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Hybrid MPI-OpenMP Programming for
Parallel OSEM PET Reconstruction

M. D. Jones, Member, IEEE, R. Yao, Member, IEEE, and C. P. Bhole

Abstract—To improve the parallel efficiency (PE) of the or-
dered-subsets expectation-maximization (OSEM) algorithm for
three-dimensional (3-D) positron emission tomography (PET)
image reconstruction, we focused on reducing the computational
imbalance among parallel processes and interprocess data ex-
change time which were the dominant limiting factors of PE
when a large number of networked compute nodes were used.
As clusters with multiple processors on each compute node have
become increasingly common, we have aimed to take advantage
of the load-balancing mechanism and the inherently lower latency
of shared memory threads across processors within a single node.
We, therefore, implemented the OSEM algorithm with a hybrid
message passing interface (MPI) and OpenMP approach on the
basis of a standard MPI implementation. The contributing com-
ponents to the total reconstruction time for the hybrid technique
were quantified and compared to that using only MPI. The hybrid
MPI-OpenMP technique achieved a consistent PE improvement
of approximately 7% to 17 % compared to the pure MPI approach
on the same number of compute nodes. As clusters of larger
shared-memory multiprocessor (SMP) machines continue to
become more cost effective, we expect this hybrid MPI-OpenMP
approach to be increasingly valuable.

Index Terms—Image reconstruction,
positron emission tomography (PET).

parallel processing,

1. INTRODUCTION

N the last 10 years, iterative statistical image reconstruc-
I tion has become the primary choice on positron emission
tomography (PET) systems for its strong system and noise mod-
eling capability [1]. However, to achieve high spatial resolution,
modern PET systems use a large number of detectors and pro-
duce large volume images with small voxels. As the product
of the detector-pair number and image size is the size of the
system matrix that models the PET image formation process,
the task of statistical iterative image reconstruction, i.e., solving
the equation modeled by the system matrix iteratively, is very
computationally intensive [2], [3]. It can take many hours to re-
construct a single frame whole body high-resolution PET image.
Table I shows the number of detector-pairs and image volume
of a few high-resolution PET systems to illustrate the computa-
tional magnitude of PET image reconstruction tasks.
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TABLE I
THE NUMBER OF DETECTOR PAIRS AND IMAGE VOLUMES OF 3
HIGH-RESOLUTION PET SCANNERS ARE SHOWN TO ILLUSTRATE THE
MAGNITUDE OF THE COMPUTATION TASK OF IMAGE RECONSTRUCTION. THE
ATLAS [16] AND MICROPET Focus 120 [17] ARE FOR ANIMAL STUDY AND
HRRT [18] Is FOR HUMAN BRAIN STUDY

PET Number of Image size (voxel size)
Scanner detector-

pairs
ATLAS 2.13x10° 5.57x10° (0.56x0.56x0.56 mm>)
microPET | 4.48x10’ 1.56x10° (0.86x0.86x0.86 mm®)
Focus
HRRT 4.49x10° 1.36x107 (1.2x1.2x1.2 mm®)

A. Prior Parallelized PET Reconstruction Work

Parallelizing the reconstruction task over a computer cluster
with multiple processors is an effective mechanism to reduce
the long reconstruction time [4]. In addition, tasks such as
storing the system matrix in memory for PET reconstruction,
which may not be practical on a single processing unit, can
now be divided into smaller tasks and realized on clusters with
enough compute units [5]. The implementation of a parallel
reconstruction application depends strongly on the computing
infrastructure: the software libraries available and the under-
lying hardware architecture. As briefly summarized by Jones et
al. [6], various parallelization techniques have been investigated
by different groups [7]-[11] as parallel computing platforms
have evolved over the past two decades. Most recently, the
networked low cost commodity PC clusters using the Linux
operating system and message passing interface (MPI) [12]
libraries have become the preferred platform for parallel PET
reconstruction development [3], [13]-[15]. This is the platform
that we study in this paper.

B. Parallelized OSEM

The ordered-subsets expectation-maximization (OSEM) [19]
algorithm is an accelerated iterative statistical PET reconstruc-
tion algorithm. Its primary formula is given by
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where i is the image voxel index, 6; is the estimated activity
value in voxel 4, j is the detector-pair (projection) index, y; is
the measured value in projection j, k is the iteration number. For
OSEM, the projections are grouped into S subsets s is the subset
index, 7 € J; represents the collection of projections in subset,
s, C; ; is the probability of activity in voxel ¢ being detected by
projection j; the collection of C; ; makes the system matrix, and
I and .J are the total number of image elements and projections,
respectively.

The typical gain of speed with OSEM relative to standard EM
is between 10- and 100-fold. This algorithm is of considerable
importance and is the primary technique used in three-dimen-
sional (3-D) PET reconstruction. For high resolution 3-D PET
systems, however, a further acceleration at this order is needed
to reduce the image reconstruction time to minutes instead of
hours [3], [13].

One parallelized form of OSEM is that the projections in each
subset .J, are distributed over a total of IV,, processors, i.e.
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This is the algorithm we used in this paper.

C. Parallel Programming Model

The message passing interface (MPI) is a library specification
widely adopted as a standard for parallel computing. Its funda-
mental model is individual processes (each with its own address
space) communicating via messages over an external network.
The parallelized 3-D-OSEM above was initially implemented
[15] using MPICH [20], a freely available, portable implemen-
tation of MPI [12], ported to Myrinet 2000 (Myricom, Arcadia,
CA). In the following text, we refer this model as MPI or pure
MPL

In addition to MPI, OpenMP [21] is a specification for com-
piler directives, library routines (the OpenMP API) and environ-
mental variables that can be used in Fortran and C/C + + pro-
grams to utilize shared memory parallelism on shared memory
and distributed shared memory architectures. The primary ad-
vantage of using OpenMP directives lies in the ability of multi-
processors to access the same memory pool, without the costly
communication overheads and network transit times found in
message passing. As clusters of compute nodes with shared-
memory multiprocessors (SMP) emerge as an attractive low-
cost commodity off-the-shelf (COTS) platform for parallel ap-
plications, a natural mode of parallel programming on such clus-
ters is a combination of using MPI between nodes and OpenMP
within a node, for which the inherently lower overhead of the
shared memory environment could be taken advantage. This
mode is referred as hybrid MPI-OpenMP [29]-[32].

Fig. 1 illustrates the outline of the implementation of the par-
allelized OSEM reconstruction algorithm with MPI (without the
lines) and hybrid MPI-OpenMP (with the lines). Note that the
OpenMP directives in the framed boxes of Fig. 1 extend over
the fine-grained loops of the forward and back projections. In
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this paper, we analyze the contributing factors to and the PE of
the implementations with these two programming models.

II. MATERIALS AND METHODS

A. Reconstruction Task

A miniature Derenzo phantom (Data Spectrum Corp.,
Chapel Hill, NC) scanned for 8 h (362 million counts) using
the ATLAS [16] system was used as the reconstruction test
case. The reconstructed image volume was 128 x 128 x 34.
The voxel size was (0.5625 mm)>. The number of iterations
and subsets used were 8 and 9, respectively. The performance
of the parallelized reconstruction algorithm used in this work
in terms of image quality has been reported previously [5],
[15], [22], [23]. In the current study, we focus on characterizing
the contributing factors to reconstruction time and effects of
parallel programming models. A parallel program visualization
tool, JumpShot-4 [24], was used for doing visual postmortem
performance analysis of the reconstruction program with dif-
ferent programming models, while the detailed performance
data was obtained using the mpiP [25] MPI profiling library
and the performance API (PAPI) [26].

B. Cluster of Shared-Memory Multiprocessors (SMPs)

We used a cluster of 300 SMP nodes, each with two Intel
2.4-GHz Xeon processors, interconnected by a low latency (ap-
proximately 9 microseconds using MPI), high bandwidth (about
240 MB/s, again using MPI) Myrinet 2000 network. A diagram
of the cluster layout is illustrated in Fig. 2. MPI is the standard
parallel API on such clusters. The architecture of this cluster
reflects the growing trend of COTS high performance parallel
compute clusters. The COTS approach is one in which relatively
inexpensive individual units, compared to more traditional su-
percomputers that have more processors share memory per unit,
are massed together and used for concurrent parallel computa-
tion.

C. Hybrid MPI-OpenMP and Pure MPI

The framed-lines starting with “OpenMP:” in Fig. 1 are the
OpenMP compiler directives inserted for the loops which are
responsible for carrying out the calculation of g);” in (3) and
fF*+1™ in (5). They instruct the compiler to parallelize the
outer loop using multiple threads (private indicates the variable
is not to be shared among threads) and performs a thread-level
summation, with the function reduction (+ : ﬂfs), on the vari-
able y. When the OpenMP directives (framed-lines) are enabled
by compilation, the hybrid MPI-OpenMP model is used for the
program. The pure MPI mode is chosen when the program is
compiled with the OpenMP directives disabled, or the number
of OpenMP threads is restricted to one. The OpenMP imple-
mentation used is that of the Intel C/C + + compiler, version
8.1, which supports the OpenMP 2.0 Application Binary Inter-
face (API).

The hybrid approach combines MPI for internode communi-
cation and OpenMP for parallelism within a node to take the
advantages of shared memory, i.e., lower latency and higher
bandwidth and more importantly, to decrease contention for in-
ternode resources. In this particular paper, we will examine in
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Initialization {
Initialize on one processor;

Broadcast to Np processors;
Y

s
Concurrently running on Np processors
OpenMP: #pragma omp parallel for private (i.j,s)

Compute positions of j;
Compute C Vi ;

i,j?
Compute qlm, Vi,

} end For all
|

Barrier to reach synchronization across processors

For all iterations, K {
For all subsets, S {

Read C. ., Vi

iy
Concurrently running on Np processors|

Diagram of the Parallelized OSEM Reconstruction Program

For all projections in subset s on processor n, i.e. | € J n i

. s,n K
Summation of g;”" over processors to get ¢; on each processor

OpenMP: #pragma omp parallel for private (j.k,s) reduction(+: )A/fg ):

Calculate )A/fé R

backProject j;
} end For all

k,s+1
Calculate 6, A

1

} end For all
Y end For all

For all projections in subset s on processor n, i.e. j € J , {

Barrier to reach synchronization across processors

. k,s+1,n .
Summation of (9, , Vi over processors
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J
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Fig. 1. A diagramillustrating the parallelized OSEM algorithm. The pure-MPI implementation is the context without the two framed lines starting with “OpenMP.”
The two framed lines are additions (compiler directives) for enabling OpenMP for intranode operations and, therefore, enabling the Hybrid MPI-OpenMP mode.
The execution times in the program were categorized by the type of operation and labeled on the right side of the corresponding lines or blocks (see Section II-D
for more details). The numbers of processors used here, /V,,, are the power-of-two numbers between 1 and 64.

lShared Memoryl IShared Memoryl |Shared Memoryl
—T— l__‘ LLETERY] —T1
[cruo] | [cput]|cpuo]| [cput| [cPuo] | [cpui|

‘I High Performance Network Infrastructure |

Fig. 2. Schematic layout of a cluster of two processor SMP machines intercon-
nected with a high performance network, representative of the SMP cluster used
in this study.

detail the contributions responsible for determining parallel per-
formance, and analyze the suitability of the hybrid approach for
OSEM reconstruction.

D. Performance Analysis

To evaluate the parallel efficiency, we postulate a simplified
performance model. Let us denote the time spent in serial com-
putation as Tg, With T.racomp as the balance of time that can
be parallelized. If we then define 7,10y as the time required for

all the processors to reach synchronization (using MPI_Barrier),
and T,req as the collective exchange of information among the
processors (using MPI_Allreduce), the total reconstruction time
of a processor on a cluster with N, processors is

Ttot (Np) =75 + 7_pa.ra.Comp(ZVp)
+Tbarrier(Np) + Tallred(Np) (7)

where Tharrier + Tallred 1S the load-balancing and communication
overhead involved in parallel reconstruction. The parallelization
speedup factor (SF), which is also the factor by which the exe-
cution time is reduced, is then given by

SE(Ny)
Ttot(l)
Ttot (Np)
TS + TparaComp (1)
Ts + TparaComp(l)/Np + Tbarrier(Np) + Tallred(Np) ’
(@)
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PE is defined as

PE(N,) = Ttot(1)/[Ttot (Np) Np)- )
It measures the efficiency of the parallel processing being used
for the computation task. In an ideal setup, when the task is per-
fectly divided among processors with no communication over-
head, PE = 1.

The time spent in unavoidable serial computation is primarily
used to set up the reconstruction: the initialization of scanner
parameters, the measured data read-in, and determination and
allocation of parallel workload.

In the optimistic scenario in which Tharrier(IV,) and
Talired (Vp) in (8) can be neglected, the idealized PE be-
comes Amdahl’s Law [27]

1
PE(N,) = ————— 10
o) = 17, - o
where f = 75/(Ts + Tparacomp(1)). On large numbers of

nodes, however, Tharrier(Np) and Tanrea(N,) are not negli-
gible, and can be a significant contributing factor relative to 7g
and 7_pa.ra.Comp(1)/1\/}1'

Three components  TparaComp(Np); Tharrier(Np), — and
Taiired (Vp) account for the execution time in parallelized
mode. Since the load distribution over processes is not perfectly
balanced most of the time, the Tparacomp Of €ach process varies
depending on its local load and computation capacity. We,
therefore, use avg(TparaComp) and std(Tparacomp) to describe
the average and standard-deviation, respectively, of T,araComp
over multiple processes. The same symbols also apply to
Tharrier a0d Talred. Knowing that 7papier 1S the complemen-
tary component of Tparacomp to reach synchronization of the
parallel processes, it is intuitive to infer that the variations of
TparaComp ANd Tharier are closely related and avg(Tharrier)
correlates to std(TparaComp)-

With the specially inserted synchronization step
(MPI_Barrier), the global summation operation MPI_Allreduce,
which collects the values in the designated buffers belonging
to each processor involved in the reconstruction task and is
represented by Tajired, 18 isolated from load-imbalance, i.e., no
variation inherited from the variation of TparaComp OF Tharrier-
The number of MPI_Allreduce calls is determined by the total
image size divided by the chosen buffer size. The optimal
choice of this buffer size is discussed in Section III-B.

In this paper, we compare the hybrid MPI-OpenMP model
with two MPI configurations. The hybrid model consists of
using one MPI task per cluster node (node, in this context, is a
single computer containing two processors with associated on-
board disk, memory, and network interfaces) plus two OpenMP
threads. This is compared to the ‘pure’ MPI approach of using
one MPI task per node (leaving the second processor of each
node idle) and two MPI tasks per node (the more conventional
method of filling available processors with MPI tasks). The
pure MPI case in which we idle the second processor (hereafter
referred to as MPI ppn = 1) on each node is artificial (seldom
will end users essentially throw away half of the available
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Fig. 3. MPI_Allreduce contributions to the global summation time from the
Pallas MPI benchmark, as a function of buffer size on 2, 8, and 128 processors.
The full size of the benchmark data set was 4 MB. Note that MPI_Allreduce
reaches a minimum at a buffer size of about 64 KB. Larger buffer sizes did not
further reduce this contribution.

computational resources), but can be quite useful as a reference
point, as we will discuss in Section III.

III. RESULTS

A. The Serial Computation Component Ts

An analysis of a 32-processor run of the 3-D-OSEM MPI
code revealed the initial setup phase of the code’s execution
Ts is about 0.4% of total computation time. Although this may
become a limiting factor when a large number of processors are
used, we consider it to be a negligible factor for current typical
computation environments (<= 128 processors) and make no
further endeavor to optimize it in this paper.

B. The Choice of Buffer Size in Global Data Exchange

Here we consider the optimal choice of buffer size in the
global data exchange of summation in (6). Fig. 3 shows the
time required by MPI_Allreduce (proportional to T,jred) as a
function of buffer size on different number of processors (2, 8,
and 128) from the Pallas MPI benchmark [28]. Other processor
numbers show very similar behavior. An algorithm change was
present in the MPICH global summation function for buffer
sizes of 256 KB and above, which caused the slight nonmono-
tonic behavior for buffer sizes near 256 KB. It should be noted
that this particular behavior can be dependent on the MPI imple-
mentation and even the underlying network hardware. The cur-
rent implementation of the OSEM reconstruction uses a buffer
size of 8 Bytes multiplied by the second and third dimensions of
the image volume, which is approximately 34 KBytes. The max-
imum possible buffer size is the image size (in units of 8 Bytes),
just over 4 Mbytes in this case. The current choice is quite close
to optimal, as can be seen from Fig. 3, and only minimal gains
(on the order of 5% or so) could be made by maximizing the
buffer size used in global exchange.

C. Pure MPI Versus Hybrid MPI-OpenMP

The measured execution time of the three compo-

nents avg(TparaComp)7 Std(TparaComp)7 avg(Tbarrier)v and
avg(Tanred) Of the parallelized 3-D-OSEM computation task as
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Fig. 4. The three components of the 3-D-OSEM reconstruction time 7TparaComp, Tharriers ad Tanrea Were measured for three modes of operation, i.e., MPI
ppn = 1, MPI ppn = 2 and hybrid MPI-OpenMP, as a function of the total number of processors used for in the reconstruction job. The average and standard
deviation of Tparacomp are plotted in (a) and (b), respectively. The avg(rban.;er) and avg(ranred) are shown in (c) and (d), respectively. The standard deviation
plot of Tharrier 18 Very similar to the standard deviation plot of T,.racomp, thereby accounting for the large variance seen in (b). The standard deviation of Taiirea

is quite small, and is not shown in (d).

described in Section II-A, were plotted and shown in Fig. 4(a),
(b), (c), and (d), respectively. The std(7aired) is minimal and
not presented. Note that N, = 1 represents the serial recon-
struction and, for reference, is plotted as a point of the MPI
ppn = 1 curve in Figs. 4(a) and 5(a) and (b).

The average parallel computation time over IN,, processors
avg(Tparacomp) Was inversely proportional to the number of
processors, as shown in Fig. 4(a), regardless of whether MPI
or hybrid MPI-OpenMP was used. In other words, the assump-
tion of ideal speedup for this component of the execution time
is reasonable, with less than 5% deviation from linear speedup.
With the same number of processors, the MPI ppn = 1 method,
having less contention for local computing resources, used less
reconstruction time as compared to the MPI ppn = 2 and
the Hybrid methods. As a measure of the computational imbal-
ance, the standard deviation of T,aracomp as a function of N, is
shown in Fig. 4(b). The Hybrid method had the lowest variation
as compared to the two MPI implementations. From Fig. 4(b),
it appears that NV, = 8 happened to have a relatively higher
computation imbalance than other processor numbers for this
specific reconstruction task, as all three methods showed this
small anomaly for N, = 8. The larger variations in computa-
tion time among processors also increases the synchronization

time needed and, hence, leads to higher values of Tha;rier. This
behavior is reflected in the nonmonotonically increasing trend
of Tharrier 10 Fig. 4(c). The two measures of the communica-
tion overhead, i.e., avg(Tparrier) and avg(Tanrea), in Fig. 4(c)
and (d), respectively, showed a general increase with increasing
numbers of processors. The avg(Tharrier) Of the hybrid method
was lower than both MPI modes.

As the synchronization time due to work imbalance has been
accounted for by Tharrier; Tallred accounts purely for the commu-
nication time required for the global summation function among
the processors and does not have a large variance. As shown
in Fig. 4(d), avg(Taiirea) of the hybrid MPI-OpenMP for N,
processors is approximately equal to the avg(7aned) of MPI
ppn = 1 or ppn = 2 for N, /2 processors.

The overall performance, in terms of SF and PE, of the MPI
and hybrid implementations as a function of IV,,, is compared in
Fig. 5(a) and (b), respectively. The MPI ppn = 1 results provide
a useful reference, while the MPI ppn = 2 results are a more
practical measure (in which all the available processors are uti-
lized). The PE and SF of the hybrid approach was 7% to 17%
higher than MPI ppn = 2, as the number of processors changed
from 4 to 64. Next, we discuss the implications of these results
in more detail.



JONES et al.: HYBRID MPI-OPENMP PROGRAMMING

30| [------- MPI ppn=1 Fig. 5(a)
————MPI ppn=2
Hybrid

20 |
L
73]

10 ]

0 T T T
1 2 4 8 16 32 64
Np

2757

Fig. 5(b)

- N
0al |7 MPI ppn=1 \\;“
————MPIlppn=2
0.2 - Hybrid
0 T T T
1 2 4 8 16 32 64
Np

Fig. 5. Comparison of the overall performance of MPI (ppn = 1 and ppn = 2) and the hybrid models with different number of processors employed in the

reconstruction job. The SF and PE results are shown in (a) and (b), respectively.

IV. DiscussioN

A. The Barrier Time Tyarrier

The barrier time was primarily due to load imbalance, i.e., the
fundamental computation imbalance of the application among
the multiple compute units, as illustrated by the correlation be-
tween Fig. 4(b) and (c). When the number of processors in-
creases, the load imbalance does not change monotonically or
linearly, hence, we see the nonmonotonic behavior of T,y pier i
Fig. 4(c), and representatively, at the point of V,, = 8.

The hybrid model with N,,/2 MPI processes shows a lower
std(TparaComp) and avg(Tharrier) than that of the MPI imple-
mentations with same or even lower number of processes. This
is because the OpenMP approach has an intrinsic load-balancing
mechanism [29] that effectively reduced the computation im-
balance. The reduction would be mostly nonlinear because the
distribution of projection data over multiprocesses is imaging
object dependent.

B. Hybrid MPI-OpenMP

Since this model effectively reduced the number of compute
units involved in communication to N, /ppn, where ppn is the
number of shared memory processors per node, based on Fig.
4(b) and (c), the time required to synchronize global data across
nodes, i.e., Talired, Was greatly reduced. Therefore the perfor-
mance of the hybrid approach should be better, as reflected by
the SF and PE results in Fig. 5(a) and (b). In other words, the
hybrid MPI-OpenMP approach made better use of local node
resources (disk, memory, bus) and reduced competition for net-
work resources.

In Fig. 4(d), the MPI ppn = 1 and ppn = 2 curves crosses
over between N, = 8 and N,, = 16. This was likely an artifact
of the particular MPI implementation used in this study (it has
disappeared with a more recent MPI implementation). The im-
pact of the artifact is small enough, as compared to Tharrier, tO
be negligible.

The performance gains using the hybrid MPI-OpenMP ap-
proach were similar to previous studies [30]-[32], in that the

relative performance advantage of the hybrid approach did de-
pend on the algorithm under study and the network performance
of the MPI implementation. The gains that we have shown here
were due to the improved computing balance of shared memory
and OpenMP compilers, as well as reduced internode commu-
nication.

The current trend of parallel computing favors small scale
SMPs, in which manufacturing costs can be minimized to a cer-
tain extent by having several processing cores share the same
fundamental infrastructure (memory, bus, i/0, etc.). Most Linux
clusters in the high-performance technical computing (HPTC)
market are based on this distributed shared-memory architec-
ture. The hybrid reconstruction model is the logical fit to this
architecture. According to the results of this study, a cluster of
SMP nodes with more (e.g., 4 rather than 2) processors is ex-
pected to benefit further from applying the hybrid MPI-OpenMP
approach.

C. OpenMP

Given the performance gains found for the hybrid
MPI-OpenMP approach, an interesting question arises as to the
viability of a pure SMP implementation (using either OpenMP
or some other shared-memory API). While the main goal of
this work was to study the speed advantage of introducing a
hierarchical parallelization strategy, i.e., using OpenMP for
intranode communication to complement the common MPI
internode communication, a coarser-grained approach (rather
than the fine-grained use of OpenMP) for the loops shown in
Fig. 1 could be applied using purely OpenMP. There are other
threading techniques such as Pthreads [33] available for the
intranode task on a shared-memory multiprocessor node, but
we have chosen OpenMP for its portability and ease of imple-
mentation [21]. The simplicity of our fine-grained approach
can be seen in Fig. 1, where OpenMP is included by just adding
the compiler directives without making any other changes to
the original code. Using coarser-grained pure OpenMP on a
shared memory architecture [34] is viable and has shown good
performance in terms of PE. The downside of a pure SMP
program, however, is that this approach is limited to expensive
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large SMP computer architectures, and is currently too costly
for many institutions.
V. CONCLUSION

We have studied the parallel efficiency of a 3-D OSEM algo-
rithm implemented with a pure MPI and a hybrid MPI-OpenMP
approach. Our initial motivation was to improve the efficiency
beyond that of a strict message-passing approach. The hybrid
MPI-OpenMP approach took advantage of the load balancing
mechanism of OpenMP and the inherently lower latency of
shared memory threads across processors within a node and
showed a 7% to 17% improvement in terms of PE on 4 to 64
processors, as compared to the pure MPI ppn = 2 approach.
This hybrid approach is particularly important as trends towards
multicore processors and larger SMPs continue to prove more
cost-effective in cluster computing. While we have focused
in this work on a particular application (a 3-D OSEM recon-
struction code), we expect this hybrid approach to become
increasingly valuable to accelerate applications with similar

characteristics.
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