1. Answers obtained by inspection¹, and only afterward checked in MATLAB.

```
q=[0 40 0 80 0 90 0 5]
q=[0 40 0 80 0 90 0 5]
q=[0 40 0 0 30 90 10 0]
```

- 2. Again, answers obtained by inspection, and only afterward checked in MATLAB.
- (a) (i) t=linspace(5,30,6), (ii) x=linspace(-3,3,7)
- **(b)** (i) v=[-2:0.75:1], (ii) r=[6:-1:0]
- 3. Assume that the N in the summations is length(x). Not specified in the problem! (i) sum(x), (ii) x*transpose(y) or x*y' (since y is real), (iii) x*transpose(x) or x*x' or $sum(x.^2)$.
- 4. The input matrix should have been (note trailing semicolons to start new lines).

```
a = [0.035]
               0.0001
                         10
      0.020
               0.0002
                          8
                                 1;
      0.015
               0.0010
                         20
                                 1.5:
               0.0007
      0.030
                         24
                                 3;
      0.022
               0.0003
                         15
                                 2.5];
n=a(:,1); S=a(:,2); B=a(:,3); H=a(:,4);
```

With this input, at the command line we have the following (output edited to remove empty lines).

Note format short g is appropriate here, since the input data is only known to 2 significant figures. Might also report fewer digits.

5. For part (a) we have used the following script.

```
% Script: Set1Problem5a
% Makes plots required by Problem 5a of Homework Set 1.
x = linspace(-1,1,100);
h = 1e-4;
fp_{exact} = -2*x./(1+x.^2).^2; % Exact derivative of f(x) = 1/(1+x*x).
% First subplot
fp = onesidediff(@bellshape,x,h);
subplot(2,1,1)
explot(x,abs(fp-fp_exact))
xlabel('x')
ylabel('| (df/dx)_e_x_a_c_t - (df/dx)_a_p_p_r_o_x | ')
title('Error between exact derivative of 1/(1+x^2) and one-sided stencil')
% Second subplot
fp = centerdiff(@bellshape,x,h);
subplot(2,1,2)
explot(x,abs(fp-fp_exact))
xlabel('x')
ylabel('| (df/dx)_e_x_a_c_t - (df/dx)_a_p_p_r_o_x |')
```

¹Could you do the same, say on a test?

```
title('Error between exact derivative of 1/(1+x^2) and centered stencil')
% Save figure as an eps.
saveas(gcf,'Set1Problem5a.eps','epsc')
```

The plots made by the script are shown in Fig. 1. See the figure caption for more information.

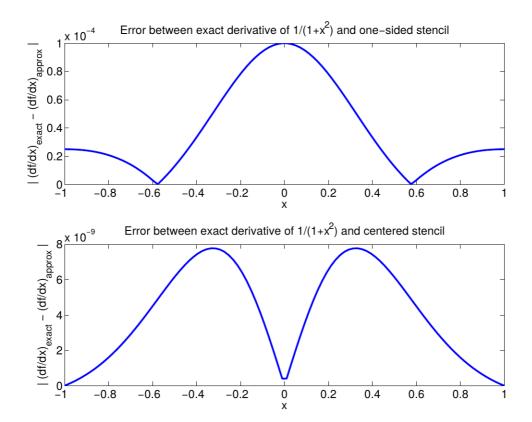


Figure 1: Plots for Problem 5A. Here we plot the error in the two approximations over 100 uniformly spaces points on [-1,1]. Each approximation uses the spacing $h=10^{-4}$.

For parts (b) and (c) we have used the following script.

```
% Script: Set1Problem5bc
% Makes table and plot required by Problem 5b,c of Homework Set 1.

h = transpose(logspace(-1,-9,9));
DataValues = zeros(length(h),5);
DataValues(:,1) = h;
for k=1:length(h)
    fp = onesidediff(@exp,0,h(k));
DataValues(k,2) = fp;
DataValues(k,3) = abs(fp-1);
    fp = centerdiff(@exp,0,h(k));
DataValues(k,4) = fp;
DataValues(k,5) = abs(fp-1);
```

```
end
% Make the table for part b.
FID = fopen('Set1Problem5b-Table.txt','w');
fprintf(FID, '-----
fprintf(FID,'| h | one-sided approx | error | centered approx | error |\n');
fprintf(FID, '-----\n');
for k = 1:length(h)
 fprintf(FID,'| %1.1e | %1.14f | %1.3e | %1.14f | %1.3e | \n', ...
          \texttt{DataValues(k,1),DataValues(k,2),DataValues(k,3),DataValues(k,4),DataValues(k,5))}; \\
fprintf(FID,' Errors taken in absolute value with respect to (df/dx)(0) = e^0 = 1 \setminus n');
fclose(FID)
% Make the plot for part c.
figure(2)
hold off
exloglog(DataValues(:,1),DataValues(:,3),'k--o')
hold on
exloglog(DataValues(:,1),DataValues(:,5),'b-d')
legend('one-sided approx','centered approx','Location','NorthWest')
title('Errors in approximation of (df/dx)(0) for f(x) = e^x')
xlabel('h')
% Save figure as an eps.
saveas(gcf,'Set1Problem5c.eps','epsc')
```

The table required by part (b) is as follows (note that the above script is configured to save this table as a text file called Set1Problem5b-Table.txt).

Figure 2 depicts the corresponding errors in a loglog plot. We observe that for both approximations the error drops initially (this drop is proportional to h for the one-sided difference and to h^2 for the centered difference). However, in both cases convergence to the true value $f'(0) = e^0 = 1$ stalls for small h (due to the finite-precision of computer arithmetic, as we will learn later).

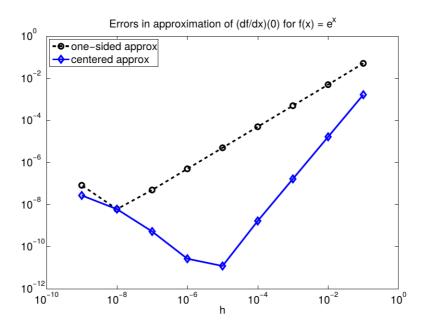


Figure 2: Plot for Problem 5c.