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Abstract—Rat brain images acquired with a small animal system sensitivity, which is available with the development

positron emission tomography (PET) camera and reconstructed of three-dimensional (3-D) acquisition and reconstruction
with the three-dimensional (3-D) ordered-subsets expecta- methods [2], [9], [10].

tion-maximization (OSEM) algorithm with resolution recovery - . )
have better quality when the brain is imaged by itself than For a 3-D small animal PET scanner with very fine (0.2-mm)

when inside the head with surrounding background activity. The Spatial sampling [11], the computational burden of reconstruc-
purpose of this study was to characterize the dependence of this tion is substantial. A parallelized version of the ordered-subsets
effect on the level of background activity, attenuation, and scatter. expectation-maximization (OSEM) algorithm [12] has been
Monte Carlo simulations of the imaging system were performed. implemented [13] on an IBM SP2 parallel computer. The 3-D

The coefficient of variation from replicate images, full-width at OSEM algorith . v sh 0 i .
half-maximum (FWHM) from point sources and image profile algorithm was previously shown 1o Improve image

fitting, and image contrast and uniformity were used to evaluate duality [13] compared with the 3-D reprojection method [14],
algorithm performance. A rat head with the typical levels of five achieving resolution better than 1 mm for this camera. How-

and ten times the brain activity in the surrounding background ever, in our subsequent applicationsrwivorat brain data, the
requires additional iterations to achieve the same resolution as OSEM images did not appear to achieve the same resolution

the brain-only case at a cost of 24% and 64% additional noise, . Il brain struct t clearly deli ted. Eurth
respectively. For the same phantoms, object scatter reduced '€:» SMall brain structures were not clearly delineated. Further-

contrast by 3%-5%. However, attenuation degraded resolution More, we observed that image quality was significantly better
by 0.2 mm and was responsible for up to 12% nonuniformity in when the brain was imaged by itself than when the brain was
the brain images suggesting that attenuation correction is useful. inside the head with surrounding background activity. Since
Given the effects of emission and attenuation distribution on both ;4 prajn images must be obtained within an intact head, the
resolution and noise, simulations or phantom studies should be . X .
used for each imaging situation to select the appropriate number impact of factorg gmanatlng from the presgnce of the head, i.e.,
of OSEM iterations to achieve the desired resolution—noise levels. background activity, scatter, and attenuation, must be assessed
. . tounderstand the behavior of the reconstruction algorithm and
Index Terms—Ordered-subsets expectation-maximization . ) -
(OSEM) algorithm, reconstruction, small animal PET imaging, to optimize the final image. . o . .
three-dimensional (3-D) volume imaging. The performance of maximum-likelihood (ML) iterative
reconstruction algorithms has been evaluated extensively [7],
[15]-{17]. For human scanners, the reconstruction kernel,
the choice of postprocessing sieve, the number of iterations
EDICATED small animal positron emission tomographynd the object size influence the quality of the reconstructed
(PET) scanners [1]-[3] offer the possibility of a widdmage. There are, however, a number of differences between
range ofin vivo studies including the study of unique anhuman-sized and small-animal 3-D cameras. Given the very
imal models of human diseases [4]-[6]. In order to perforsmall structure sizes, the highest possible resolution is nec-
quantitative analysis of tracers in rats and mice, the high&stsary for animal imaging. However, without radiation dose
possible spatial resolution is desirable for these systems. WHitgits, higher statistical quality can often be achieved (if
resolution recovery algorithms can improve image resolutiogpecific activity is not a limit), allowing the possibility of
the cost is increased noise [7], [8]. This can be offset by highegsolution recovery. Because of the very fine spatial sampling,
acquisitions of even a few million counts may have an average
count per projection line of less than 1, so that the Poisson
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The objective of this study is to assess quantitatively the B.
effects of surrounding background activity, attenuation, anc
scatter for a very high spatial resoluti¢gztl mm) camera. In
order to control these effects, several mathematical phanton
were designed and Monte Carlo simulations of an existing
imaging system were performed to produce data sets whe
these factors could be controlled through the simulatior
process. In addition, measured rat brain data were artificiall
merged into simulated data to assess the impact of backgrou
activity in the brain images. Images were evaluated using nois:
resolution, contrast, and homogeneity indexes calculated from

the reconstructed images. Fig. 1. Three mathematical phantoms for simulating (a) the rat brain only,
(b) rat brain with low background, and (c) rat brain with high background. The
two small cylinders emulate neuroreceptor uptake and are used as hot VOIs
1. METHODS for noise and contrast evaluations. The point sources were used for resolution
measurement. All dimensions are in mm. The rotation axis of the scanner
A. Existing PET Scanner is vertical. The axis of the brain and head cylinders is parallel to the axis of
rotation. The 3.2-mm diameter cylinders have their primary axis aligned along
The small-animal PET system used in this work consists o transverse slices.
two opposing 4-mm-thick slab Nal(TI) position-sensitive pho-
tomultiplier tube (PSPMT) cameras [11], [13], each with an ef- . . .
fective area of 50« 50 mm and separated by 128 mm. ThIaocallzed neuroreceptor uptake (see Section II-D). Three point

: . . Sources were placed in the same plane near the center of the
PSPMTs provide a continuousy read-out thatis sampled Ontobrain to measure spatial resolution. The relative activity concen-
0.195-mm-square detection bins (256256 sampling array). P ' y

The detectors are stationary; the object is rotated at least Sér(ﬁatlons In rat brain, cylinders and point sources wird : 50.

during acquisition to obtain a complete data set. At the cen@rri i)n T)?]tar?t?:: c\)’}"tlr:]igLoﬂaI;%;:;gr%?;CdeéF;g' al(lg)r]g;gr]ec;?; der

of the field of view, each camera has an intrinsic point sprea(ij . . ' . -
; . ; . of 36-mm diameter and 40-mm height filled with an activity
function (PSF) with full-width at half-maximum (FWHM) of oncentration equal to that in the brain. The total activity in the

1.0 mm, and a coincidence PSF with a FWHM of 1.2 mm [1lgutside cylinder was five times that in the brain area.

[18]. Acquired data were recorded in list-mode. 3) Rat Brain with High Background [Fig. 1(c)]The distri-

bution was the same as the previous phantom except that the

activity concentration in the rat head surrounding the brain was
PET acquisitions were simulated using a Monte Carlo prtwice that in the brain.

gram specifically designed for this camera that modéfdd

positron range, depth of interaction effects, scintillation cryst@. Measured Brain with Artificial Background Activity

scatter, redundant sampling, and spatial variation in detectqr.l.o assess the impact of background activity on rat brain image

sensitivity. Random coincidences and spatial resolution nonunj-_ . . . o
. . . . ality, a measured rat brain data set was combined with simu-
formities were not included. With the photoelectric events arﬂiJ . o e .
scatter in both the object and the detector included, the recor fed surroundlng background act|V|ty. A rat was .|njected with
’ MBq (6 mCi) of[*8F]JFCWAY, a ligand that binds selec-

gvents were tagged_ W.'th the|r history of interactions. Therefort?\iely to 5-HTy 4 receptors [19]. At 30 min postinjection, the
it was possible to distinguish scattered and nonscattered even%s o X ,
. . g . rat was sacrificed and the brain was excised from the head. The
in the acquired data. Scatter within the detector comprises a

ig-. . .
- . . . Jfain was mounted in the scanner and was scanned for 3 h using
0

_n|f|cant frf”‘C“O” of the acqu!red events (56 @’ so this effect_w ree full revolutions. The total activity in the brain at the start of
included in the reconstruction kernel. In this work, only objecS anning was 0.74 Mbg (20Ci) resulting in singles rates less
scatter was studied. Hereafter, the term scatter means speﬁﬁl 9 ) q 9 9

cally object scatter.

36

40

B. Monte Carlo Simulation

an 10000 s! and a negligible randoms fraction of <0.01%.
Correction factors for redundant sampling of lines of response
and radioactive decay were calculated and the measured data
were corrected.

Mathematical phantoms (Fig. 1) were designed to imitate theBrain voxels were defined by applying a connectivity and
situation when the rat brain is imaged by itself [Fig. 1(a)] anthreshold segmentation algorithm to a preliminary OSEM rat
when the brain is in the rat head with varying amounts of activityrain image. By eliminating these voxels from the head-cylinder
within the surrounding rat head volume [Fig. 1(b) and (c)]. Athe outermost cylinder in Fig. 1(b) and (c)], a brain-shaped
uniform attenuation mediurfy: = 0.0096 mnmi!) was used for void (4266 mni) was created within the cylinder. The cylinder
all the phantoms in this study. volume outside this void was filled with uniform activity and

1) Rat Brain Only [Fig. 1(a)]: The design of the rat brain list-mode data were simulated (without radioactive decay) and
simulation was based on measured head images. A cylindecohcatenated to the measured rat brain data to generate a new
16 mm diameter, 20 mm height was used to represent the bralata set for the case of imaging a rat brain with a surrounding
Two identical small hot cylinders with diameter of 3.2 mm antiead. Note that the corrected rat brain data are no longer Poisson
length of 10 mm were inserted in the brain portion to simulattistributed and systematic errors in the reconstructions could be

C. Mathematical Phantoms
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TABLE | lent to 300 EM iterations, were obtained. All references to iter-
SUMMARY OF EXPERIMENTS ation numbers in this text are EM-equivalent iteration number.
Bran | Brain The computation time depends on the total counts of the ac-
o | I el oy | e | e | Fesaion  quired data and the number of processors used [21] and ranged
e mﬁf}fn imoﬁgund from 0.2 to_3 min/iteration (the total computation time for all
No attenation | 03 18 14 | Resoluton and reconstructions was-450 h). A system intrinsic coincidence
N:;:::;on Re:;;jgm resolution m_odel (Gaussian f_unct|on with 1.2-mm FWHM anq
or scatter 1 6.5 36.5 665 | uniformity, and truncated tails at 5% of maximum value) was incorporated in
Simulated brain [~ Resalution. the system matrix of the algorithm for resolution recovery. Co-
only Lo 3T | | e emibmiv e incidences corresponding to axial angles greater tha.2
Attenuation . 5o s | sao un‘}gf‘;‘;‘;}j‘; . (~8% of total possible projection lines) were not included to
e nd seatter contrast reduce computation time. Th_e 3-D recons_tructed object consists
brain embedded | No attenuation| o 0 T Visual of 128 x 128 x 85 voxels, which were resliced to 128128 x
ool I assessment 128 cubic voxels (0.3% 0.39 x 0.39 mm) when image anal-
Al datasets were reconstructed up 1o 300 iterations. ysis requires volume-matching between phantom and image. No

image postsmoothing was performed.

produced. However, such effects would be expected to be sif- yaluation Indexes
ilar for reconstructed images with and without simulated back-

ground activity and should, therefore, have little effect on th% I?_ th'_s V\t’srk’ V\_’el %r_‘ly etzyaluated trzi[msverse rssk())lutl(zin. Retﬁ'
gualitative comparison between these images. olution In the axial direction was not measured based on the

similarity of axial and transverse resolutions found in previous
E. Simulations stqdies [13]. Since the performance o_f EM-based algorithms is
. i . object-dependent [15], image resolution was calculated in two

A summary of all the experiments is presented in Table I. ways.

1) Surrounding Background ActivityAcquisitions with to- 1) psint Source FittingThe reconstructed point source image
tals of 6.5, 36.5, and 66.5 million counts were generated for (jg, (nonreplicate data) were fit to a 2-D Gaussian function with
brain, brain with low background, and brain with high backge narameters: amplitude, center position-iandy directions,
ground mathematical phantoms, respectively. Photon interg§yHm and local background. An 1% 11 image matrix cen-
tions within the object were disabled in the Monte Carlo simgeq at the point source position was used in the fitting and the

ulation so there were no scatter or attenuation effects in thef?ﬁical uncertainty of the FWHM estimate wa8%. The point
simulated data. The full data sets were reconstructed to prodde€rce at 2 mm from the center was used for the results pre-

high-statistics images for the purpose of measuring spatial rggnted. The other two sources wes@ mm from the edge of

olution. To estimate noise, twenty replicate acquisitions weffe prain, so that the Gaussian fitting procedure failed at early
extracted from each of these three acquisitions by randomly &s:ations when resolution was coarse.

signing 1/20th of the total events to each replicate, resulting in) prfile Fitting: The nine transverse slices intersecting the
total counts of 0.3, 18 and 3.4 million counts per replicate. o small cylinders (3.6 mm thick) were extracted from the

2) Measured Brain Embedded in Simulated Baclshantoms in Fig. 1 and their reconstructed images were summed
glrsound. The total number of counts acquired in the raf, the axial direction. Then 21 profiles which were perpendic-
["FIFCWAY brain measurement was 0.72 million. Acquisiyjar to and intersected the axes of the small cylinders were de-
tions for the umfprm head backgrour_ld activity were S'ml_ﬂatq@rmined_ These profiles were fitted individually to the corre-
without attenuation or scatter and with total counts of six a%onding true phantom profiles convolved with a 1-D Gaussian
ten times that in the measured brain. These factors are typigg|ction with five floating parameters, as above. The typical un-
of our observations with actual rat data. _ certainty of the FWHM estimate from each profile wa$0%,

3) Attenuation and ScatterWith both attenuation and 4 to suppress noise, the FWHM values were averaged. The
scatter effects enabled, acquisitions were simulated for Qigmmation over the axial direction was to ensure that axial res-
three mathematical phantoms (Fig. 1). By removing the everjgiion effects were excluded. The 1-D profile fitting procedure
tagged as object-scattered, data sets exhibiting only attenuatipx \/5jidated by blurring the true phantom data with 2-D Gaus-
were also obtained. Scattered events comprised 2%, 7%, apths (0.8—-1.5 mm FWHM) followed by the 1-D profile fitting

8% of the total measured events for the brain, brain with 104, the estimated FWHM values were within £2..8% of the
background, and brain with high background phantoms, respggie values.

tively. Attenuation reduced thg counts in the three phantoms byt volumes of interest (VOIs) were defined in the brain re-
12%, 28%, and 25%, respectively. gion: thecylinder VOI was placed in the two small hot cylin-
ders in Fig. 1 and thbrain VOI was placed in the warm back-
ground region of the brain, excluding all voxels within 2.4 mm
Images were reconstructed using a parallelized 3-D OSEM the edges of the cylinders and the point sources. The same
algorithm on an IBM SP2 parallel computer [13], [20]. Five/Ols were used for all phantoms. To measure image noise, stan-
subsets were used in all reconstructions (for consistency withrd deviation (SD) and mean images were calculated from the
previous studies) and images up to 60 OSEM iterations, equivaeonstructed replicate images and the coefficient of variation

F. Reconstruction
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A from zero to five and from five to ten times the total activity
! in the brain. After~100 iterations, the noise-resolution curves
0.8 , become roughly parallel. By fitting the portions of the curves
. ~=-brain . . .. . .
—A—brain+low bg above 100 iterations, an empirical function was obtained
0.6 —>—brain+high bg
cov COV =k -FWHM™¢
0.4
wherea = 2.684+ 0.16 andk is 0.90, 1.10, and 1.47 for the
0.2 brain VOI of Fig. 1(a)—(c) phantoms, respectively. The uncer-
o ‘ ‘ ‘ tainty of thek values was~1%. For the COV data taken from
0.8 1 1.2 1.4 1.6 1.8 > 2.2 thecylinderVOI (data not shown) and using the point source
FWHM (mm) FWHM valuesk is 0.58, 0.73, and 0.96 for the three phantoms.
The dependence &fon the level of background activity demon-
strates the increase in noise with background activity when im-
1 ages are reconstructed to the same resolution level, i.e., more it-
o8 , erations are required when background activity is present. These
. —&a—brain . . . . . ..
—A—braintlow bg additional iterations with low or high background activity pro-
0.6 —¢—brain-+high bg duce 24% and 64% higher noise, respectively. This is equivalent
cov to requiring 54% and 169% more counts to achieve the same
04 image quality as in the brain-only case.
o2 As in Fig. 2(a), Fig. 2(b) shows the noise-resolution relation-
ship with the resolution data obtained from profile fitting and the
0 . noise (COV) calculated from theylinderVOI. At a given itera-

0.8 1 1.2 1.4 1.6 1.8 2 2.2

tion, the profile resolution is from 0.03 to 0.4 mm better than that
FWHM (mm}

obtained by fitting the point source data with a Gaussian func-

. ) ) ) tion, with smaller differences at higher iterations. Compared to

Fig. 2. Noise (COV) of replicate data versus resolution (FWHM) for the thre, . . . .

phantoms in Fig. 1. Iterations were from 40 (bottom right) to 300 (upper Ief&e pointsources, resolution convergence IS faster at early itera-

with step size of 20. (a) Data were derived frombinain VOI and 2-D Gaussian tlons and slower at high iterations. The brain phantom resolution

fitting of the point sources to obtain COV and FWHM, respectively. (b) CO\p Fig. 2(b) is 1.1 mm at iteration 40 and improvedrb9.2 mm

data taken froneylinderVOIs and the FWHM values calculated from the profile, . . . . :

fitting procedure. by iteration 300, whereas in Fig. 2(a), the resolution was 1.5
mm at iteration 40 and improved by 0.55 mm by iteration 300.

Fitting the curves in Fig. 2(b) with a geometric function failed,

(CO\I/) was cr;lculated in each VOI ﬁs tr}? rat|ofof the averageyicating that the noise-resolution relationship in this case fol-
voxel SD to the mean. To assess the effects of attenuation|gfs o gifferent pattern. Itis not at all clear that increasing itera-

image uniformity in the brain, the cov within the bra_un backsions for the low and high background cases will indeed achieve
ground was calculated from the high-count nonreplicate d Ae highest resolution obtained in the brain-only case.

To reduce noise in this calculation, 11 cubes of 125 voxels each

were randomly selected from the wabrain VOI with the dis- g \jisyal Assessment of the Background Effect

tance between any two cubes larger than four voxels. The mean .

of each cube:;) was calculated, and the COV of the cube Fig. 3(a) shows the coronal rat brain images reconstructed at

means (SDy; )/meariy:;)) was determined for each phantomf‘o' 100, and 200 iterations from left to right. The bright areas

The magnitude of nonuniformity introduced by attenuation Wa%wW, regions C?f high 5-HiTy receptf’r_ binding. With increasing
calculated by (COY¥,,., — COV2 )03, To assess scatter/terations, the images become noisier and the contrast between

no_atten . . . . .
effects, image contrast was calculated as the difference of fif§tical gray matter and internal white matter regions increases,
Indicating an improvement in resolution. Fig. 3(b) shows one

mean values in the hatylinderand warmbrain VOIs divided " ' : .

by the sum of their mean values. slice of coronal images reconstructed .(60 |ter_at|ons) from the
measured rat brain data surrounded by increasing levels of back-

ground activity. The counts in the background were 0, 6, and 10

times that in the rat brain. A gradual degradation of resolution

A. Background Effects on Noise and Resolution from left to right is visible by the change in gray : white con-

Fig. 2(a) shows the relationship between resolution (as d&2st; and is consister_lt with the previous simulation rgsults (Fig.
fined by FWHM from point sources) and image noise (CO@)- Note that attenuation and scatter effects were not included in
in brain VOI) as a function of iteration for the three phantom#e simulated background and these effects would be expected
without scatter or attenuation effects included. As previously rk? degrade resolution even further (see Section IlI-C).
ported, resolution improves and noise increases with increasing )
iterations. The figure demonstrates that increased backgrongAttenuation and Scatter Effects
activity degrades the resolution of the reconstructed imagesThe effects of attenuation and scatter for the three math-
i.e., at a fixed iteration, the three phantoms show resolutionagmatical phantoms were evaluated using resolution (FWHM
degraded by~0.13 mm as the background activity increasesom point source), nonuniformity (COV), and contrast. With

lll. RESULTS
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tions were acquired and data were reconstructed with FBP and
. o . " standard corrections. The noise (COV) in the small cylinder was

s calculated in the reconstructed images and found to increase by
49% and 84% when background activity was five and ten times
thatin the small cylinder, respectively. Thus, increased noise due
to the presence of surrounding background activity is present for
FBP 3-D reconstruction.

E Y
<>

15 mm

B. Why Does Background Activity Slow OSEM Convergence?

Our OSEM results show that increased background activity
not only brings about more noise in the reconstructed image at
matched resolution, but also slows resolution convergence as
shown in Fig. 2. With additional iterations, the resolution for
a small structure (point source in this study) can be improved,
Fig. 3. (a)['*F]JFCWAY rat brain images aligned along the coronal plangyyt at the cost of higher noise. Note that the rate of resolution
reconstructed with 40, 100, and 200 OSEM iterations. The horizontal W'dgbnvergence and the number of additional iterations necessary

of the brain is~15 mm. (b) From left to right, the total background activity ; . A ;
in the images is 0, 6, and 10 times the activity in the brain, respectively. Six9 achieve the desired convergence is highly object-dependent,

iterations were used for these three images. The images in each row were scglegeen by comparing Fig. 2(a) and (b).
to the maximum value of the left image. To understand how the presence of background activity slows
resolution convergence, consider the iteration equation of the

or without background activity, attenuation slows resolutioeM algorithm [25], [26]

convergence. By 50 iterations, the FWHM of the no-attenuation *)

case was-0.2 mm better than the attenuation case, for the three A )\J_ Z AijYi

mathematical phantoms (Fig. 1). This resolution difference J Q; Ui

persisted uniformly for subsequent iterations. With five and

ten times activity in the background, the brain nonuniformityhere

(COV) introduced by attenuation was 5.2% and 11.6%, respec-\; Source intensity at voxel,

tively. Thus, even with the same attenuation object, the brain® iteration number;

nonuniformity was larger with more activity outside the brain. «; total detection probability of an event emitted from voxel
The impact of scattered events is small with this camera ge-  J

ometry. The degradation of resolution due to scatter is less thary; Measured data along té projection line;

0.03 mm and there were minimal effects on nonuniformity com- % expected value along thith projection line at iteratiot;

pared to the attenuation-only case. Object scatter reduced corfti; Probability that a pair of photons leaving voxgis de-

trast between the hatylinder and warmbrain VOIs by 0.2%, tected on theth projection line.

3.1%, and 5.3% for the three phantoms simulated compared¥an imaging example, consider a uniform disc of diam&ter

images with only attenuation in the simulation. These resufts/oxels with count intensity ok = b, and with a single high-

suggest that the effects of scatter in a rat head have a small figotrast voxel in the center with activity. Assume the pro-
pact on the final image. jection data are noise free. To estimate the convergence rate of

\. atiterationk, let \(*) =  for all the background voxels (i.e.,
they have already converged). We assume a simple isotropic
system matrix, with the central voxel contributing equally to
A. The Effects of Background Activity on Reconstructed  all projection lines that intersect it (i.es;. = a for projec-
Images tions lines: that intersect the central voxel), so that the expected

The primary issue in this study is the effect of additional backalue of those intersecting projection counts can be written as
ground activity around the object of interest. While this issue ¢+ Lb). Under these assumptions, a rough approximation for
not generally addressed in conventional PET imaging, there ithg update equation for the central voxel can be shown to be
significant literature to predict the effect of background activity
in 2-D imaging. The relationship between noise in a target re- Ag =X ROETS
gion and the total object activity has been modeled by Budinger Ae” + Lb
et al. [22] and shows that increased total activity produces ii$o the fractional convergence of this step, i.e., the size of this
creased object noise. For filtered backprojection (FBP), direstiep as a fraction of the total change that this voxel will undergo
calculation [23], and approximations [24] of image variancg Convergenc@g@ =c¢),is
show that voxel noise is driven by the total counts in each projec-
tion line, so increasing background activity will increase noise.

%

IV. DISCUSSION

)\gk+l) _ )\gk) )\gk)

Using a GE Advance scanner, we have conducted several exper- Ao () o AR 4
iments to verify the effect for 3-D imaging with a small cylinder N
having uniform activity surrounded by varying concentrations =——p hearconvergence.

of activity in a uniform large cylinder. Twenty replicate acquisi- I+ 7
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Therefore, the larger the background region and the lower theScatter may introduce 3%—5% contrast loss with no effect
target-to-background contrggl/b), the slower the convergenceon resolution. Although the highest possible contrast is desir-
of OSEM. The slower convergence incurred by higher backble for high-resolution images, it appears from these data that
ground activity or lower contrast requires more iterations tcatter effects may be ignored in brain studies of small animals.
achieve a desired resolution.

The derivation above may explain a small discrepancy found
inresolution values in the current simulations and those reported
previously in evaluating OSEM and this camera [13]. In the Simulations of an existing small-animal PET camera were
previous study, the concentration ratio of point source to unised to evaluate the characteristics of OSEM images of the rat
form background was-1000 : 1 and the point source resolutiorbrain. Attenuation degraded resolution by 0.2 mm for the phan-
reached 0.74 mm at iteration 300 (60 OSEM iterations). Heitoms simulated and introduced nonuniformity in the images,
for the brain with low background simulation, the point sourcguggesting that attenuation correction should be performed. Ob-
contrast was 50:1 and a FWHM ef1.1 mm was achieved atject scatter for a rat-head sized subject had little influence on

V. CONCLUSION

the same iteration. image characteristics. The primary result is that reconstructions
of a rat brain with surrounding background activity levels com-
C. Measures of Resolution monly seen in real imaging situations, i.e., five and ten times the

. ) brain activity, require additional iterations to achieve the same
Excluding detector effects, FBP images are usually cons%—

d d i lution. D he d d (golution as brain-only studies with an increase of 24%-64% in
ered to produce uniform resolution. Due to the dependence Qfice, Thus, unlike linear reconstruction algorithms, great care
the convergence of EM-based algorithms on the object bei

d th ditional poi ; st be taken when specifying the resolutiomofivosmall an-
recons_tructe , the tra |t|ona. point source measure for spafigg images reconstructed with resolution recovery algorithms.
resolution cannot fully describe the resolution behavior of

. Li L115 d usi froctive local G "3the object-dependency of resolution and the variation in reso-
|mag|e._ |owe;tja f[f ]_proplo sbe | uGsmg € ective Ioc_a arl:_ssh'arﬂjtion convergence caused by background activity suggest that
resolution and effective global Gaussian resolution WhICh I ations or phantom studies should be used for each imaging

quire specially designed object shapes and high statistics d@?ﬁlation to select the appropriate number of OSEM iterations

In this work, 2-D Gaussian fitting of point sources in a War%&?chieve the desired resolution. Alternatively, a modified iter-

background was used to measure the resolution performancg e reconstruction algorithm that maintains accurate statistical
very small objects and prpflle fitting was used to measure t odeling while providing more uniform resolution convergence
resolution of larger hot objects. The results show different COPn'ay prove more useful than OSEM for high-resolution imaging
vergence speeds for different sized objects, consistent with PLEidies.

vious reports [15] and with the derivation of the previous sec-
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