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Abstract—Rat brain images acquired with a small animal
positron emission tomography (PET) camera and reconstructed
with the three-dimensional (3-D) ordered-subsets expecta-
tion-maximization (OSEM) algorithm with resolution recovery
have better quality when the brain is imaged by itself than
when inside the head with surrounding background activity. The
purpose of this study was to characterize the dependence of this
effect on the level of background activity, attenuation, and scatter.
Monte Carlo simulations of the imaging system were performed.
The coefficient of variation from replicate images, full-width at
half-maximum (FWHM) from point sources and image profile
fitting, and image contrast and uniformity were used to evaluate
algorithm performance. A rat head with the typical levels of five
and ten times the brain activity in the surrounding background
requires additional iterations to achieve the same resolution as
the brain-only case at a cost of 24% and 64% additional noise,
respectively. For the same phantoms, object scatter reduced
contrast by 3%–5%. However, attenuation degraded resolution
by 0.2 mm and was responsible for up to 12% nonuniformity in
the brain images suggesting that attenuation correction is useful.
Given the effects of emission and attenuation distribution on both
resolution and noise, simulations or phantom studies should be
used for each imaging situation to select the appropriate number
of OSEM iterations to achieve the desired resolution–noise levels.

Index Terms—Ordered-subsets expectation-maximization
(OSEM) algorithm, reconstruction, small animal PET imaging,
three-dimensional (3-D) volume imaging.

I. INTRODUCTION

DEDICATED small animal positron emission tomography
(PET) scanners [1]–[3] offer the possibility of a wide

range of in vivo studies including the study of unique an-
imal models of human diseases [4]–[6]. In order to perform
quantitative analysis of tracers in rats and mice, the highest
possible spatial resolution is desirable for these systems. While
resolution recovery algorithms can improve image resolution,
the cost is increased noise [7], [8]. This can be offset by higher
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system sensitivity, which is available with the development
of three-dimensional (3-D) acquisition and reconstruction
methods [2], [9], [10].

For a 3-D small animal PET scanner with very fine (0.2-mm)
spatial sampling [11], the computational burden of reconstruc-
tion is substantial. A parallelized version of the ordered-subsets
expectation-maximization (OSEM) algorithm [12] has been
implemented [13] on an IBM SP2 parallel computer. The 3-D
OSEM algorithm was previously shown to improve image
quality [13] compared with the 3-D reprojection method [14],
achieving resolution better than 1 mm for this camera. How-
ever, in our subsequent applications toin vivo rat brain data, the
OSEM images did not appear to achieve the same resolution,
i.e., small brain structures were not clearly delineated. Further-
more, we observed that image quality was significantly better
when the brain was imaged by itself than when the brain was
inside the head with surrounding background activity. Sincein
vivo brain images must be obtained within an intact head, the
impact of factors emanating from the presence of the head, i.e.,
background activity, scatter, and attenuation, must be assessed
to understand the behavior of the reconstruction algorithm and
to optimize the final image.

The performance of maximum-likelihood (ML) iterative
reconstruction algorithms has been evaluated extensively [7],
[15]–[17]. For human scanners, the reconstruction kernel,
the choice of postprocessing sieve, the number of iterations
and the object size influence the quality of the reconstructed
image. There are, however, a number of differences between
human-sized and small-animal 3-D cameras. Given the very
small structure sizes, the highest possible resolution is nec-
essary for animal imaging. However, without radiation dose
limits, higher statistical quality can often be achieved (if
specific activity is not a limit), allowing the possibility of
resolution recovery. Because of the very fine spatial sampling,
acquisitions of even a few million counts may have an average
count per projection line of less than 1, so that the Poisson
characteristics of the data become more important. The axial
acceptance angle of small-animal 3-D cameras is also typically
larger than that of human-sized scanners and the smaller
size of the animal also produces less attenuation and scatter.
All of these differences will be reflected quantitatively and
qualitatively in the reconstructed images. Therefore, it is
important to evaluate these factors for the rat brain imaging
situation of interest here in order to more effectively perform
reconstructions.
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The objective of this study is to assess quantitatively the
effects of surrounding background activity, attenuation, and
scatter for a very high spatial resolution 1 mm) camera. In
order to control these effects, several mathematical phantoms
were designed and Monte Carlo simulations of an existing
imaging system were performed to produce data sets where
these factors could be controlled through the simulation
process. In addition, measured rat brain data were artificially
merged into simulated data to assess the impact of background
activity in the brain images. Images were evaluated using noise,
resolution, contrast, and homogeneity indexes calculated from
the reconstructed images.

II. M ETHODS

A. Existing PET Scanner

The small-animal PET system used in this work consists of
two opposing 4-mm-thick slab NaI(Tl) position-sensitive pho-
tomultiplier tube (PSPMT) cameras [11], [13], each with an ef-
fective area of 50 50 mm and separated by 128 mm. The
PSPMTs provide a continuous– read-out that is sampled onto
0.195-mm-square detection bins (256256 sampling array).
The detectors are stationary; the object is rotated at least 360
during acquisition to obtain a complete data set. At the center
of the field of view, each camera has an intrinsic point spread
function (PSF) with full-width at half-maximum (FWHM) of
1.0 mm, and a coincidence PSF with a FWHM of 1.2 mm [11],
[18]. Acquired data were recorded in list-mode.

B. Monte Carlo Simulation

PET acquisitions were simulated using a Monte Carlo pro-
gram specifically designed for this camera that modeledF
positron range, depth of interaction effects, scintillation crystal
scatter, redundant sampling, and spatial variation in detector
sensitivity. Random coincidences and spatial resolution nonuni-
formities were not included. With the photoelectric events and
scatter in both the object and the detector included, the recorded
events were tagged with their history of interactions. Therefore,
it was possible to distinguish scattered and nonscattered events
in the acquired data. Scatter within the detector comprises a sig-
nificant fraction of the acquired events (56%), so this effect was
included in the reconstruction kernel. In this work, only object
scatter was studied. Hereafter, the term scatter means specifi-
cally object scatter.

C. Mathematical Phantoms

Mathematical phantoms (Fig. 1) were designed to imitate the
situation when the rat brain is imaged by itself [Fig. 1(a)] and
when the brain is in the rat head with varying amounts of activity
within the surrounding rat head volume [Fig. 1(b) and (c)]. A
uniform attenuation medium = 0.0096 mm was used for
all the phantoms in this study.

1) Rat Brain Only [Fig. 1(a)]: The design of the rat brain
simulation was based on measured head images. A cylinder of
16 mm diameter, 20 mm height was used to represent the brain.
Two identical small hot cylinders with diameter of 3.2 mm and
length of 10 mm were inserted in the brain portion to simulate

Fig. 1. Three mathematical phantoms for simulating (a) the rat brain only,
(b) rat brain with low background, and (c) rat brain with high background. The
two small cylinders emulate neuroreceptor uptake and are used as hot VOIs
for noise and contrast evaluations. The point sources were used for resolution
measurement. All dimensions are in mm. The rotation axis of the scanner
is vertical. The axis of the brain and head cylinders is parallel to the axis of
rotation. The 3.2-mm diameter cylinders have their primary axis aligned along
the transverse slices.

localized neuroreceptor uptake (see Section II-D). Three point
sources were placed in the same plane near the center of the
brain to measure spatial resolution. The relative activity concen-
trations in rat brain, cylinders and point sources were1 : 4 : 50.

2) Rat Brain with Low Background [Fig. 1(b)]:The rat
brain phantom of Fig. 1(a) was placed in a larger cylinder
of 36-mm diameter and 40-mm height filled with an activity
concentration equal to that in the brain. The total activity in the
outside cylinder was five times that in the brain area.

3) Rat Brain with High Background [Fig. 1(c)]:The distri-
bution was the same as the previous phantom except that the
activity concentration in the rat head surrounding the brain was
twice that in the brain.

D. Measured Brain with Artificial Background Activity

To assess the impact of background activity on rat brain image
quality, a measured rat brain data set was combined with simu-
lated surrounding background activity. A rat was injected with
222 MBq (6 mCi) of F]FCWAY, a ligand that binds selec-
tively to 5-HT receptors [19]. At 30 min postinjection, the
rat was sacrificed and the brain was excised from the head. The
brain was mounted in the scanner and was scanned for 3 h using
three full revolutions. The total activity in the brain at the start of
scanning was 0.74 Mbq (20Ci) resulting in singles rates less
than 10 000 s and a negligible randoms fraction of <0.01%.
Correction factors for redundant sampling of lines of response
and radioactive decay were calculated and the measured data
were corrected.

Brain voxels were defined by applying a connectivity and
threshold segmentation algorithm to a preliminary OSEM rat
brain image. By eliminating these voxels from the head-cylinder
[the outermost cylinder in Fig. 1(b) and (c)], a brain-shaped
void (4266 mm) was created within the cylinder. The cylinder
volume outside this void was filled with uniform activity and
list-mode data were simulated (without radioactive decay) and
concatenated to the measured rat brain data to generate a new
data set for the case of imaging a rat brain with a surrounding
head. Note that the corrected rat brain data are no longer Poisson
distributed and systematic errors in the reconstructions could be
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TABLE I
SUMMARY OF EXPERIMENTS

produced. However, such effects would be expected to be sim-
ilar for reconstructed images with and without simulated back-
ground activity and should, therefore, have little effect on the
qualitative comparison between these images.

E. Simulations

A summary of all the experiments is presented in Table I.
1) Surrounding Background Activity:Acquisitions with to-

tals of 6.5, 36.5, and 66.5 million counts were generated for the
brain, brain with low background, and brain with high back-
ground mathematical phantoms, respectively. Photon interac-
tions within the object were disabled in the Monte Carlo sim-
ulation so there were no scatter or attenuation effects in these
simulated data. The full data sets were reconstructed to produce
high-statistics images for the purpose of measuring spatial res-
olution. To estimate noise, twenty replicate acquisitions were
extracted from each of these three acquisitions by randomly as-
signing 1/20th of the total events to each replicate, resulting in
total counts of 0.3, 1.8, and 3.4 million counts per replicate.

2) Measured Brain Embedded in Simulated Back-
ground: The total number of counts acquired in the rat

F]FCWAY brain measurement was 0.72 million. Acquisi-
tions for the uniform head background activity were simulated
without attenuation or scatter and with total counts of six and
ten times that in the measured brain. These factors are typical
of our observations with actual rat data.

3) Attenuation and Scatter:With both attenuation and
scatter effects enabled, acquisitions were simulated for the
three mathematical phantoms (Fig. 1). By removing the events
tagged as object-scattered, data sets exhibiting only attenuation
were also obtained. Scattered events comprised 2%, 7%, and
8% of the total measured events for the brain, brain with low
background, and brain with high background phantoms, respec-
tively. Attenuation reduced the counts in the three phantoms by
12%, 28%, and 25%, respectively.

F. Reconstruction

Images were reconstructed using a parallelized 3-D OSEM
algorithm on an IBM SP2 parallel computer [13], [20]. Five
subsets were used in all reconstructions (for consistency with
previous studies) and images up to 60 OSEM iterations, equiva-

lent to 300 EM iterations, were obtained. All references to iter-
ation numbers in this text are EM-equivalent iteration number.
The computation time depends on the total counts of the ac-
quired data and the number of processors used [21] and ranged
from 0.2 to 3 min/iteration (the total computation time for all
reconstructions was 450 h). A system intrinsic coincidence
resolution model (Gaussian function with 1.2-mm FWHM and
truncated tails at 5% of maximum value) was incorporated in
the system matrix of the algorithm for resolution recovery. Co-
incidences corresponding to axial angles greater than15.2

8% of total possible projection lines) were not included to
reduce computation time. The 3-D reconstructed object consists
of 128 128 85 voxels, which were resliced to 128128
128 cubic voxels (0.39 0.39 0.39 mm) when image anal-
ysis requires volume-matching between phantom and image. No
image postsmoothing was performed.

G. Evaluation Indexes

In this work, we only evaluated transverse resolution. Res-
olution in the axial direction was not measured based on the
similarity of axial and transverse resolutions found in previous
studies [13]. Since the performance of EM-based algorithms is
object-dependent [15], image resolution was calculated in two
ways.

1)Point Source Fitting: The reconstructed point source image
data (nonreplicate data) were fit to a 2-D Gaussian function with
five parameters: amplitude, center position inand directions,
FWHM, and local background. An 11 11 image matrix cen-
tered at the point source position was used in the fitting and the
typical uncertainty of the FWHM estimate was3%. The point
source at 2 mm from the center was used for the results pre-
sented. The other two sources were2 mm from the edge of
the brain, so that the Gaussian fitting procedure failed at early
iterations when resolution was coarse.

2) Profile Fitting: The nine transverse slices intersecting the
two small cylinders (3.6 mm thick) were extracted from the
phantoms in Fig. 1 and their reconstructed images were summed
in the axial direction. Then 21 profiles which were perpendic-
ular to and intersected the axes of the small cylinders were de-
termined. These profiles were fitted individually to the corre-
sponding true phantom profiles convolved with a 1-D Gaussian
function with five floating parameters, as above. The typical un-
certainty of the FWHM estimate from each profile was10%,
so to suppress noise, the FWHM values were averaged. The
summation over the axial direction was to ensure that axial res-
olution effects were excluded. The 1-D profile fitting procedure
was validated by blurring the true phantom data with 2-D Gaus-
sians (0.8–1.5 mm FWHM) followed by the 1-D profile fitting
and the estimated FWHM values were within 1.71.8% of the
true values.

Two volumes of interest (VOIs) were defined in the brain re-
gion: thecylinder VOI was placed in the two small hot cylin-
ders in Fig. 1 and thebrain VOI was placed in the warm back-
ground region of the brain, excluding all voxels within 2.4 mm
of the edges of the cylinders and the point sources. The same
VOIs were used for all phantoms. To measure image noise, stan-
dard deviation (SD) and mean images were calculated from the
reconstructed replicate images and the coefficient of variation
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Fig. 2. Noise (COV) of replicate data versus resolution (FWHM) for the three
phantoms in Fig. 1. Iterations were from 40 (bottom right) to 300 (upper left)
with step size of 20. (a) Data were derived from thebrainVOI and 2-D Gaussian
fitting of the point sources to obtain COV and FWHM, respectively. (b) COV
data taken fromcylinderVOIs and the FWHM values calculated from the profile
fitting procedure.

(COV) was calculated in each VOI as the ratio of the average
voxel SD to the mean. To assess the effects of attenuation on
image uniformity in the brain, the COV within the brain back-
ground was calculated from the high-count nonreplicate data.
To reduce noise in this calculation, 11 cubes of 125 voxels each
were randomly selected from the warmbrain VOI with the dis-
tance between any two cubes larger than four voxels. The mean
of each cube was calculated, and the COV of the cube
means (SD /mean was determined for each phantom.
The magnitude of nonuniformity introduced by attenuation was
calculated by (COV COV . To assess scatter
effects, image contrast was calculated as the difference of the
mean values in the hotcylinderand warmbrain VOIs divided
by the sum of their mean values.

III. RESULTS

A. Background Effects on Noise and Resolution

Fig. 2(a) shows the relationship between resolution (as de-
fined by FWHM from point sources) and image noise (COV
in brain VOI) as a function of iteration for the three phantoms
without scatter or attenuation effects included. As previously re-
ported, resolution improves and noise increases with increasing
iterations. The figure demonstrates that increased background
activity degrades the resolution of the reconstructed images,
i.e., at a fixed iteration, the three phantoms show resolution is
degraded by 0.13 mm as the background activity increases

from zero to five and from five to ten times the total activity
in the brain. After 100 iterations, the noise-resolution curves
become roughly parallel. By fitting the portions of the curves
above 100 iterations, an empirical function was obtained

COV FWHM

where = 2.68 0.16 and is 0.90, 1.10, and 1.47 for the
brain VOI of Fig. 1(a)–(c) phantoms, respectively. The uncer-
tainty of the values was 1%. For the COV data taken from
the cylinder VOI (data not shown) and using the point source
FWHM values, is 0.58, 0.73, and 0.96 for the three phantoms.
The dependence ofon the level of background activity demon-
strates the increase in noise with background activity when im-
ages are reconstructed to the same resolution level, i.e., more it-
erations are required when background activity is present. These
additional iterations with low or high background activity pro-
duce 24% and 64% higher noise, respectively. This is equivalent
to requiring 54% and 169% more counts to achieve the same
image quality as in the brain-only case.

As in Fig. 2(a), Fig. 2(b) shows the noise-resolution relation-
ship with the resolution data obtained from profile fitting and the
noise (COV) calculated from thecylinderVOI. At a given itera-
tion, the profile resolution is from 0.03 to 0.4 mm better than that
obtained by fitting the point source data with a Gaussian func-
tion, with smaller differences at higher iterations. Compared to
the point sources, resolution convergence is faster at early itera-
tions and slower at high iterations. The brain phantom resolution
in Fig. 2(b) is 1.1 mm at iteration 40 and improved by0.2 mm
by iteration 300, whereas in Fig. 2(a), the resolution was 1.5
mm at iteration 40 and improved by 0.55 mm by iteration 300.
Fitting the curves in Fig. 2(b) with a geometric function failed,
indicating that the noise-resolution relationship in this case fol-
lows a different pattern. It is not at all clear that increasing itera-
tions for the low and high background cases will indeed achieve
the highest resolution obtained in the brain-only case.

B. Visual Assessment of the Background Effect

Fig. 3(a) shows the coronal rat brain images reconstructed at
40, 100, and 200 iterations from left to right. The bright areas
show regions of high 5-HT receptor binding. With increasing
iterations, the images become noisier and the contrast between
cortical gray matter and internal white matter regions increases,
indicating an improvement in resolution. Fig. 3(b) shows one
slice of coronal images reconstructed (60 iterations) from the
measured rat brain data surrounded by increasing levels of back-
ground activity. The counts in the background were 0, 6, and 10
times that in the rat brain. A gradual degradation of resolution
from left to right is visible by the change in gray : white con-
trast, and is consistent with the previous simulation results (Fig.
2). Note that attenuation and scatter effects were not included in
the simulated background and these effects would be expected
to degrade resolution even further (see Section III-C).

C. Attenuation and Scatter Effects

The effects of attenuation and scatter for the three math-
ematical phantoms were evaluated using resolution (FWHM
from point source), nonuniformity (COV), and contrast. With
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Fig. 3. (a) [ F]FCWAY rat brain images aligned along the coronal plane
reconstructed with 40, 100, and 200 OSEM iterations. The horizontal width
of the brain is�15 mm. (b) From left to right, the total background activity
in the images is 0, 6, and 10 times the activity in the brain, respectively. Sixty
iterations were used for these three images. The images in each row were scaled
to the maximum value of the left image.

or without background activity, attenuation slows resolution
convergence. By 50 iterations, the FWHM of the no-attenuation
case was 0.2 mm better than the attenuation case, for the three
mathematical phantoms (Fig. 1). This resolution difference
persisted uniformly for subsequent iterations. With five and
ten times activity in the background, the brain nonuniformity
(COV) introduced by attenuation was 5.2% and 11.6%, respec-
tively. Thus, even with the same attenuation object, the brain
nonuniformity was larger with more activity outside the brain.

The impact of scattered events is small with this camera ge-
ometry. The degradation of resolution due to scatter is less than
0.03 mm and there were minimal effects on nonuniformity com-
pared to the attenuation-only case. Object scatter reduced con-
trast between the hotcylinderand warmbrain VOIs by 0.2%,
3.1%, and 5.3% for the three phantoms simulated compared to
images with only attenuation in the simulation. These results
suggest that the effects of scatter in a rat head have a small im-
pact on the final image.

IV. DISCUSSION

A. The Effects of Background Activity on Reconstructed
Images

The primary issue in this study is the effect of additional back-
ground activity around the object of interest. While this issue is
not generally addressed in conventional PET imaging, there is a
significant literature to predict the effect of background activity
in 2-D imaging. The relationship between noise in a target re-
gion and the total object activity has been modeled by Budinger
et al. [22] and shows that increased total activity produces in-
creased object noise. For filtered backprojection (FBP), direct
calculation [23], and approximations [24] of image variance
show that voxel noise is driven by the total counts in each projec-
tion line, so increasing background activity will increase noise.
Using a GE Advance scanner, we have conducted several exper-
iments to verify the effect for 3-D imaging with a small cylinder
having uniform activity surrounded by varying concentrations
of activity in a uniform large cylinder. Twenty replicate acquisi-

tions were acquired and data were reconstructed with FBP and
standard corrections. The noise (COV) in the small cylinder was
calculated in the reconstructed images and found to increase by
49% and 84% when background activity was five and ten times
that in the small cylinder, respectively. Thus, increased noise due
to the presence of surrounding background activity is present for
FBP 3-D reconstruction.

B. Why Does Background Activity Slow OSEM Convergence?

Our OSEM results show that increased background activity
not only brings about more noise in the reconstructed image at
matched resolution, but also slows resolution convergence as
shown in Fig. 2. With additional iterations, the resolution for
a small structure (point source in this study) can be improved,
but at the cost of higher noise. Note that the rate of resolution
convergence and the number of additional iterations necessary
to achieve the desired convergence is highly object-dependent,
as seen by comparing Fig. 2(a) and (b).

To understand how the presence of background activity slows
resolution convergence, consider the iteration equation of the
EM algorithm [25], [26]

where
source intensity at voxel;
iteration number;
total detection probability of an event emitted from voxel
;

measured data along theth projection line;
expected value along theth projection line at iteration;
probability that a pair of photons leaving voxelis de-
tected on theth projection line.

As an imaging example, consider a uniform disc of diameter
voxels with count intensity of , and with a single high-

contrast voxel in the center with activity . Assume the pro-
jection data are noise free. To estimate the convergence rate of

at iteration , let for all the background voxels (i.e.,
they have already converged). We assume a simple isotropic
system matrix, with the central voxel contributing equally to
all projection lines that intersect it (i.e., for projec-
tions lines that intersect the central voxel), so that the expected
value of those intersecting projection counts can be written as

. Under these assumptions, a rough approximation for
the update equation for the central voxel can be shown to be

So the fractional convergence of this step, i.e., the size of this
step as a fraction of the total change that this voxel will undergo
to convergence , is

near convergence.
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Therefore, the larger the background region and the lower the
target-to-background contrast , the slower the convergence
of OSEM. The slower convergence incurred by higher back-
ground activity or lower contrast requires more iterations to
achieve a desired resolution.

The derivation above may explain a small discrepancy found
in resolution values in the current simulations and those reported
previously in evaluating OSEM and this camera [13]. In the
previous study, the concentration ratio of point source to uni-
form background was 1000 : 1 and the point source resolution
reached 0.74 mm at iteration 300 (60 OSEM iterations). Here,
for the brain with low background simulation, the point source
contrast was 50 : 1 and a FWHM of1.1 mm was achieved at
the same iteration.

C. Measures of Resolution

Excluding detector effects, FBP images are usually consid-
ered to produce uniform resolution. Due to the dependence of
the convergence of EM-based algorithms on the object being
reconstructed, the traditional point source measure for spatial
resolution cannot fully describe the resolution behavior of an
image. Liowet al. [15] proposed using effective local Gaussian
resolution and effective global Gaussian resolution which re-
quire specially designed object shapes and high statistics data.
In this work, 2-D Gaussian fitting of point sources in a warm
background was used to measure the resolution performance of
very small objects and profile fitting was used to measure the
resolution of larger hot objects. The results show different con-
vergence speeds for different sized objects, consistent with pre-
vious reports [15] and with the derivation of the previous sec-
tions. As shown in Fig. 2, the cylinder resolution converges more
quickly at early iterations, so that further iterations predomi-
nantly add only noise with minor improvement in resolution.
These varied resolutions with different sized objects suggest that
an optimal iteration number for OSEM cannot be chosen in gen-
eral, but rather must be selected on a case-by-case basis, pre-
sumably by simulation or phantom analysis.

D. Are Corrections for Attenuation and Scatter Necessary for
Small Animal Imaging?

Due to the size of small animals, it could be assumed that
attenuation and scatter would have minimal effects on the
reconstructed images. However, the results reported here show
that the presence of attenuation may degrade resolution by

0.2 mm, a nonnegligible effect for these resolution-critical
systems. The cause of this resolution degradation is not clear,
although we speculate that it may be due to the inconsistency
of the projection data when attenuation is present but uncor-
rected. In addition to the resolution degradation, attenuation
introduced up to 12% nonuniformity in the brain portion of the
image. Thus, attenuation correction should improve both the
resolution and uniformity in small animal PET images. In the
brain, it is likely that nonuniformities in attenuation coefficient
can be ignored, so that an analytical attenuation correction
should not be difficult to implement in the system model, given
a measurement of the outer edge of the imaging object. Further
work is needed to validate this claim.

Scatter may introduce 3%–5% contrast loss with no effect
on resolution. Although the highest possible contrast is desir-
able for high-resolution images, it appears from these data that
scatter effects may be ignored in brain studies of small animals.

V. CONCLUSION

Simulations of an existing small-animal PET camera were
used to evaluate the characteristics of OSEM images of the rat
brain. Attenuation degraded resolution by 0.2 mm for the phan-
toms simulated and introduced nonuniformity in the images,
suggesting that attenuation correction should be performed. Ob-
ject scatter for a rat-head sized subject had little influence on
image characteristics. The primary result is that reconstructions
of a rat brain with surrounding background activity levels com-
monly seen in real imaging situations, i.e., five and ten times the
brain activity, require additional iterations to achieve the same
resolution as brain-only studies with an increase of 24%–64% in
noise. Thus, unlike linear reconstruction algorithms, great care
must be taken when specifying the resolution ofin vivosmall an-
imal images reconstructed with resolution recovery algorithms.
The object-dependency of resolution and the variation in reso-
lution convergence caused by background activity suggest that
simulations or phantom studies should be used for each imaging
situation to select the appropriate number of OSEM iterations
to achieve the desired resolution. Alternatively, a modified iter-
ative reconstruction algorithm that maintains accurate statistical
modeling while providing more uniform resolution convergence
may prove more useful than OSEM for high-resolution imaging
studies.
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