Conceptual Logical Structures:
The Lexico-Conceptual Linkage in Role and Reference Grammar

Carlos Periñán¹ & Ricardo Mairal²
¹ Universidad Católica San Antonio (Spain)
² UNED (Spain)
Logical Structures

Betty asked Bill for an apple.

\[
\text{IF DECL} \xleftarrow{\text{TNS PAST}} \left[\text{do'} (\text{Betty, say'} (\text{Betty, Bill}))\right] \text{PURP} \left[\text{do'} (\text{Bill, 0})\right]
\]

\text{CAUSE} [\text{BECOME have'} (\text{Betty, apple})]>>>

Logical Structures

Arreglar

(i) put into a proper or systematic order: (= ARRANGE)

 e.g. Mi madre arregló las flores del jarrón

 [do’ (x, 0)] CAUSE [BECOME arranged’ (y)]

(ii) restore by replacing a part or putting together what is torn or broken (= REPAIR)

 e.g. Mi padre arregló el televisor

 [do’ (x, 0)] CAUSE [BECOME repaired’ (y)]
Conceptual Logical Structure

Betty asked Bill for an apple.

\[
\langle \text{IF DECL} \rangle_{\text{TNS PAST}} \langle \text{do (\%BETTY_00 Theme, [+REQUEST_01 (\%BETTY_00 Theme, \%BILL_00 Goal)])}] \rangle_{\text{PURP}} \langle \text{do (\%BILL_00 Goal, 0)} \rangle_{\text{CAUSE}} \langle \text{BECOME +REQUEST_01 (\%BETTY_00 Theme, +APPLE_00 Referent)} \rangle_{\text{>>>}}
\]

- Language-independent representation
- Lexico-conceptual linkage
FunGramKB Lexicon\textsubscript{English}

- dry

FunGramKB Lexicon\textsubscript{Spanish}

- secar
LCM CORE GRAMMAR:

AktionsArt:

☐ State
☐ Activity
☑ Accomplishment
☐ Achievement

You determine the canonical lexical class(es) of the verb.

Variables: x, y

Idiosyncratic features:

$[MR \leftarrow \text{no value selected} \rightarrow], [U = \leftarrow \text{no value selected} \rightarrow]$

Thematic frame mapping:

$x = \text{Theme}, y = \text{Referent}, z = \text{[no function]}$

Lexical Template:

A REMINDER OF FUNGRAMKB PARTICIPANTS:

THEME: Entity that transforms another entity.
REFERENT: Entity that is transformed by another entity.
LCM CORE GRAMMAR:

AktionsArt:

- State
- Activity
- Accomplishment
- Achievement

You determine the canonical lexical class(es) of the verb.

Variables: x, y

Idiosyncratic features:

[MR <-- no value selected -->], [U <-- no value selected -->]

Thematic frame mapping:

x = Theme, y = Referent, z = [no function]

Lexical Template:

A REMINDER OF FUNGRAMKB PARTICIPANTS:

THEME: Entity that transforms another entity.

REFERENT: Entity that is transformed by another entity.
AktionsArt:

You determine the canonical lexical class(es) of the verb.

Variables: \(x, y\)

Idiosyncratic features:

\([\text{MR} \leftarrow \text{no value selected} \rightarrow], [\text{U} = \leftarrow \text{no value selected} \rightarrow]\)

Thematic frame mapping:

\(x = \text{Theme}, y = \text{Referent}, z = \text{[no function]}\)

Lexical Template:

A REMINDER OF FUNGRAMKB PARTICIPANTS:

THEME: Entity that transforms another entity.

REFERENT: Entity that is transformed by another entity.
LCM Core Grammar:

<table>
<thead>
<tr>
<th>AktionsArt:</th>
</tr>
</thead>
</table>

- State
- Activity
- Accomplishment
- Achievement

You determine the canonical lexical class(es) of the verb.

Variables:\n\[x, y \]

Idiosyncratic features:
\[
[M_R \quad \text{[-- no value selected -->]}], [U = \quad \text{[-- no value selected -->}]
\]

Thematic frame mapping:
\[
X = \quad \text{Theme} \quad , \quad Y = \quad \text{Referent} \quad , \quad Z = \quad \text{[no function]}
\]

Lexical Template:

A REMINDER OF FUNGRAMKB PARTICIPANTS:

- **THEME:** Entity that transforms another entity.
- **REFERENT:** Entity that is transformed by another entity.
LCM CORE GRAMMAR:

AktionsArt:

- State
- Activity
- Accomplishment
- Achievement

You determine the canonical lexical class(es) of the verb.

Variables: \(x, y \)

Idiosyncratic features:

\[[M_R] \quad [U] \]

Thematic frame mapping:

\(x = \text{Theme}, \quad y = \text{Referent}, \quad z = \text{[no function]} \)

Lexical Template:

A REMINDER OF FUNGRAMKB PARTICIPANTS:

THEME: Entity that transforms another entity.

REFERENT: Entity that is transformed by another entity.
Concept:
+OPEN_01

Thematic Frame:
(x1)Agent (x2: +DOOR_00 ^ +WINDOW_00)Theme (x3)Location (x4)Origin (x5)Goal

Thematic-Frame Mapping:
x = Agent, y = Theme
Aktionsart: Accomplishment
Causative Accomplishment

Variables: x, y
Idiosyncratic features: none
TF Mapping: x = Theme, y = Referent

BECOME +DRY_01 (yReferent)

[do (xTheme, 0)] CAUSE [BECOME +DRY_01 (yReferent)]
<table>
<thead>
<tr>
<th></th>
<th>Symbol Representation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td><C> (<VAR>)</td>
<td><STA></td>
</tr>
<tr>
<td>Activity</td>
<td>do (x [<STA>])</td>
<td><ACT></td>
</tr>
<tr>
<td>Accomplishment</td>
<td>BECOME <STA></td>
<td><ACC></td>
</tr>
<tr>
<td>Achievement</td>
<td>INGR <STA></td>
<td><ACH></td>
</tr>
<tr>
<td>Semelfactive</td>
<td>SEML <STA></td>
<td><SEM></td>
</tr>
<tr>
<td>Active accomplishment</td>
<td>do (x [<C> (x)]) & <ACH></td>
<td><ACA></td>
</tr>
<tr>
<td>Causative state</td>
<td>[<CLS>] CAUSE [<STA>]</td>
<td><CSTA></td>
</tr>
<tr>
<td>Causative activity</td>
<td>[<CLS>] CAUSE [<ACT>]</td>
<td><CACT></td>
</tr>
<tr>
<td>Causative accomplishment</td>
<td>[<CLS>] CAUSE [<ACC>]</td>
<td><CACC></td>
</tr>
<tr>
<td>Causative achievement</td>
<td>[<CLS>] CAUSE [<ACH>]</td>
<td><CACH></td>
</tr>
<tr>
<td>Causative semelfactive</td>
<td>[<CLS>] CAUSE [<SEM>]</td>
<td><CSEM></td>
</tr>
<tr>
<td>Causative active accomplishment</td>
<td>[<CLS>] CAUSE [<ACA>]</td>
<td><CACA></td>
</tr>
</tbody>
</table>
CLS Constructor

1. Expanding LS metavariables
 (e.g. <STA>, <ACT>, <ACC>, <ACH>, <SEM>, <ACA>)

2. Inserting the concept
 (i.e. <C>)

3. Inserting variables
 (i.e. <VAR>)

4. Inserting thematic roles
[do' (x, 0)] CAUSE [BECOME dry' (y)]
Aktionsart: Accomplishment
Causative Accomplishment
Variables: x, y
Idiosyncratic features: none
TF Mapping: x = Theme, y = Referent

BECOME +DRY_01 (yReferent)

[do (xTheme, 0)] CAUSE [BECOME +DRY_01 (yReferent)]
Thematic Frame

(x1) Theme
(x2: +CORPUSCULAR_00) Referent

+DRY_01

Meaning Postulate

+(e1: +CHANGE_00 (x1) Theme
(x2) Referent (f1: (e2: n +BECOME_00
(x2) Theme (x3: +WET_00) Attribute)) Result)

FunGramKB Lexicon

FunGramKB Ontology

LCM Core Grammar

Aktionsart: Accomplishment
Causative Accomplishment
Variables: x, y
Idiosyncratic features: none
TF Mapping: x = Theme, y = Referent

BECOME +DRY_01 (y Referent)

[do (x Theme, 0)] CAUSE [BECOME +DRY_01 (y Referent)]

FunGramKB Lexicon

Conceptual Logical Structures

FunGramKB Lexicon

LCM Core Grammar

Aktionsart: Accomplishment
Causative Accomplishment
Variables: x, y
Idiosyncratic features: none
TF Mapping: x = Theme, y = Referent

secar

FunGramKB Lexicon

FunGramKB Ontology

FunGramKB Lexicon

FunGramKB Lexicon

FunGramKB Lexicon

Thematic Frame

(x1) Theme
(x2: +CORPUSCULAR_00) Referent

Meaning Postulate

+(e1: +CHANGE_00 (x1) Theme
(x2) Referent (f1: (e2: n +BECOME_00 (x2) Theme (x3: +WET_00) Attribute)) Result)

Conceptual Logical Structures

BECOME +DRY_01 (y Referent)

[do (x Theme, 0)] CAUSE [BECOME +DRY_01 (y Referent)]

LCM Core Grammar

Aktionsart: Accomplishment
Causative Accomplishment
Variables: x, y
Idiosyncratic features: none
TF Mapping: x = Theme, y = Referent

FunGramKB Ontology

dry

FunGramKB Lexicon

english

FunGramKB Lexicon

spanish

English

LCM Core Grammar

Aktionsart: Accomplishment
Causative Accomplishment
Variables: x, y
Idiosyncratic features: none
TF Mapping: x = Theme, y = Referent

FunGramKB Lexicon

spanish

secar

CLS Constructor

FunGramKB Ontology
Thematic Frame
(x1) Theme
(x2: +CORPUSCULAR_00) Referent

Meaning Postulate
+(e1: +CHANGE_00 (x1) Theme
x2) Referent (f1: (e2: n +BECOME_00
(x2) Theme (x3: +WET_00) Attribute)) Result)

+DRY_01

Conceptual Logical Structures
BECOME +DRY_01 (y Referent)
[do (x Theme = 0)] CAUSE [BECOME
+DRY_01 (y Referent)]

Aktionsart: Accomplishment
Causative Accomplishment
Variables: x, y
Idiosyncratic features: none
TF Mapping: x = Theme, y = Referent

LCM Core Grammar

FunGramKB Lexicon
Spanish
secar

FunGramKB Ontology

FunGramKB Lexicon
English
dry
Betty asked Bill for an apple.

Meaning #1: To say a question

Meaning #2: To make a request

<IF DECL
 TNS PAST
[do (%BETTY_00 Theme, [+REQUEST_01
(%BETTY_00 Theme, %BILL_00 Goal)])] PURP [do (%BILL_00 Goal, 0)]
CAUSE [BECOME +REQUEST_01 (%BETTY_00 Theme,
+APPLE_00 Referent)]>>>
IF the word is linked to more than one meaning THEN
 IF the word occurs in an idiom/higher-level construction THEN
 Translate the entire phrase with its idiomatic meaning
 ELSE
 Use morphosyntactic constraints
 IF only one meaning is left THEN
 Use the appropriate meaning
 ELSE
 Take into account selectional preferences of arguments
 IF only one meaning is left THEN
 Use the appropriate meaning
 ELSE
 IF the word has already occurred in the text THEN
 Use the same meaning used in its previous occurrence
 ELSE
 IF any of the meanings of the word belongs to the same technical domain as the input text THEN
 Use the appropriate meaning
 ELSE
 Apply a spreading activation method
 IF there is a winning candidate THEN
 Use the appropriate meaning
 ELSE
 Take the most frequent meaning
 END IF
 END IF
 END IF
 END IF
 END IF
 END IF
END IF
The Word-Sense Disambiguation algorithm

IF the word is linked to more than one meaning THEN
 IF the word occurs in an idiom/higher-level construction THEN
 Translate the entire phrase with its idiomatic meaning
 ELSE
 Use morphosyntactic constraints
 IF only one meaning is left THEN
 Use the appropriate meaning
 ELSE
 Take into account selectional preferences of arguments
 IF only one meaning is left THEN
 Use the appropriate meaning
 ELSE
 IF the word has already occurred in the text THEN
 Use the same meaning used in its previous occurrence
 ELSE
 IF any of the meanings of the word belongs to the same
technical domain as the input text THEN
 Use the appropriate meaning
 ELSE
 Apply a spreading activation method
 IF there is a winning candidate THEN
 Use the appropriate meaning
 ELSE
 Take the most frequent meaning
 END IF
 END IF
 END IF
 END IF
 END IF
 END IF
ELSE
 Use the appropriate meaning
END IF
The Word-Sense Disambiguation algorithm

IF the word is linked to more than one meaning THEN
 IF the word occurs in an idiom/higher-level construction THEN
 Translate the entire phrase with its idiomatic meaning
 ELSE
 Use morphosyntactic constraints
 IF only one meaning is left THEN
 Use the appropriate meaning
 ELSE
 Take into account selectional preferences of arguments
 IF only one meaning is left THEN
 Use the appropriate meaning
 ELSE
 IF the word has already occurred in the text THEN
 Use the same meaning used in its previous occurrence
 ELSE
 IF any of the meanings of the word belongs to the same technical domain as the input text THEN
 Use the appropriate meaning
 ELSE
 Apply a spreading activation method
 IF there is a winning candidate THEN
 Use the appropriate meaning
 ELSE
 Take the most frequent meaning
 END IF
 END IF
 END IF
 END IF
 END IF
 END IF
END IF

Thank you!

E-mail: jcperinan@pdi.ucam.edu