of the quadratic equation ax™2 + bx + ¢ = 0. x0
is the initial iterate, and |x(k+1)-x(k)| <= tol/2 controls the
termination. Also returned is the total number k of iteratioms.

LT s

x = -c/(b + a*x0); k = 1; % single iteration so far.
err = abs(x-x0);
while err > 0.5%tol

x0 = x;
x = -c/(b + a*x0); k = k+1;
err = abs(x-x0);

end

The quadratic equation 22 — bz — 1 = 0 in question has roots x4 = %(1 ++/5), or

x4 ~ 1.618033988749895e+-00,

xT_

~ —6.180339887498949e-01.

At the command line we verify that each of our fixed-point schemes finds one of these roots to the

desired tolerance.

>> format compact; a=1; b=-1; c=-1; x0=1; tol=1e-10; % These will not change between uses of forward/backward.

>> format long e; [x k] = forward(a,b,c,x0,tol)
x =
1.618033988738303e+00
k =
26
>> format short e; err = abs(0.5%(1+sqrt(5))-x)
err =

1.1592e-11
>> format long e; [x k] = backward(a,b,c,x0,tol)
x =

-6.180339887383031e-01
k =

28
>> format short e; err = abs(0.5%(1-sqrt(5))-x)
err =

1.1592e-11

Clearly, forward finds z; and backward finds x_.

In both cases the iterations k required to

achieve the 1e-10 tolerance is about 30. Note that 1.1592e-11 < % tol = 5.0e-11. So, despite
the termination condition being between successive iterates, the tolerance is achieved relative to
the actual root. To test whether these results depend on x0, we try the following (now x0 = -10).

>> format compact; a=1; b=-1; c=-1; x0=-10; tol=1e-10; % These will not change between uses of forward/backward.
>> format long e; [x k] = forward(a,b,c,x0,tol)
x =
1.618033988755378e+00
k =
28
>> format short e; err = abs(0.5*(l+sqrt(5))-x)
err =
5.4829e-12
>> format long e; [x k] = backward(a,b,c,x0,tol)
x =
-6.180339887405341e-01
k =
27
>> format short e; err = abs(0.5%(1l-sqrt(5))-x)
err =
9.3608e-12

So the results are essentially the same. Indeed, experimentation with several choices for x0 in the

range [—100, 100] always yields the same roots in about 30 or so iterations.
We now perform the following experiment. We use the returned root from forward as the x0
for backward, in both cases with tol = 1e-10. Here is the result.

>> format compact; a=1; b=-1; c=-1; tol=1e-10; % These will not change between uses of forward/backward.
>> format long e; x0 = 1; [x k] = forward(a,b,c,x0,tol)
x =
1.618033988738303e+00
k =
26
>> x0 = x; % Overwrite x0 with approximate root found by forward.
>> [x k] = backward(a,b,c,x0,tol)
x =
1.618033988780243e+00
k =
1
>> format short e; abs(x-x0)
ans =
4.1940e-11
>> err = abs(0.5%(1+sqrt(5))-x)
err =
3.0348e-11

So after 1 iteration, the backward iteration returns x, so let us denote this x by x;. Then, as is
evident, |xp — x1| ~ 4.1940e-11 < 5.0-11, and so the termination from backward is indeed what
was specified. Moreover, we have also demonstrated above that |z — 1| ~ 3.0348e-11. Note this
is larger than the error |z, — x| >~ 1.1592e-11 associated with x0 (the approximate root returned
from forward obeyed this estimate, as seen on the first page). Now, performance of the same
experiment with tol = 1e-13 for the backward iteration yields (we print out x0 just to confirm
that it remains the root returned by the forward iteration).

>> tol = 1le-13; x0
x0 =
1.618033988738303e+00

>> [x k] = backward(a,b,c,x0,tol)
x =

-6.180339887499086e-01
k =

61

We have converged to the z_ root!

The explanation for this phenomena is as follows. In fact, both x_ and x are fixed-points for
the backward iteration. Indeed, for x4 one can check that

: 1 1 1 2 541
__ ¢ — - - =7 = V5 = %(1—&—\/5) =x..
btary —l4+zy —1+3(1+vV5) (W5-1) V-1 Vb+1

Here ghackward (¥) = 1/(—1 + x), so the last equation is gpackwara (2+) = 2. However,

1 1 4

e T L B e

Likewise, for the other root x_, we find

T = Gbackward (T_), Gbackward (T) =2 -3.8197e-01.

So far, we have just confirmed that the backward iteration is locally convergent for x_ and locally
divergent for x, as expected. Moreover, from this analysis, we see that the errors associated with
backward behave as

ekt+1 =~ 2.6180¢

near x,. This is clearly not convergent behavior. Nevertheless, in the first case above, we called
backward with an x0 for which ey = |z — 29| = 1.1592e-11. Therefore, after one iteration, we
expect that

e1 = |z — x| ~ (2.6180)(1.1592e-11) ~ 3.0348e-11.

This is precisely what we found above. The error has gotten worse with one iteration, but the new
iterate z still yields an exit from backward since |z; — 29| < 5.0e-11. However, when backward is
called with the tighter tol = 1e-13, then the iteration can continue until the region of attraction
for the fixed point x_ is reached (this fixed point is convergent for backward).

2. First we have written the following function.

% Returns y = sinh(x) - cos(x), first function (funi) for hw03
% function y = hw03_funi(x)

function y = hw03_funl(x)

y = sinh(x) - cos(x);

With this MATLAB® function for f (x) = sinh x — cos z, the required tasks set down in the problem
are performed by the following script.

% Script: hwO3Problem2.m
% Solves Problem 2 for hw03. Uses hw03_funl, external function sinh(x)-cos(x).

% First used bisection starting with bracketing interval [a,b] = [0,1].

format long e; format compact;

a=0; b=1; tol = 1e-8; kmax = 1000;

[r_bisection k] = bisection(@hw03_funl,a,b,tol,kmax);

disp([’with ’,num2str(k),’ chops bisection found ’,num2str (r_bisection,’%1.15e’)])

% Next use fzero to find same root. First alter the default tolerance.

MyOptions = optimset(’TolX’,tol);

r_fzero = fzero(@hw03_funl,1,MyOptions);

disp([’fzero with TolX = ’,num2str(tol),’ found > ,num2str (r_fzero,’%1.15e’)])

h
r_fzero_long = fzero(@hw03_funl,1);
disp([’fzero with default TolX found ’,num2str(r_fzero_long,’%1.15e’)])

A

disp([’ ’'1)

disp([’error |r_bisection - r_fzero(le-8tol) | ’ num2str (abs(r_bisection - r_fzero),’%1.4e’)])
disp([’error |r_bisection - r_fzero(Default) | ’,num2str(abs(r_bisection - r_fzero_long),’¥%1.4e’)])

Here is the output from the script.

>> hwO3Problem2

with 26 chops bisection found 7.032906562089920e-01
fzero with TolX = 1e-08 found 7.032906590051011e-01
fzero with default TolX found 7.032906588639654e-01

error |r_bisection - r_fzero(le-8tol)| 2.7961e-09
error |r_bisection - r_fzero(Default) | 2.6550e-09

3. To get some idea where the roots lie, we have first made the plot shown in Fig. 1. Using the

y = 5x% - &

30 .

T

_30 ; :
-1 0 1 2 3 4 5

Figure 1: PLoT FOR PROBLEM 3.

figure, we have written the following script.

% Script: hwO3Problem3.m
% Solves Problem 3 for hw03. Uses hw03_fun2, external function 5x°2 - e“x.

% This will not change, so fix upfront.
tol = 1e-8; kmax = 1000;

% Compute the roots using bisection.

% From plot, [-1,0] brackets leftmost root.

al = -1; bl = 0; [ri_bisect k1] = bisection(@hw03_fun2,al,bl,tol,kmax);
% From plot, [0,1] brackets middle root.

a2 = 0; b2 = 1; [r2_bisect k2] = bisection(@hw03_fun2,a2,b2,tol,kmax);
% From plot [4,5] brackets rightmost root.

a3 = 4; b3 = 5; [r3_bisect k3] = bisection(@hw03_fun2,a3,b3,tol,kmax);

clc

fprintf (’Roots found with bisection algorithm\n’)

fprintf (? - - —-— - —— - - - - —— -\n’)
fprintf (*with %2i chops and bracket interval [a,b]l=[%2i,%2i] bisection found %+1.15e\n’,kl,al,bl,r1_bisect)
fprintf (*with %2i chops and bracket interval [a,b]=[%2i,%2i] bisection found %+1.15e\n’,k2,a2,b2,r2_bisect)
fprintf (’with %2i chops and bracket interval [a,b]=[%2i,%2i] bisection found %+1.15e\n’,k3,a3,b3,r3_bisect)

% Next use fzero to find same roots. First alter the default tolerance.
MyOptions = optimset(’TolX’,tol);

startl = -1; ri_fzero = fzero(@hw03_fun2,startl,MyOptions);
start2 = 1; r2_fzero = fzero(@hw03_fun2,start2,MyOptions);
start3 = b5; r3_fzero = fzero(@hw03_fun2,start3,MyOptions);

fprintf(’\n’)
fprintf (’Roots found with fzero algorithm\n’)

fprintf (’ - - - -- - -- -- - -- - -\n’)

fprintf (’fzero with TolX = %1.le and start %+2i found %+1.15e\n’ ,tol,startl,r1_fzero)
fprintf (*fzero with TolX = %1.le and start %+2i found %+1.15e\n’ ,tol,start2,r2_fzero)
fprintf (*fzero with TolX = %1.le and start %+2i found %+1.15e\n’ ,tol,start3,r3_fzero)

% Display the errors between roots found by both methods.
errl = abs(ri_bisect - ri_fzero);

err2 = abs(r2_bisect - r2_fzero);

err3 = abs(r3_bisect - r3_fzero);

fprintf (*\n’)

fprintf (’Errors between two methods\n’)

fprintf (? - - —-— - —— --\n’)
fprintf(’|ri_bisect - ri_fzero(le-8tol)|: %1.4e\n’,errl)
fprintf (’|r2_bisect - r2_fzero(le-8tol)|: %l.4e\n’,err2)
fprintf (’ |r3_bisect - r3_fzero(le-8tol)|: %1.4e\n’,err3)

Here is the output from the script.

Roots found with bisection algorithm

with 26 chops and bracket interval [a,b]=[-1, 0] bisection found -3.714177533984184e-01
with 26 chops and bracket interval [a,b]=[0, 1] bisection found +6.052671223878860e-01
with 26 chops and bracket interval [a,b]=[4, 5] bisection found +4.707937918603420e+00

Roots found with fzero algorithm

fzero with TolX = 1.0e-08 and start -1 found -3.714177524344662e-01
fzero with TolX = 1.0e-08 and start +1 found +6.052671213146193e-01
fzero with TolX = 1.0e-08 and start +5 found +4.707937925444780e+00

Errors between two methods

|ri_bisect - ri_fzero(le-8tol)|: 9.6395e-10
|r2_bisect - r2_fzero(le-8tol)|: 1.0733e-09
|r3_bisect - r3_fzero(le-8tol)|: 6.8414e-09

4. The answer is ¢'(1) = 1 which corresponds to the arrangement shown in Fig. 2. Let us verify
this result theoretically, but first argue graphically that it is so. We are told that x = 1 is a fixed
point, and so the graphs y = x and y = g(z) must touch for x = 1, and there are two ways this
can happen: (i) a tangent touch or (ii) a crossing touch. Fig. 2 depicts the type (i) touch for which
y = x is tangent to the graph y = g(x) at = 1, so indeed ¢’(1) = 1. Moreover, the figure clearly
also shows that the other conditions [that is ¢'(—3) = 2.4 and |¢'(2)| < 1] are achievable when
¢'(1) = 1. However, as indicated in the plots shown in Fig. 3, for (ii) the crossing touch at x = 1
always leads to ¢’(2) > 1, as seen in the two depicted possibilities. In Fig. 3b we have y = x tangent
to y = g(x) at x = 2. Note that in all three plots ¢’(—3) = 2.4 (or at least ¢'(—3) > 1 obviously).

Figure 2: SKETCH FOR PROBLEM 4. Here |¢'(2)] < 1 is possible.

A y=gx) Y=X

Y

(a) Here g'(2) > 1. (b) Here g'(2) = 1.

Figure 3: SKETCH FOR PROBLEM 4.

To obtain the result theoretically, we write
g(z) =w(z)(xz+3)(x— 1)(z—2)+ =z,

which manifestly yields fixed points at x = —3,1,2. Since g(x) is continuously differentiable, w(x)
is at least continuous. Now

g (-3)=24 = w(-3) =7/100 > 0.

Moreover, since |¢'(2)| < 1 (we are told the fix-point iteration is locally convergent at = = 2), we
have
—-1<4d(2) <1 = —2<bw(2) <0 = w(2) <0.

Since w(x) is continuous, and [—3,2] is a bracketing interval, by the Intermediate Value Theorem
there must be at least one root r on (—3,2). However, if w(r) = 0, then r is a fixed point of
x = g(x); whence, since we are told that there are exactly three fixed points (namely, —3,1,2), it
must be the case that » = 1. That is w(1) = 0. Clearly then, ¢’(1) = —4w(1) + 1 = 1, as claimed.

