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Background. Although psychiatric diagnostic systems have conceptualized mania as a discrete phenomenon,

appropriate latent structure investigations testing this conceptualization are lacking. In contrast to these diagnostic

systems, several influential theories of mania have suggested a continuous conceptualization. The present study

examined whether mania has a continuous or discrete latent structure using a comprehensive approach including

taxometric, information-theoretic latent distribution modeling (ITLDM) and predictive validity methodologies in the

Epidemiologic Catchment Area (ECA) study.

Method. Eight dichotomous manic symptom items were submitted to a variety of latent structural analyses,

including factor analyses, taxometric procedures and ITLDM, in 10105 ECA community participants. In addition, a

variety of continuous and discrete models of mania were compared in terms of their relative abilities to predict

outcomes (i.e. health service utilization, internalizing and externalizing disorders, and suicidal behavior).

Results. Taxometric and ITLDM analyses consistently supported a continuous conceptualization of mania. In ITLDM

analyses, a continuous model of mania demonstrated 6.52 :1 odds over the best-fitting latent class model (LCM) of

mania. Factor analyses suggested that the continuous structure of mania was best represented by a single latent

factor. Predictive validity analyses demonstrated a consistent superior ability of continuous models of mania relative

to discrete models.

Conclusions. The present study provided three independent lines of support for a continuous conceptualization of

mania. The implications of a continuous model of mania are discussed.
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Introduction

Although psychiatric diagnostic systems (e.g. DSM-

IV; APA, 1994) conceptualize mania and associated

bipolar disorder phenomenology as categorical, there

have been no appropriate latent structure investi-

gations conducted to support or refute this con-

ceptualization. In contrast to the DSM, most influential

theories of mania and bipolar disorders have sug-

gested a dimensional conceptualization of these con-

structs. For example, Kraepelin (1921) proposed that

affective temperaments form the constitutional foun-

dation for manic-depressive illness, and observed that

non-disordered relatives of manic-depressive patients

frequently exhibited these temperaments. Intellectual

descendants of Kraepelin have subsequently provided

empirical evidence to support the validity of a con-

tinuous conceptualization of manic-depressive ill-

nesses (e.g. Judd & Akiskal, 2003 ; Merikangas et al.

2007). Aside from the theoretical importance of identi-

fying the latent structure of mania, there are concerns

associated with potentially incorrectly conceptualizing

mania as a categorical construct, including statistical

problems (e.g. attenuated statistical power ; Cohen,

1983), spurious psychiatric co-morbidity (Haslam,

2003) and inappropriate denial of treatment services.

Appropriate statistical methodologies for determin-

ing whether mania is a categorical or dimensional

construct include taxometrics (Waller & Meehl, 1998)

and information-theoretic latent distribution modeling

(ITLDM; Markon & Krueger, 2006). Using multiple

latent structure methodologies to investigate the con-

tinuous versus discrete nature of a construct has long
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been recommended, but is rarely done in practice

(Lenzenweger, 2004). No taxometric or ITLDM studies

have examined mania or bipolar disorders, although

Meyer & Keller (2003) have conducted a taxometric

investigation of hyperthymic temperament. Their

study had several methodological issues (e.g. use of a

single taxometric procedure) but nonetheless found

evidence for a continuous latent structure.

Although ITLDM and taxometric analyses are cru-

cial to determining whether mania is a categorical or

dimensional construct, the results from such analyses

can be misleading due to flaws in study design (Grove,

1991) or limitations of the analytic procedures (Ruscio

et al. 2004). Consequently, researchers have argued

that latent structural findings are provisional until

their meaning has been clarified through construct

validation (Waldman & Lilienfeld, 2001 ; Watson,

2003), and have provided examples of structural find-

ings that do not survive such scrutiny (e.g. schizoid

taxon; Nichols & Jones, 1985; dissociative taxon;

Watson, 2003).

One approach to evaluating the construct validity of

taxometric and ITLDM findings is to compare the

relative abilities of multiple discrete and continuous

models of mania to predict theoretically relevant con-

structs. If mania is continuous, it should demonstrate

superior predictive ability relative to a discrete model

because of the loss of statistical power associated with

dichotomizing a continuous variable (Cohen, 1983).

Alternatively, if mania is discrete, then discrete

models of the construct should out-predict continuous

models because the extra variability afforded by con-

tinuous models would represent measurement error

that would attenuate statistical relationships (Ruscio

et al. 2006). Two previous studies have used this

methodology to examine the construct validity of dis-

crete and continuous models of depression (Aggen

et al. 2005 ; Prisciandaro & Roberts, 2009). Both studies

found that discrete models of depression did not sig-

nificantly predict relevant outcomes once continuous

models of depression were statistically controlled.

The present study is the first to properly evaluate

whether mania is a discrete or continuous construct.

Given the various criticisms that have been raised re-

garding using taxometrics as a standalone method-

ology (e.g. lack of agreement over implementation

decisions), the present investigation used an ex-

panded, comprehensive approach to examine the

latent structure of mania. In Part I of the present study,

both taxometric and ITLDM analyses were conducted

on the manic symptom data from the Epidemiologic

Catchment Area (ECA) program (Eaton & Kessler,

1985). In Part II of this study, an examination of the

construct validity of taxometric and ITLDM findings

was performed by testing the relative predictive

abilities of various discrete and continuous models of

mania.

Part I Method

Sample and measure

Data from the ECA program (Eaton & Kessler, 1985)

were obtained from a representative group of over

20 000 individuals by probability sampling of five

geographic catchment areas. Participants were ad-

ministered the Diagnostic Interview Schedule (DIS ;

Robins et al. 1981) in the first wave of the ECA pro-

gram, which included an assessment of manic symp-

toms (in accordance with DSM-III criteria ; APA, 1980)

over various recall periods (e.g. past 2 weeks, lifetime).

Symptoms assessed from 2 weeks prior to partici-

pants’ interviews were used because these data are

minimally affected by long-term recall biases, and

because it is clear that reported symptoms occurred

during the same time period. The DIS contained

nine dichotomous questions designed to assess symp-

toms of mania. These questions were collapsed into

the eight diagnostic criteria of a Manic Episode

[elevated or expansive mood (‘elevated mood’)1#, in-

creased activity or physical restlessness (‘ increased

activity ’), increased talkativeness or pressured speech

(‘ talkativeness ’), flight of ideas or racing thoughts

(‘ racing thoughts ’), inflated self-esteem or gran-

diosity (‘grandiosity ’), decreased need for sleep

(‘decreased sleep’), distractibility, and excessive in-

volvement in activities with high potential for painful

consequences (‘ risky behavior ’) ; APA, 1980] using

syntax provided with the ECA data. Because of the

probing structure of the DIS, an affirmative response

to each symptom question indicated that the symptom

did not only occur following drug or alcohol use. Test–

retest reliability of diagnoses of Manic Episodes made

using the DIS have been found to be acceptable

(k=0.56 ; Semler et al. 1987). Concordance between

diagnoses of Manic Episodes made by lay inter-

viewers and psychiatrists using the DIS have also been

found to be acceptable (k=0.65 ; Robins et al. 1981,

1982). Finally, concordance between DIS diagnoses of

Manic Episodes and diagnoses based on semi-struc-

tured clinical interviews have been found to be good

in clinical populations (k=0.63 ; Helzer et al. 1985 ;

k=0.86 ; Wittchen et al. 1985).

Although all ECA participants were administered

all manic symptom questions, a subsample (n=10 105)

was selected from the ECA data for methodological

reasons. Included participants belonged to the com-

munity sample (institutionalized individuals were

# The notes appear after the main text.
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excluded because their inclusion could have produced

a spurious taxon; Grove, 1991), were assessed for past

2-week symptoms, and completed the interview. The

remaining sample contained more females than males

[unweighted (weighted) : 58.6% (53.2%) v. 41.4%

(46.8%)], was predominantly White [unweighted

(weighted) : 56.8% (54.1%), 25.8% (22.7%) Black,

13.3% (17.3%) Hispanic, 1.7% (2.7%) Asian, 0.8%

(0.9%) American Indian, and 1.6% (0.5%) other], and

ranged in age from 18 to 96 years, with a mean age of

46 (unweighted ; weighted=41.9) years. The base rate

of Manic Episodes was: lifetime (observed n=50)

0.49% (unweighted; weighted=0.46%) ; past 2 weeks

(observed n=15) 0.15% (unweighted ; weighted=
0.16%). Missing data were negligible (2.2%) and were

list-wise deleted (Kline, 2005).

Analytic strategy

Taxometric analyses were conducted using Ruscio’s

taxometric programs (Ruscio et al. 2006) for the R

platform (R Development Core Team, 2009). All other

analyses were conducted using MPlus version 5.1

(Muthén & Muthén, 2007).

Preliminary dimensionality analyses

Incorrectly specifying mania as unidimensional versus

multidimensional can create difficulties in interpreting

ITLDM results (Markon & Krueger, 2006). To address

this potential difficulty, factor analyses were conduc-

ted. The sample was randomly divided into two equal

subsamples. Exploratory factor analysis (EFA) was

conducted on the first subsample, using the weighted

least squares mean and variance adjusted (WLSMV)

estimator (Muthén, 1989). A sample weight was ap-

plied to adjust for systematic non-response and dif-

ferential selection probabilities. The number of factors

to extract was determined by parallel analysis (Horn,

1965) with 1000 sets of random data. The results from

the EFA model were used to construct a confirmatory

factor analysis (CFA) model in the second subsample

using WLSMV estimation. In addition to the above-

mentioned sample weight, information regarding

the stratification and clustering of the data was also

modeled (Muthén, 2004). CFAmodel fit was evaluated

according to Hu & Bentler’s (1999) guidelines [Com-

parative Fit Index (CFI) >0.95, Tucker–Lewis Index

(TLI) >0.95, root mean square error of approximation

(RMSEA) <0.05].

Taxometrics

Taxometric statistical methods have consistently

demonstrated their ability to determine whether a

construct has a discrete or a continuous latent struc-

ture (Meehl, 1973 ; Meehl & Yonce, 1994, 1996 ; Ruscio,

2000). Rigorous taxometric investigations include

multiple non-redundant procedures, additional con-

sistency checks, and simulation techniques (Ruscio

et al. 2006). Although the ECA data have several

strengths for taxometrics (e.g. large sample size, un-

selected sample), they also present several challenges.

Specifically, the items available for the present analy-

sis were dichotomous with sparse endorsement, and

the hypothesized manic taxon had a very low base

rate. Regarding the former concern, research has

demonstrated that, given a large sample size (Ruscio,

2000) and proper implementation of analytic tech-

niques (e.g. use of simulations and the inchworm

consistency test ; Waller & Meehl, 1998; Ruscio et al.

2004 ; Ruscio & Marcus, 2007), taxometric procedures

are able to validly distinguish between discrete

and continuous structures. Regarding the latter con-

cern, simulation research has demonstrated that,

with sufficient inclusion of taxon members along

with a large sample size, taxometric procedures

can detect base rates as low as 0.1–0.3% (Ruscio &

Ruscio, 2004b). Ultimately, suitability for taxometric

analysis was determined by simulating many sets of

taxonic and dimensional data (Ruscio & Kaczetow,

2008) ; if the taxometric results from simulated tax-

onic and dimensional data could be distinguished

from one another, then the data were suitable for

analysis.

MAXCOV (MAXimum COVariance ; Meehl &

Yonce, 1996) was conducted on all possible input/

output indicator configurations. Summed input in-

dicators were not used because recent evidence

suggests that using them for MAXCOV results in sig-

nificantly less accurate results (Walters & Ruscio,

2009). Subsamples were created by dividing the

sample into a large number of overlapping windows

(i.e. 986 to 3944; derived using formula 6.5 in Ruscio

et al. 2006, p. 138), with 90% overlap to allow for

the inchworm consistency test and to provide more

interpretable results (Ruscio et al. 2006). Ten internal

replications were implemented in each run, and

all MAXCOV curves were combined by averaging

the covariance estimates for each subsample. The

MAMBAC (Means Above Minus Below A Cut ; Meehl

& Yonce, 1994) was also conducted. Summed input

indicators were used, and the first and last cuts were

made 25 cases from each input indicator’s distri-

butional tails (Ruscio & Ruscio, 2004a). Internal repli-

cations were implemented as described above. To

improve interpretability (Ruscio et al. 2006), the num-

ber of cuts for MAMBAC was held equal to the maxi-

mum number of overlapping windows used for

MAXCOV (i.e. 3944). MAMBAC was repeated until all

indicators had served as output, and curves were
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combined by averaging mean-difference estimates at

each cut along the input indicators.

Supplementary consistency tests included base rate

divergence (Ruscio & Ruscio, 2004b) and the case re-

moval consistency test (Ruscio, 2000). The inchworm

consistency test was also conducted by repeating

MAXCOV analyses several times with each successive

run containing an increased number of overlapping

windows (Waller & Meehl, 1998). Finally, the com-

parison of simulated taxonic and dimensional data

and observed data was used as an interpretational tool

in addition to a consistency test (Ruscio & Kaczetow,

2008). Taxonic data were simulated using a modifi-

cation to the base rate classification method (Ruscio,

2009) ; individuals with the highest total item scores

were assigned to the taxon based on the observed base

rate of past 2-week Manic Episodes in the present

sample. One hundred sets of taxonic and dimensional

data were generated and submitted to the same

analyses as the research data. Results from the re-

search data were compared to results from simulated

taxonic and dimensional data both visually and using

fit indices (i.e. the comparison curve fit index; CCFI).

CCFI values >0.60 support taxonic structure, values

<0.40 support dimensional structure, and values be-

tween 0.40 and 0.60 are interpreted as ambiguous

(Ruscio et al. 2007a).

ITLDM

ITLDM (Markon & Krueger, 2006) consists of esti-

mating a variety of latent class (LCM) and latent trait

(LTM) models using logistic modeling, and sub-

sequently comparing their parsimony-adjusted fit

using Bayesian Information Criteria (BIC). Specifi-

cally, (nominal) LCMs with between 2 and k classes

(where k=8=number of indicators) ; LTMs (i.e. ‘dis-

crete metrical ’) with between 2 and k latent values

[with each model distributed according to a binomial

distribution, B(kx1, 0.5), rescaled to a mean of 0 and a

standard deviation (S.D.) of 1] ; and a continuous nor-

mally distributed LTM were estimated. In addition to

information regarding the stratification and clustering

of the data, a sample weight was included to properly

model the complex sample design of the data. Com-

parisons between LTMs with few versus many latent

values evaluated the relative fit of discrete metrical

and continuous models, respectively. Furthermore,

comparisons between LTMs and LCMs with the same

number of values/classes evaluated whether the tar-

get construct consisted of ordered or unordered cat-

egories. For each comparison, the exponential of 0.5

times the negative BIC difference between the two

models was interpreted as the posterior odds of one

model over the other (Raftery, 1995). Descriptively, a

BIC difference of 0–2 equals ‘weak’ evidence, 2–6

equals ‘positive ’ evidence, 6–10 equals ‘ strong evi-

dence ’, and>10 equals ‘very strong’ evidence in favor

of the model with the lower BIC value (Raftery, 1995).

Part I Results

Preliminary dimensionality analyses

Parallel analysis suggested that only one interpretable

factor could be extracted from the data. Thus, a one-

factor model was estimated in the first subsample,

which provided a good fit to the data (x2=9.79, df=11,

p=0.55 ; RMSEA=0.00). The unidimensional CFA

model constructed from these findings in the second

subsample provided a good fit to the data (x2=20.25,

df=11, p=0.04 ; CFI=0.96, TLI=0.96, RMSEA=0.01).

All factor loadings were statistically significant (mean

loading=0.58, mean r2=0.37).

Taxometrics

Indicator validity was excellent (mean indicator

validity=5.26 ; Meehl, 1995) and within-class correla-

tions were low (mean absolute value of r=0.04 ;

Meehl, 1995). MAXCOV and inchworm consistency

test plots are presented in Fig. 1. MAXCOV results

were all consistent with a dimensional solution: in all

cases, the line representing the results from the re-

search data fit within ¡1 S.D. from the average results

for simulated dimensional data, and fell on or outside

of the boundaries of ¡1 S.D. from the average results

for simulated taxonic data. CCFI values confirmed this

superior fit, ranging from 0.26 to 0.30 (mean 0.28).

Averaged MAMBAC results are presented in Fig. 2,

along with averaged results from simulated taxonic

and dimensional data. The averaged research curve

resembles both the simulated dimensional and taxonic

curves. The associated CCFI value was also ambigu-

ous (CCFI=0.45).

Consistent with a dimensional interpretation, mean

base rate estimates produced by MAXCOV (mean=
0.24, S.D.=0.30) and MAMBAC (mean=0.77, S.D.=
0.43) analyses were divergent. Further suggesting a

dimensional interpretation, following targeted case

removal, deviations from predicted base rate in-

creases were substantial (MAXCOV deviation=0.10 ;

MAMBAC deviation=0.77) and in the opposite

direction than would be predicted by the presence of

a taxon2.

ITLDM

ITLDM results are presented in Table 1. The two esti-

mated models with the best relative fit to the data
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were the standard normal LTM (BIC=9531.07) and

the two-class LCM (BIC=9534.82). The BIC difference

between the two-class LCM and the standard normal

LTM (3.75) corresponded to ‘positive ’ evidence in

favor of the LTM. In other words, the odds of the LTM

over the two-class LCM were 6.52 :1.

To guard against the possibility of spurious con-

tinuous findings, all analyses were repeated for life-

time symptom data that contained a larger number,

and higher base rate, of hypothesized taxon members.

These analyses also supported a continuous con-

ceptualization of mania3. In sum, all taxometric and
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Fig. 1. Averaged maximum covariance (MAXCOV) results overlaying lines that represent ¡1 S.D. from the average

results for simulated taxonic (left) and dimensional (right) data. Plots in each successive row contain an increased number

of overlapping windows : 986, 1972, 2958, 3944.
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ITLDM results supported a dimensional interpretation

of mania in the ECA data.

Part II Introduction

Part II of the present study evaluated the relative pre-

dictive abilities of discrete and continuous models of

mania using the methodology detailed in Prisciandaro

& Roberts (2009). Two sets of model comparisons

were made across outcomes : (1) between empirically

derived discrete and continuous models from Part I

of the present study and (2) between rationally selec-

ted discrete and continuous models. For the rationally

selected continuous model, we created a single

additive scale of mania with each manic symptom

contributing 1 point. For the discrete model, we chose

the predominant diagnostic model of mania : DSM

Manic Episodes.

Three types of outcomes (i.e. dependent variables)

were selected for predictive analyses : (1) psychiatric

health service utilization, which is elevated among

individuals with bipolar disorders (Weissman et al.

1991 ; Merikangas et al. 2007) ; (2) psychiatric disorders,

which are highly co-morbid with bipolar disorders

(Kessler et al. 1997 ; McElroy et al. 2001) ; and (3) suici-

dal behavior, which is elevated among individuals

with bipolar disorders (Sharma & Markar, 1994 ;

Kessler et al. 1999 ; Kallner et al. 2000).

The main criterion used to evaluate models’ relative

predictive abilities was whether the discrete model

of mania predicted unique variance in outcomes once

the continuous model was statistically controlled (and

vice versa).

Part II Method

Sample

The sample for Part II of the present study was the

same as for Part I. Missing data were negligible (4.2%)

and were list-wise deleted (Kline, 2005).

Discrete and continuous models of mania

Empirically derived models

The best-fitting continuous and discrete models of

mania from Part I ITLDM analyses were selected for

subsequent predictive analyses (see Table 2 for model

parameters). As reported in Part I, the best-fitting

continuous model was the unidimensional, standard

normal LTM (BIC=9531.07). All factor loadings were

statistically significant (mean loading=0.69, mean

R2=0.48). This model was represented as a manifest

continuous variable for regression analyses by com-

puting factor scores from the standard normal LTM.

The best-fitting discrete model was the two-class LCM

(BIC=9534.82). Class 1 (n=9474, ‘symptom free ’)

Table 1. Fit criteria for discrete and continuous models of mania

Criterion

k ln(L) BIC

Latent class models

2 classes 17 x4689.23 9534.82

3 classes 26 x4681.21 9601.58

4 classes 35 x4672.09 9666.12

5 classes 44 x4665.76 9736.24

6 classes 53 x4663.99 9815.48

7 classes 62 x4659.92 9890.13

8 classes 71 x4653.03 9959.14

Latent trait models

2 values 17 x4689.23 9534.82

3 values 18 x4688.93 9543.42

4 values 19 x4687.28 9549.32

5 values 20 x4687.54 9559.04

6 values 21 x4687.53 9568.22

7 values 22 x4687.33 9577.02

8 values 23 x4687.54 9586.64

Normal 16 x4691.95 9531.07

k, Number of parameters ; ln(L), log likelihood ; BIC,

Bayesian Information Criterion.
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Fig. 2. Averaged means above minus below a cut (MAMBAC) results from research data (far left), simulated taxonic data

(center), and simulated dimensional (far right) data.

580 J. J. Prisciandaro and J. E. Roberts



consisted of individuals with near-zero response

probabilities across all symptoms (mean probability=
0.01) and class 2 (n=406, ‘potentially symptomatic ’)

consisted of individuals with at least minimal response

probabilities across all symptoms (mean probability=
0.16). This model was represented as a manifest dis-

crete variable for regression analyses by calculating

participants’ posterior probabilities for each class, as-

signing participants to the class to which they were

most likely to belong, and creating a dichotomous

variable to reflect these class assignments.

Rationally selected models

The rationally selected continuous model of mania

was a single additive scale of manic symptoms, with

each symptom contributing 1 point. The empirically

derived and rationally selected dimensional models of

mania were strongly associated (r=0.97, p<0.001).

The rationally selected discrete model was past

2-week DSM-III diagnoses of Manic Episodes (n=15).

The association between the empirically derived and

rationally selected categorical models of mania was

minimal but statistically significant (r=0.08, p<0.001).

Outcome variables

Outcome variables reflecting psychiatric diagnoses

and suicidal behavior were assessed as part of the DIS.

Health service utilization outcomes were assessed

using a supplementary structured interview (Shapiro

et al. 1985). Psychiatric diagnoses were assessed on a

lifetime basis and were coded ‘0 ’=absent, ‘1 ’=
present. Consistent with recommendations (e.g. Boyd

et al. 1984 ; Meyers et al. 1984), DSM-III (APA, 1980)

hierarchy rules were not observed. To reduce diag-

nostic outcomes, Krueger’s (1999) dimensional model

of common mental disorders was estimated using

CFA. Suicidal behavior variables were assessed on a

lifetime basis and were coded ‘0’=no, ‘1 ’=yes. Items

covered : (1) thoughts of death ; (2) desire to die ;

(3) thoughts of committing suicide ; and (4) suicide

attempts. Health service utilization variables (17 total)

were assessed on a lifetime basis and were coded

‘0 ’=no, ‘1 ’=yes. Participants were asked if they had

ever gone to a wide variety of people and places where

‘someone might get help for problems with emotions,

nerves, drugs, alcohol, or their mental health’, in-

cluding spiritual and natural healers, mental health

and medical professionals, friends and relatives, and

support groups.

Analytic strategy

Factor analyses

As described above, Krueger’s (1999) model of com-

mon mental illnesses was estimated using CFA. Factor

scores were computed for the two superordinate fac-

tors (internalizing and externalizing), and the result-

ing variables were used as outcomes in subsequent

predictive analyses. Additionally, two separate uni-

dimensional CFA models were estimated from the

suicidal behavior and health service utilization vari-

ables, respectively ; outcome variables were created by

computing factor scores from each of these models.

CFAs were conducted using the WLSMV (Muthén,

1989), and each incorporated the ECA sample weight

in addition to information regarding the stratification

and clustering of the data (Muthén, 2004).

Regression analyses

Regression models were estimated using the %SREGSUB

macro (SAS Institute Inc., 2002) in SAS version 9.1.3

Table 2. Standard normal LTM factor loadings and R2 values, and two-class LCM item

response probabilities for the eight DSM criteria of a manic episode

Standard normal LTM

Two-class LCM

Class 1 Class 2

Factor 1 R2

‘ Symptom

free ’

‘Potentially

symptomatic ’

Racing thoughts 0.81 0.66 0.00 0.22

Talkativeness 0.78 0.60 0.00 0.17

Distractibility 0.76 0.57 0.01 0.28

Decreased sleep 0.74 0.51 0.01 0.22

Risky behavior 0.64 0.41 0.00 0.05

Elevated mood 0.62 0.39 0.00 0.01

Grandiosity 0.60 0.37 0.01 0.17

Increased activity 0.55 0.31 0.01 0.13

LTM, Latent trait model ; LCM, latent class model.
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(SAS Institute Inc., USA), which allows for the analysis

of subpopulations of complex survey data and in-

cludes information regarding the weighting, stratifi-

cation and clustering of the data into parameter and

variance estimations. Separate sets of predictive com-

parisons were conducted for the empirically derived

and the rationally selected models of mania. Within

each set of comparisons, separate stepwise regression

models were estimated for each of the four outcome

variables. Step 1 included a set of continuous or dis-

crete predictors, whereas step 2 added the set of pre-

dictors not included in step 1. Each stepwise model

was estimated twice for each outcome: once with the

continuous predictor entered at step 1, and once with

the discrete predictor entered at step 1. The improve-

ment in model fit from step 1 to step 2 represented the

degree to which one model of mania provided unique

predictive validity beyond that of the alternative

model. Of particular interest were the unique re-

lationships between predictor variables and outcomes

in step 2 models. b values involving predictors

with meaningful scales of measurement (i.e. both

of the rationally selected models and the discrete

empirically derived model) were Y standardized.

Alternatively, b’s involving the continuous empiri-

cally derived model were fully (XY) standardized.

Separate Bonferroni corrections were applied to sig-

nificance tests of DR2 and b to control experiment-wise

a inflation. With a desired a of 0.05 for each type of

test, Bonferroni corrections suggested an a of 0.0016

for individual DR2 (0.05/32) and b (0.05/32) signifi-

cance tests.

Part II Results

Factor analyses

Krueger’s (1999) model of common mental illnesses

provided a good fit to the data (x2=134.02, df=19,

p<0.001 ; CFI=0.95, TLI=0.95, RMSEA=0.02), and all

factor loadings were statistically significant (mean

loading=0.74, mean R2=0.56). Internalizing and

externalizing factors were significantly correlated

(r=0.43, p<0.001). The suicidal behavior CFA model

provided an acceptable fit to the data (x2=142.21,

df=2, p<0.001 ; CFI=0.98, TLI=0.95, RMSEA=0.07),

and all factor loadings were statistically significant

(mean loading=0.83, mean R2=0.70). Finally, the

health service utilization CFA model provided a

good fit to the data (x2=126.83, df=26, p<0.001;

CFI=0.95, TLI=0.97, RMSEA=0.02), and all factor

loadings were statistically significant (mean loading=
0.71, mean R2=0.51). The four outcome variables that

were created from these models (by computing factor

scores for all participants) had acceptable levels of

skew and kurtosis (<3 and <10 respectively ; Kline,

2005).

Regression analyses

Empirically derived models

The results regarding the empirically derived models’

abilities to predict outcomes are presented in Table 3.

This table shows that the inclusion of the discrete

model at step 2 did not result in a statistically signifi-

cant improvement in R2 for any of the four outcomes.

In addition, the discrete model did not uniquely pre-

dict any of the four outcomes when the continuous

model was considered simultaneously. Table 3 also

shows that the inclusion of the continuous model

at step 2 resulted in a statistically significant im-

provement in R2 for each of the four outcomes (mean

DR2=0.02, mean increase in R2=89%). Further-

more, the continuous model significantly uniquely

predicted each of the four outcomes when the discrete

model was considered simultaneously (mean b=0.20).

In sum, the continuous model demonstrated un-

ambiguously superior predictive validity relative

to the discrete model ; the latter model had no in-

cremental validity over the former model.

Rationally selected models

The results regarding the rationally selected models’

abilities to predict outcomes are presented in Table 4.

This table shows that the inclusion of the discrete

model at step 2 led to a statistically significant im-

provement in R2 for internalizing, externalizing and

suicidal behavior (mean DR2=0.003, mean percentage

increase in R2=7%), but not for health service utiliz-

ation. However, the discrete model only uniquely

predicted one of the four outcomes (suicidal behavior :

b=0.16) when the continuous model was considered

simultaneously. Table 4 also shows that the inclusion

of the continuous model at step 2 resulted in a stat-

istically significant improvement in R2 for each of the

four outcomes (mean DR2=0.04, mean percentage in-

crease in R2=2296%). Furthermore, the continuous

model significantly uniquely predicted each of the

four outcomes when the discrete model was con-

sidered simultaneously (mean b=0.07). In sum,

although the discrete model demonstrated some in-

cremental predictive validity relative to the conti-

nuous model, the increase in R2 associated with the

inclusion of the discrete model was very small, and the

discrete model only uniquely predicted one outcome

when the continuous model was considered simul-

taneously.

Taken together, findings from Part II provide strong

and consistent support for continuous models of

mania, and weak and inconsistent support for discrete
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models of mania. To guard against the possibility of

spurious continuous findings, all analyses were re-

peated for lifetime symptom data that contained a

larger number, and higher base rate, of diagnosed

Manic Episodes. These analyses also supported a

continuous conceptualization of mania4.

Table 4. Multiple regression analyses with rationally selected continuous or discrete models of mania alone predicting four outcomes,

followed by analyses with both models of mania simultaneously predicting outcomes

Internalizing

disorders

Externalizing

disorders

Suicidal

behavior

Health service

utilization

DR2 b DR2 b DR2 b DR2 b

I. Addition of discrete predictors to models with continuous predictors only

Step 1

Manic Symptoms Scale 0.06* 0.08* 0.03* 0.06* 0.04* 0.07* 0.03* 0.06*

Step 2

Manic Symptoms Scale 0.00* 0.08* 0.00* 0.06* 0.00* 0.07* 0.00 0.06*

Manic Episodes 0.18 0.22 0.16* 0.04

II. Addition of continuous predictors to models with discrete predictors only

Step 1

Manic Episodes 0.00* 0.23* 0.01* 0.26* 0.00* 0.21* 0.00 0.08

Step 2

Manic Episodes 0.05* 0.18 0.03* 0.22 0.04* 0.16* 0.03* 0.04

Manic Symptoms Scale 0.08* 0.06* 0.07* 0.06*

LTM, Latent trait model ; LCM, latent class model ; DR2, change in proportion of variance accounted for ; b, Y standardized

regression coefficient.

* p<0.0016.

Table 3. Multiple regression analyses with empirically derived continuous or discrete models of mania alone predicting four outcomes,

followed by analyses with both models of mania simultaneously predicting outcome

Internalizing

disorders

Externalizing

disorders

Suicidal

behavior

Health service

utilization

DR2 b DR2 b DR2 b DR2 b

I. Addition of discrete predictors to models with continuous predictors only

Step 1

Standard normal LTM 0.06* 0.25* 0.04* 0.19* 0.04* 0.20* 0.03* 0.18*

Step 2

Standard normal LTM 0.00 0.24* 0.00 0.20* 0.00 0.20* 0.00 0.18*

Two-class LCM 0.01 x0.01 0.01 0.00

II. Addition of continuous predictors to models with discrete predictors only

Step 1

Two-class LCM 0.03* 0.17* 0.02* 0.12* 0.02* 0.14* 0.02* 0.12*

Step 2

Two-class LCM 0.03* 0.01 0.02* x0.01 0.02* 0.01 0.02* 0.00

Standard normal LTM 0.24* 0.20* 0.20* 0.18*

Regression coefficients involving the standard normal LTM were XY standardized. Coefficients involving the two-class LCM

were Y standardized.

LTM, Latent trait model ; LCM, latent class model ; DR2, change in proportion of variance accounted for ; b, regression

coefficient.

* p<0.0016.
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Discussion

The present study is the first to examine whether

mania is a discrete or a continuous construct using

appropriate methodologies. In an unselected epidemi-

ologic sample of approximately 10 000 individuals,

the manic symptom questions from the structured DIS

were submitted to a wide variety of taxometric pro-

cedures and consistency tests, in addition to ITLDM.

The relative predictive validities of various continuous

and discrete models of mania were also examined. The

results all converged on a continuous solution.

These results provide support for prominent

theories of bipolar disorders that conceptualize mania

as an extreme variant of human functioning (e.g.

Kraepelin, 1921 ; Depue et al. 1987). They are also con-

sistent with studies demonstrating the validity of

subthreshold mania (e.g. Merikangas et al. 2007).

Taxometric studies that have investigated other bi-

polar mood constructs, such as depression (e.g. Ruscio

& Ruscio, 2000 ; Prisciandaro & Roberts, 2005 ; Slade

& Andrews, 2005) and hyperthymic temperament

(Meyer & Keller, 2003), have also found these con-

structs to be continuous5. However, the latent struc-

tures of key bipolar mood constructs (e.g. mixed

mania, mood cycling) have not yet been examined

using appropriate statistical methodologies. Future

studies should examine the reliability of the present

study’s findings, and also conduct similar investi-

gations on related bipolar constructs.

The present study had several methodological

strengths (e.g. large sample size, high indicator

validity) that allowed it to overcome challenging as-

pects of the data (e.g. sparse, dichotomous data).

Although unselected community samples are gener-

ally preferred in structural investigations because they

minimize the likelihood of spurious dimensional or

categorical findings (Ruscio et al. 2006), the present

study’s extremely low number of currently manic in-

dividuals potentially increased the likelihood of spu-

rious dimensional findings. However, all analyses

were repeated on lifetime manic symptom data, with

an increased number of manic individuals, and

these results converged on a continuous interpret-

ation. Nevertheless, future research should evaluate

the structure of mania in samples that are more likely

to contain currently manic individuals.

The present study’s support for a unidimensional

representation of mania is not entirely consistent with

previous factor analytic studies, which have found

between two and seven latent factors (Murphy &

Beigel, 1974 ; Cassidy et al. 1998 ; Swann et al. 2001 ; Sato

et al. 2002 ; Akiskal et al. 2003). However, these studies

have extracted factors reflecting depression and psy-

chosis, suggesting that symptoms unrelated to mania

were included. Nonetheless, future factor analytic

studies of DSM mania should include more than one

item for each DSM criterion to ensure sufficient

coverage. Although the present study used indicators

created fromDSM-III (APA, 1980) criteria, present-day

Manic Episode criteria (APA, 1994) are nearly ident-

ical to those in DSM-III. Finally, because irritable

mood was only assessed in a highly selected group of

individuals in the ECA, the absence of irritable mood

as a symptom indicator in the present study was an

additional limitation ; the results of our study are thus

more applicable to euphoric mania than to a con-

ceptualization of mania that accepts irritable mood in

the absence of euphoric/elevated mood.

If the results from the present study are supported

by future investigations, this may argue for the use of

a continuous representation of mania. If continuous

conceptualizations of mania are more valid than dis-

crete representations, categorical selection methods

for research (e.g. selecting participants diagnosed with

DSM Manic Episodes) would reduce statistical power

(Cohen, 1983), prevent proper investigation of di-

mensional theoretical models of mania (e.g. Depue

et al. 1987), disguise potential non-linear relationships

between mania and other variables (Ruscio et al. 2004),

and create spurious statistically significant effects

(Maxwell & Delaney, 1993). Instead, correlational re-

search designs that sample individuals at all levels of

manic symptom severity should be used. To sample

individuals at all levels of symptom severity, con-

tinuous measures of manic symptoms must be further

developed as existing measures may not reflect the

true latent structure of mania.

As Akiskal and colleagues have demonstrated (e.g.

Judd & Akiskal, 2003), the issue of clinical significance

needs to be revisited for bipolar disorders ; it is clear

that subthreshold expressions of mania can result in

pervasive impairment. The findings from the present

study further support Akiskal and colleagues’ rea-

soned arguments for expansion of the bipolar spec-

trum. It is important to recognize, however, that

support for a continuous conceptualization of mania

suggests that there are no points at which a certain

number of symptoms or a certain level of symptom

severity inherently denotes the presence of a manic

disorder. Instead, a continuous conceptualization of

mania necessitates that empirical associations between

mania and important outcomes (e.g. functional im-

pairment) form the primary basis for determining

treatment resource allocation. For example, if the

relationship between mania and impairment is non-

linear, treatment efforts could be directed at in-

dividuals whose levels of manic symptoms place them

at the cusp of a substantial increase in functional im-

pairment. If, instead, the relationship between mania
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and impairment is linear, a graded continuum of care

could be provided to affected individuals, such that

different degrees of manic severity are met with con-

cordant levels of treatment intensity (e.g. ranging from

psycho-education to hospitalization). Cost–benefit

analyses could be used to determine which specific

treatments are most effective at particular levels of

severity. Before such a plan can be instituted, how-

ever, research is needed to determine the form of the

relationship between mania and functional impair-

ment, and to further investigate the cost–benefit ratios

of specific treatments at varying levels of manic

symptom severity.
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Notes

1 In the ECA, only participants who endorsed o3 co-

occurring symptoms of mania and denied elevated or ex-

pansive mood were asked a question regarding irritable

mood. Because the question was not asked of all partici-

pants, irritable mood was not included in the present

analyses.
2 Taxonic data can be simulated using a variety of methods,

and the method of simulation chosen can significantly

impact the taxometric results. Thus, it is important to

evaluate the robustness of the taxometric results across

different simulation methods. All taxometric analyses

were reconducted using an alternate method of taxonic

data simulation. The base rate classification method

(Ruscio, 2009) assigns individuals with the highest total

indicator scores to the taxon group based on the mean

base rate estimate from taxometric analyses of the research

data. All MAXCOV and MAMBAC curves derived

from the research data were more similar visually to

curves derived from simulated dimensional data than to

curves from simulated taxonic data. CCFI values obtained

from MAXCOV (mean CCFI=0.15) and MAMBAC

(CCFI=0.04) analyses further supported a dimensional

interpretation of the data. Overall, these supplementary

results suggest that the present study’s dimensional

taxometric findings were not solely determined by the

taxonic data simulation method used. For further

details, see www.buffalo.edu/yrobertsj/psychmed.2010.

supplement.pdf or www.drtprogram.cjb.net/psychmed.

2010.supplement.pdf.

3 Although past 2-week symptom data are preferable to

lifetime data (and simulations suggested that the former

could distinguish taxonic and dimensional structures),

they are also potentially problematic because the base rate

of Manic Episodes over a 2-week period is small (0.15%)

and item endorsement is sparse. All analyses were re-

peated for lifetime symptom data to evaluate the robust-

ness of obtained findings in data with a larger base rate

of Manic Episodes (0.49%). Preliminary dimensionality

analyses suggested a single latent factor. Twelve sets of

MAXCOV analyses across three methods of taxonic data

simulation unambiguously supported a continuous in-

terpretation of the data (mean CCFI=0.20). Two of three

sets of MAMBAC analyses supported a continuous in-

terpretation (mean CCFI=0.22) ; the third set was am-

biguous (CCFI=0.46). ITLDM analyses suggested that a

standard normal LTM of mania provided the best relative

fit to the data. The BIC difference (1.06) between this

model and the second-best fitting model (LTM with four

latent values) corresponded to ‘weak ’ evidence in favor of

the standard normal model. In other words, the odds of

the normal LTM over the four-valued LTM were 1.7 :1.

Overall, these results support a continuous interpretation

of the data, and suggest that the results presented from the

past 2-week data were not unduly influenced by metho-

dological concerns regarding an insufficient number of

hypothesized taxon members in the sample. For further

details, see www.buffalo.edu/yrobertsj/psychmed.2010.

supplement.pdf or www.drtprogram.cjb.net/psychmed.

2010.supplement.pdf.
4 Because the base rates of manic symptoms and Manic

Episodes in the present study’s 2-week recall period were

low, models of mania, especially the rationally selected

discrete model, may have been limited in their ability

to predict outcomes. Therefore, all predictive analyses

were repeated for lifetime symptom data to evaluate the

robustness of regression findings in data with a larger base

rate of Manic Episodes (0.49%=50 potential taxon mem-

bers). The inclusion of the empirically derived or ration-

ally selected continuous model at step 2 resulted in a

statistically significant improvement in R2 for each of the

four outcomes (empirically derived : mean DR2=0.03,

mean percentage increase in R2=41%; rationally selected :

mean DR2=0.09, mean percentage increase in R2=580%).

Furthermore, in all cases, the continuous model sig-

nificantly uniquely predicted each of the four outcomes

when the discrete model was considered simultaneously

(mean b=0.30). The inclusion of the empirically derived

discrete model at step 2 led to a statistically significant

improvement in R2 for health service utilization (DR2=
0.002, percentage increase in R2=2%), but not for in-

ternalizing, externalizing and suicidal behavior. The

inclusion of the rationally selected discrete model at step 2

led to a statistically significant improvement in R2 for ex-

ternalizing (meanDR2=0.001, mean percentage increase in

R2=1%), but not for internalizing, health service utiliz-

ation and suicidal behavior. However, in no cases did

the discrete model uniquely predict any of the four out-

comes when the continuous model was considered
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simultaneously. Taken together, findings from these

supplementary analyses provide strong and consistent

support for continuous models of mania, and weak and

inconsistent support for discrete models of mania. For fur-

ther details, see www.buffalo.edu/yrobertsj/psychmed.

2010.supplement.pdf or www.drtprogram.cjb.net/psych

med.2010.supplement.pdf.
5 Although a few taxometric studies (e.g. Solomon et al.

2006 ; Ruscio et al. 2007b) have supported a discrete struc-

ture of depression, all available construct validity in-

vestigations have supported a continuous interpretation

(Aggen et al. 2005 ; Prisciandaro & Roberts, 2009).

References

Aggen SH, Neale MC, Kendler KS (2005). DSM criteria for

major depression : evaluating symptom patterns using

latent-trait item response models. Psychological Medicine 35,

475–487.

Akiskal HS, Azorin JM, Hantouche EG (2003). Proposed

multidimensional structure of mania : beyond the

euphoric-dysphoric dichotomy. Journal of Affective

Disorders 73, 7–18.

APA (1980). Diagnostic and Statistical Manual of Mental

Disorders, 3rd edn. American Psychiatric Association :

Washington, DC.

APA (1994). Diagnostic and Statistical Manual of Mental

Disorders, 4th edn. American Psychiatric Association :

Washington, DC.

Boyd JH, Burke Jr. JD, Gruenberg E, Holzer III CE, Rae DS,

George LK, Karno M, Stoltzman R, McEvoy L, Nestadt G

(1984). Exclusion criteria of DSM-III : a study of co-

occurrence of hierarchy-free syndromes. Archives of General

Psychiatry 41, 983–989.

Cassidy F, Forest K, Murry E, Carroll BJ (1998). A factor

analysis of the signs and symptoms of mania. Archives of

General Psychiatry 55, 27–32.

Cohen J (1983). The cost of dichotomization. Applied

Psychological Measurement 7, 249–253.

Depue RA, Krauss S, Spoont MR (1987). A two-dimensional

threshold model of seasonal bipolar affective disorder. In

Psychopathology : An Interactional Perspective (ed. D.

Magnusson and A. Ohman), pp. 95–123. Academic Press :

Orlando, FL.

Eaton WW, Kessler LG (1985). Epidemiologic Field Method in

Psychiatry : The NIMH Epidemiologic Catchment Area

Program. Academic Press : Orlando, FL.

Grove WM (1991). Validity of taxometric inferences based on

cluster analysis stopping rules. In Thinking Clearly About

Psychology : Essays in Honor of Paul E. Meehl, Vol. 2 :

Personality and Psychopathology (ed. D. Cicchetti and W. M.

Grove), pp. 313–329. University of Minnesota Press :

Minneapolis, MN.

Haslam N (2003). The dimensional view of personality

disorders : a review of the taxometric evidence. Clinical

Psychology Review 23, 75–93.

Helzer JE, Robins LN, McEvoy LT, Spitznagel EL,

Stoltzman RK, Farmer A, Brockington IF (1985). A

comparison of clinical and diagnostic interview schedule

diagnoses. Physician reexamination of lay-interviewed

cases in the general population. Archives of General

Psychiatry 42, 657–666.

Horn JL (1965). A rationale and test for the number of factors

in factor analysis. Psychometrika 30, 179–185.

Hu L, Bentler PM (1999). Cutoff criteria for fit indexes in

covariance structure analysis : conventional criteria versus

new alternatives. Structural Equation Modeling 6, 1–55.

Judd LL, Akiskal HS (2003). The prevalence and disability

of bipolar spectrum disorders in the US population :

re-analysis of the ECA database taking into account

subthreshold cases. Journal of Affective Disorders 73,

123–131.

Kallner G, Lindelius R, Petterson U, Stockman O, Tham A

(2000). Mortality in 497 patients with affective disorders

attending a lithium clinic or after having left it.

Pharmacopsychiatry 33, 8–13.

Kessler RC, Borges G, Walters EE (1999). Prevalence of and

risk factors for lifetime suicide attempts in the National

Comorbidity Survey. Archives of General Psychiatry 56,

617–626.

Kessler RC, Rubinow DR, Holmes C, Abelson JM, Zhao S

(1997). The epidemiology of DSM-III-R bipolar I disorder in

a general population survey. Psychological Medicine 27,

1079–1089.

Kline RB (2005). Principles and Practice of Structural Equation

Modeling, 2nd edn. Guilford Press : New York.

Kraepelin E (1921). Manic-Depressive Insanity and Paranoia.

Livingstone : Edinburgh.

Krueger RF (1999). The structure of common mental

disorders. Archives of General Psychiatry 56, 921–926.

Lenzenweger MF (2004). Consideration of the challenges,

complications, and pitfalls of taxometric analysis. Journal of

Abnormal Psychology 113, 10–23.

Markon KE, Krueger RF (2006). Information-theoretic latent

distribution modeling : distinguishing discrete and

continuous latent variable models. Psychological Methods

11, 228–243.

Maxwell SE, Delaney HD (1993). Bivariate median splits and

spurious statistical significance. Psychological Bulletin 113,

181–190.

McElroy SL, Altshuler LL, Suppes T, Keck Jr. PE, Frye MA,

Denicoff KD, Nolen WA, Kupka RW, Leverich GS,

Rochussen JR, Rush AJ, Post RM (2001). Axis I psychiatric

comorbidity and its relationship to historical illness

variables in 288 patients with bipolar disorder. American

Journal of Psychiatry 158, 420–426.

Meehl PE (1973). MAXCOV-HITMAX: a taxometric search

method for loose genetic syndromes. In Psychodiagnosis :

Selected Papers (ed. P. E. Meehl), pp. 200–224. University of

Minnesota Press : Minneapolis, MN.

Meehl PE (1995). Bootstraps taxometrics : solving the

classification problem in psychopathology. American

Psychologist 50, 266–275.

Meehl PE, Yonce LJ (1994). Taxometric analysis : I. Detecting

taxonicity with two quantitative indicators using means

above and below a sliding cut (MAMBAC procedure).

Psychological Reports 74, 1059–1274.

Meehl PE, Yonce LJ (1996). Taxometric analysis : II. Detecting

taxonicity using covariance of two quantitative indicators

586 J. J. Prisciandaro and J. E. Roberts



in successive intervals of a third indicator (MAXCOV

procedure). Psychological Reports 78, 1091–1227.

Merikangas KR, Akiskal HS, Angst J, Greenberg PE,

Hirschfeld RMA, Petukhova M, Kessler RC (2007).

Lifetime and 12-month prevalence of bipolar spectrum

disorder in the National Comorbidity Survey replication.

Archives of General Psychiatry 64, 543–552.

Meyer TD, Keller F (2003). Is there evidence for a latent class

called ‘hypomanic temperament ’ ? Journal of Affective

Disorders 75, 259–267.

Meyers JK, Weissman MM, Tischler GL, Holzer III CE,

Leaf PJ, Orvaschel H, Anthony JC, Boyd JH, Burke Jr. JD,

Kramer M, Stoltzman R (1984). Six-month prevalence of

psychiatric disorders in three communities. Archives of

General Psychiatry 41, 959–967.

Murphy DL, Beigel A (1974). Depression, elation, and

lithium carbonate responses in manic patient subgroups.

Archives of General Psychiatry 31, 643–648.

Muthén BO (1989). Dichotomous factor analysis of symptom

data. Sociological Methods and Research 18, 19–65.

Muthén BO (2004). Mplus Technical Appendices. Muthén &

Muthén : Los Angeles, CA.

Muthén LK, Muthén BO (2007). Mplus User’s Guide, 5th edn.

Muthén & Muthén : Los Angeles, CA.

Nichols DS, Jones Jr. RE (1985). Identifying schizoid-taxon

membership with the Golden-Meehl MMPI items. Journal

of Abnormal Psychology 94, 191–194.

Prisciandaro JJ, Roberts JE (2005). A taxometric investigation

of unipolar depression in the National Comorbidity

Survey. Journal of Abnormal Psychology 114, 718–728.

Prisciandaro JJ, Roberts JE (2009). A comparison of the

predictive abilities of dimensional and categorical models

of unipolar depression in the National Comorbidity

Survey. Psychological Medicine 39, 1087–1096.

R Development Core Team (2009). R: A Language and

Environment for Statistical Computing. R Foundation for

Statistical Computing : Vienna, Austria.

Raftery AE (1995). Bayesian model selection in social

research. Sociological Methodology 25, 111–196.

Robins LN, Helzer JE, Croughan J, Ratcliff KS (1981).

National Institute of Mental Health Diagnostic Interview

Schedule : its history, characteristics, and validity. Archives

of General Psychiatry 38, 381–389.

Robins LN, Helzer JE, Ratcliff KS, Seyfried W

(1982). Validity of the Diagnostic Interview Schedule,

Version II : DSM-III diagnoses. Psychological Medicine 12,

855–870.

Ruscio J (2000). Taxometric analysis with dichotomous

indicators : the modified MAXCOV procedure and a

case-removal consistency test. Psychological Reports 87,

929–939.

Ruscio J (2009). Assigning cases to groups using taxometric

results : an empirical comparison of classification

techniques. Assessment 16, 55–70.

Ruscio J, Haslam N, Ruscio AM (2006). Introduction to the

Taxometric Method : A Practical Guide. Lawrence Erlbaum

Associates : Mahwah, NJ.

Ruscio J, Kaczetow W (2008). Simulating multivariate

nonnormal data using an iterative algorithm. Multivariate

Behavioral Research 43, 355–381.

Ruscio J, Marcus DK (2007). Detecting small taxa using

simulated comparison data : a reanalysis of Beach,

Amir, and Bau’s (2005) data. Psychological Assessment 19,

241–246.

Ruscio J, Ruscio AM (2000). Informing the continuity

controversy : a taxometric analysis of depression. Journal of

Abnormal Psychology 109, 473–487.

Ruscio J, Ruscio AM (2004a). A nontechnical introduction

to the taxometric method. Understanding Statistics 3,

151–193.

Ruscio J, Ruscio AM (2004b). Clarifying boundary issues in

psychopathology : the role of taxometrics in a

comprehensive program of structural research. Journal of

Abnormal Psychology 113, 24–38.

Ruscio J, Ruscio AM, Keane TM (2004). Using taxometric

analysis to distinguish a small latent taxon from a latent

dimension with positively skewed indicators : the case of

involuntary defeat syndrome. Journal of Abnormal

Psychology 113, 145–154.

Ruscio J, Ruscio AM, Meron M (2007a). Applying the

bootstrap to taxometric analysis : generating empirical

sampling distributions to help interpret results.

Multivariate Behavioral Research 42, 349–386.

Ruscio J, Zimmerman M, McGlinchey JB, Chelminski I,

Young D (2007b). Diagnosing major depressive

disorder : XI. A taxometric investigation of the

categorical-dimensional debate on the structure

underlying DSM-IV symptoms. Journal of Nervous and

Mental Disease 195, 10–19.

SAS Institute Inc. (2002). %SREGSUB macro provides

additional capabilities for PROC SURVEYREG (http://

support.sas.com/kb/24/985.html#ref). Accessed 5 June

2008.

Sato T, Bottlender R, Kleindienst N, Moller H-J (2002).

Syndromes and phenomenological subtypes underlying

acute mania : a factor analytic study of 576 manic patients.

American Journal of Psychiatry 159, 968–974.

Semler G, Wittchen H-U, Joschke K, ZaudigM, Vongeiso T,

Kaiser S, von Cranach M, Pfister H (1987). Test-retest

reliability of a standardized psychiatric interview

(DIS/CIDI). European Archives of Psychiatry and Neurological

Sciences 236, 214–222.

Shapiro S, Tischler GL, Cottler L, George LK, Amirkhan JH,

Kessler LG, Skinner EA (1985). Health services research

questions. In Epidemiologic Field Method in Psychiatry : The

NIMH Epidemiologic Catchment Area Program (ed. W. W.

Eaton and L. G. Kessler), pp. 191–208. Academic Press :

Orlando, FL.

Sharma R, Markar HR (1994). Mortality in affective disorder.

Journal of Affective Disorders 31, 91–96.

Slade T, Andrews G (2005). Latent structure of depression in

a community sample : a taxometric analysis. Psychological

Medicine 35, 489–497.

Solomon A, Ruscio J, Seeley JR, Lewinsohn PM (2006).

A taxometric investigation of unipolar depression in

a large community sample. Psychological Medicine 36,

973–985.

Swann AC, Janicak PL, Calabrese JR, Bowden CL,

Dilsaver SC, Morris DD, Petty F, Davis JM

(2001). Structure of mania : depressive, irritable,

Evidence for the continuous latent structure of mania 587



and psychotic clusters with different retrospectively-

assessed course patterns of illness in randomized

clinical trial participants. Journal of Affective Disorders 67,

123–132.

Waldman ID, Lilienfeld SO (2001). Applications of

taxometric methods to problems of comorbidity :

perspectives and challenges. Clinical Psychology : Science

and Practice 8, 520–527.

Waller NG, Meehl PE (1998). Multivariate Taxometric

Procedures : Distinguishing Types from Continua. Sage

Publications, Inc. : Thousand Oaks, CA.

Walters GD, Ruscio J (2009). To sum or not to sum:

taxometric analysis with ordered categorical assessment

items. Psychological Assessment 21, 99–111.

Watson D (2003). Investigating the construct validity of the

dissociative taxon : stability analyses of normal and

pathological dissociation. Journal of Abnormal Psychology

112, 298–305.

Weissman MA, Bruce ML, Leaf PJ, Florio LP, Holzer III C

(1991). Affective disorders. In Psychiatric Disorders in

America : The Epidemiologic Catchment Area Study (ed.

L. N. Robins and D. A. Regier), pp. 53–80. Free Press :

New York, NY.

Wittchen H-U, Semler G, von Zerssen D (1985). A

comparison of two diagnostic methods : clinical ICD

diagnoses vs. DSM-III and Research Diagnostic Criteria

using the Diagnostic Interview Schedule (version 2).

Archives of General Psychiatry 42, 677–684.

588 J. J. Prisciandaro and J. E. Roberts


