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Abstract

The Nuclear Factor I (NFI) family of site-specific DNA-binding proteins (also known as CTF or CAAT box transcription
factor) functions both in viral DNA replication and in the regulation of gene expression. The classes of genes whose expression
is modulated by NFI include those that are ubiquitously expressed, as well as those that are hormonally, nutritionally, and
developmentally regulated. The NFI family is composed of four members in vertebrates (NFI-A, NFI-B, NFI-C and NFI-X),
and the four NFI genes are expressed in unique, but overlapping, patterns during mouse embryogenesis and in the adult.
Transcripts of each NFI gene are differentially spliced, yielding as many as nine distinct proteins from a single gene. Products of
the four NFI genes differ in their abilities to either activate or repress transcription, likely through fundamentally different
mechanisms. Here, we will review the properties of the NFI genes and proteins and their known functions in gene expression and
development. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The Nuclear Factor I (NFI) family of site-specific
DNA-binding proteins plays wide reaching roles in
animal physiology, biochemistry and pathology. While
first described as being required for the replication of
Adenovirus DNA, this family of transcription/
replication proteins has been implicated in the replica-
tion of several other viruses and has been shown to
regulate the transcription of a large variety of cellular
and viral genes. In addition, NFI proteins have been
associated with changes in the growth state of cells and
with a number of oncogenic processes and discase states.
Since the role of NFI in adenovirus DNA replication
has been recently reviewed (de Jong and van der Vliet,
1999), we will focus here on the evolution of the NFI
gene family and on the role of NFI proteins in gene
expression and development.

Abbreviations: ChIP, chromatin immunoprecipitation; CTD, car-
boxy-terminal domain of RNA pol II; CTF, CAAT-box transcription
factor; MMTYV, mouse mammary tumor virus; NFI, Nuclear Factor I.
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2. Discovery of viral and cellular NFI-binding sites

After the initial observation that NFI protein isolated
from nuclear extracts of human HeLa cells greatly
stimulated the initiation of adenovirus DNA replication
(Nagata et al., 1982), it was shown that NFI was a site-
specific DNA-binding protein that bound to the adeno-
virus origin of replication (Nagata et al., 1983). Direct
isolation of NFI-binding sites from cellular DNA
(Gronostajski et al., 1985) and comparison with viral
and cellular sites identified by DNA-binding assays
(Hennighausen et al., 1985; Leegwater et al., 1985;
Nowock et al., 1985) demonstrated that NFI protein
bound as a dimer to the dyad symmetric consensus
sequence  TTGGC(NS5)GCCAA on duplex DNA.
Sequences flanking the consensus and in the degenerate
5 nt spacer region appear to modulate the NFI-binding
affinity (Gronostajski, 1986, 1987). Quantitative analysis
of binding showed that while NFI bound very tightly
to a dyad symmetric site (K;~10"'' M), NFI could
also bind specifically to individual half sites (TTGGC
or GCCAA) with a somewhat reduced affinity
(K4~107° M) (Meisterernst et al., 1988a). The identifi-
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cation of this binding specificity suggested that NFI was
identical to both the TGGCA-binding protein that
interacts with the enhancer region of the chicken lyso-
zyme gene (Borgmeyer et al., 1984; Leegwater et al.,
1986) and the CAAT-box transcription factor (CTF)
that binds to CAAT boxes in a number of cellular
promoters (Jones et al., 1987; Santoro et al., 1988). This
finding that NFI-binding sites function in both DNA
replication and gene expression was one of the earliest
indications that the same proteins could be important
in both processes (Jones et al., 1987). Subsequent studies
have identified NFI-binding sites in the promoter,
enhancer and silencer regions of more than 100 cellular
and viral genes, and mutation analyses indicate that
these sites are important for the expression of most or
all of these genes. Specific instances of developmental,
hormonal and tissue-specific gene regulation by NFI
proteins will be discussed later in this review. While
many genes have been shown to contain NFI-binding
sites, the total number of binding sites in the human
genome has been estimated at ~ 75000, based on direct
selection of binding sites from genomic DNA
(Gronostajski et al., 1985). The fraction of these sites
that play a role in gene expression or cellular DNA
replication is still unknown.

3. Evolution of the NFI multigene family

NFI cDNAs isolated from rat (Paonessa et al., 1988),
human (Santoro et al., 1988), hamster (Gil et al.,
1988b), mouse (Inoue et al., 1990) and porcine
(Meisterernst et al., 1988b, 1989) sources indicated that
multiple NFI genes are present in vertebrate genomes.
Several different nomenclatures arose for the NFI genes,
leading to confusion regarding the number of NFI genes
in mammals. The Sippel laboratory identified four NFI
genes in the chicken [designated NFI-A, NFI-B, NFI-C
(for CAAT box), and NFI-X (for hamster NFI-X)
(Rupp et al., 1990; Kruse et al., 1991)] and developed
a consistent nomenclature for the four vertebrate NFI
genes (Fig. 1). Homologs of these four NFI genes have
been described in every vertebrate species examined
from Xenopus (Roulet et al.,, 1995; Puzianowska-
Kuznicka and Shi, 1996) to mouse (Chaudhry et al.,
1997) and humans (Apt et al., 1994; Kulkarni and
Gronostajski, 1996), and likely represent all of the NFI
genes in vertebrates. The four NFI genes are distributed
across three chromosomes in both, with NFIC and NFI-
X being together on 19p13.3 in humans and Nfia and
Nfib together on chr. 4 in mice (Fig. 1, right). The four
vertebrate NFI genes appear to have arisen by gene
duplication during chordate evolution. A single NFI
gene has been identified in the cephalochordate
Amphioxus, which may be the progenitor of the four
vertebrate genes (Fletcher et al., 1999). A single NFI

gene is also present in both the nematode C. elegans
(nfi-1) and Drosophila, but no NFI genes are present in
any of the sequenced prokaryotic or simple eukaryotic
genomes, suggesting that the NFI gene itself arose
during evolution of the metazoan lineage or was lost
independently in the simple eukaryotic and prokaryotic
lineages (Fletcher et al., 1999). This feature distinguishes
the NFI gene family from some other families of site-
specific DNA-binding proteins, including the Hox genes
and zinc-finger DNA-binding proteins, for which many
prokaryotic homologues have been described. The signi-
ficance of this restriction of the NFI genes to the
metazoan lineage is still unclear, but it has been noted
that the increase in diversity of NFI genes is coincident
with the increase in complexity of the vertebrate body
plan.

Comparative genomics has revealed several intriguing
features of the NFI genes. The porcine and human
NFI-C genes were the first genes for which the genomic
structure was determined, showing strong conservation
of all 11 exons of the genes (Meisterernst et al., 1989)
(Fig. 1, NFI-C). The rat NFI-A genomic structure was
determined next, and 11 exons were identified, all of
which were similar in length to the NFI-C exons, +5 aa
(Xu et al., 1997) (Fig. 1, NFI-A). The amino acid
sequence homology between the rat NFI-A and human
NFI-C exons ranges between 100% in a conserved five-
residue C-terminus, to 91% in the 177 aa DNA-binding
domain encoding exon, to a low of 39% in the exon
following the DNA-binding domain (overall homology
61%). The human NFI-X genomic sequence was recently
completed by the Human Genome Sequencing project,
and it likewise has 11 exons with sizes comparable to
those of rat NFI-A and human NFI-C (Accession Nos
AC004660 and ACO007787, Fig. 1). This high degree of
structural homology shows that little divergence of the
genes has occurred since their generation prior to the
establishment of the avian lineage (which contains all
four genes). However, this structural homology breaks
down when the vertebrate genes are compared to the C.
elegans gene. Unlike the four vertebrate genes, which
show a significant homology throughout their sequences,
no homology is seen outside the NFI-DNA-binding
domain between the C. elegans gene and the four
vertebrate NFI genes. In addition, while the DNA-
binding domains of the C. elegans and vertebrate NFI
proteins are relatively conserved at the sequence level,
they differ dramatically at the genomic level. While all
four mouse (and presumably human) NFI genes have
their DNA-binding domains encoded by an unusually
large 532 nt second exon, in C. elegans, this large exon
is interrupted by four additional introns and has a 3’
extension of 213 nt that has no sequence homology to
the vertebrate genes (Fletcher et al., 1999). These four
additional introns are missing in the single Amphioxus
NFI gene identified, suggesting that the exons were
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Fig. 1. Domains and alternative splicing of vertebrate NFI genes. The five lines illustrate several general features (top) and alternatively spliced
products of the four NFI genes from vertebrates. Pan-specific gene names are on the right with the human (Qian et al., 1995) and mouse (Fletcher
et al., 1999) chromosome locations shown below the name. As described in the text, the general structure (top line) is composed of 11 coding
exons (boxes) with the N-terminal DNA-binding and dimerization domain (labeled DNA binding and dimerization) encoded predominantly by
exon 2 (gray box). Within the second exon are four conserved cysteine residues (labeled C) required for DNA-binding and redox regulation of
binding, a basic alpha helical domain (labeled Basic helix) and the Ad Pol-binding domain (labeled Ad Pol binding). Numbers above the line are
approximate residue numbers and those below the line are exon numbers. The C-terminal regions of each protein encode specialized domains noted
in the text (labeled Transactivation and repression) including the proline-rich transactivation domain (labeled Proline-rich). For each gene, the
largest extant cDNAs contain 11 exons, and alternatively spliced isoforms are shown by angle brackets below each gene with names below. The
names of each isoform are derived from the species (c, chicken; r, rat; m, mouse; p, porcine; h, human; x, Xenopus), gene (a, b, ¢ or x) and particular
spliced isoform (1-7). Only a subset of known isoforms is shown, and few have been confirmed in more than one species. Alternative first exons
are shown by boxes or lines connected to the second exon. The names of the first exons denote conservation of the coding regions of exons la (8—
10 aa), 1b (32-47 aa) and 1c (1 aa, M). The E1b exons of human and mouse NFI-B are predicted from GENBANK genomic or EST sequences
(NFIB, AL136366.3; Nfib, AW106080). Isoform names used by previous authors were retained when possible with the exception of some NFI-A
cDNAs that were previously named NFI-B due to their cloning from brain. The heptamers above NFI-A and NFI-C are regions homologous to
the C-terminal domain (CTD) repeat of RNA polymerase 1I. Gray lines in NFI-B show predicted exons since the genomic sequence of NFI-B is
not available. GENBANK Accession Nos for each isoform are available upon request. BLAST analysis (Altschul et al., 1997) and the size of NFI
mRNAs suggest that each gene may have 5" or 3’ untranslated exons.

either inserted recently into the nematode gene, or lost
from the cephalochordate gene prior to the duplication
of the four genes in the vertebrate lineage. The recently
determined sequence of the single NFI gene in
Drosophila shows that the second of the four introns
present in the C. elegans NFI gene is also present in
Drosophila, indicating that this intron was likely present
prior to the divergence of nematodes and insects and
thus is an ‘ancient’ intron (Fig. 2, bold intron). The
Drosophila NFI gene also contains a 219 nt extension in
the exon encoding the C-terminal end of DNA-binding
domain, similar to the C. elegans gene. In addition, a
splice acceptor site at the 5" end of the DNA-binding
domain of both the C. elegans and Drosophila NFI

genes is conserved to the nucleotide with those of all
four mouse NFI genes, suggesting strongly that this
early metazoan gene is the progenitor of the four
vertebrate genes (Fig.2). The lack of conservation of
exons outside the NFI DNA-binding domain between
the C. elegans and vertebrate genes may suggest that
significant changes in function have developed during
evolution of the gene family. However, it is also possible
that there is a significant structural and functional
homology between the genes that has been disguised by
sequence changes during the ~ 500 Myr since the diver-
gence of the nematode and vertebrate lineages. It will
be necessary to perform functional comparisons between
the C. elegans and vertebrates genes to resolve this issue.
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Fig. 2. Conservation of exons encoding the DNA-binding domain of NFI in vertebrates and early metazoans. The exons encoding the DNA-
binding domain of NFI proteins (gray boxes) from vertebrates, C. elegans and Drosophila (GENBANK AC015236) are shown together with the
general structure of the vertebrate genes (white boxes). As described in the text, the vertebrate genes encode their DNA-binding domains predomi-
nantly within identically sized single exons, while the C. elegans and Drosophila genes have an extension at the 3" end of the region and possess
internal introns (triangles and lines within exon). The lengths of the DNA-binding domain encoding exons are shown above or below each gene
and the intron sizes are shown near each intron. The introns in bold are at identical positions in the C. elegans and Drosophila genes and likely
represent an early intron. The arrows on the C. elegans and Drosophila genes indicate additional exons present in these genes but are not shown.

4. Unusual features of NFI transcripts

While the general features discussed below
(N-terminal DNA-binding and C-terminal transcrip-
tional modulation domains) accurately describe the ver-
tebrate NFI proteins, additional complexity is generated
by alternative processing of NFI transcripts (Fig. 1).
Alternative processing takes three forms: (1) alternative
polyadenylation between exons 2 and 3 of NFI-B,
yielding the short NFI-B3 described below (Liu et al.,
1997); (2) alternative splicing of exons in the 3’ regions
of all four NFI genes, yielding multiple proteins from
each gene that have different C-termini fused to the
same DNA-binding domain (Santoro et al., 1988; Apt
et al., 1994; Roulet et al., 1995); and (3) alternative
splicing/promoter usage leading to different first exons
being fused to the same DNA-binding and C-terminal
domains (Inoue et al., 1990; das Neves et al., 1999).
The alternative splicing in 3’ regions of the NFI tran-
scripts is phylogenetically conserved, suggesting con-
served biological functions for each isoform (Kruse and
Sippel, 1994a). In some instances, this alternative splic-
ing appears to be regulated, since changes in the splicing
pattern of human NFI-C were observed during differen-
tiation of human leukemic cells in culture (Kulkarni
and Gronostajski, 1996), and different relative levels of
alternatively spliced NFI transcripts are present in
different cell types (Apt et al., 1994; Chaudhry et al.,
1997).

Other unusual features of NFI transcripts include
their large 5’ and/or 3’ untranslated regions and the
frequent presence of short (2—-33 aa) putative open read-
ing frames (ORFs) upstream of the predicted initiation
codons. Analysis of the 5’ regions of NFI cDNAs
present in GenBank shows the presence of such ORFs

from eight to 98 residues upstream of the predicted
initiation codons of all four NFI genes from a number
of vertebrates (unpublished data). Together with the
observation that the major NFI transcripts are very
large [mNFI-A, -B, -C and -X mRNAs are ~10.5,
~9.7, ~7.7 and ~6.0 kb, respectively (Nebl et al.,
1994; Chaudhry et al., 1997)], the presence of these
short ORFs raises the possibility of translational regula-
tion of NFI protein expression.

Another possible function for the large untranslated
regions of NFI mRNAs may be in the regulation of
mRNA stability. Stable introduction of an activated
Ha-ras gene into mouse cells results in downregulation
of NFI-C and NFI-X mRNA levels (Nebl et al., 1994).
There is no change in transcription of the NFI-C and
NFI-X genes with the introduction of Ha-ras, but the
half-lives of their mRNA are drastically decreased. It
will be important to identify the specific mRNA
sequences required for destablilization of NFI-C and
NFI-X transcripts and to determine whether the other
NFI mRNAs are subject to similar destabilization.

5. Structural and functional domains of NFI proteins

As mentioned above, transcripts of each of the four
vertebrate NFI genes are alternatively spliced generating
multiple proteins from each gene. This complexity of
protein and mRNA isoforms can be simplified if we
consider domains that are conserved in all of the iso-
forms and between the four vertebrate genes. However,
since recent studies have demonstrated significant
differences between the functional activities of products
of the four NFI genes, it should be remembered that
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generalizations can sometimes be misleading and must
be continuously tested.

6. N-terminal DNA-binding/dimerization domain

The typical NFI protein is composed of an N-terminal
DNA-binding/dimerization domain and C-terminal
transcriptional activation and/or repression domains
(Fig. 1). The N-terminal DNA-binding/dimerization
domain is preceded by alternative exons encoding 8-
47 aa domains of unknown function [although there is
strong conservation of this region between the four
genes (Meisterernst et al., 1989; Rupp et al., 1990; Kruse
et al., 1991; Kruse and Sippel, 1994a)] (Fig. 1, Ela—c).
Deletion analysis has shown that the DNA-
binding/dimerization domain is ~200 aa in length and
is ~90% identical between the four chicken, mouse, and
human NFI genes (Fig. 1, DNA binding and dimeriza-
tion). This N-terminal domain is sufficient for DNA-
binding activity, dimerization and the stimulation of
adenovirus DNA replication (Mermod et al., 1989;
Gounari et al., 1990). Point mutations made within this
domain have shown that dimerization is essential for
DNA-binding activity but that DNA-binding activity
can be abolished independently with retention of dimer-
ization activity (Armentero et al., 1994). Also, point
mutations within this domain can abolish adenovirus
DNA replication while retaining both DNA binding
and dimerization (Fig. 1, Ad Pol binding). Thus, the
stimulation of adenovirus DNA replication requires
dimerization, DNA-binding activity and additional
functions of the N-terminal domain. Mutational analysis
of the N-terminal domain, together with direct binding
and kinetic studies, have shown that the specific inter-
action of the N-terminal DNA-binding/dimerization
domain with the Adenovirus DNA polymerase appears
essential for the recruitment of the polymerase into a
replication complex and the stimulation of replication
(Bosher et al., 1990; Chen et al., 1990; Mul et al., 1990;
Armentero et al., 1994; reviewed in de Jong and van der
Vliet, 1999).

The NFI DNA-binding domain has no detectable
sequence homology with other known DNA-binding
domains and thus may be structurally distinct. Four
cysteine residues are conserved between all NFI DNA-
binding domains, and three of the four residues are
required for DNA-binding activity (Bandyopadhyay
and Gronostajski, 1994) (Fig. 1C, in exon 2). The fourth
cysteine residue, while not essential for DNA-binding
activity, makes NFI proteins sensitive to oxidative inacti-
vation (redox regulation). Mutation of this residue does
not affect DNA binding but confers resistance to oxida-
tive inactivation in vitro (Bandyopadhyay and
Gronostajski, 1994; Bandyopadhyay et al., 1998). This
feature of oxidation sensitivity is shared by a number

of transcription factors and may play a role in the
cellular response to oxidative damage (Abate et al.,
1990; Guehmann et al., 1992; Matthews et al., 1992;
Bandyopadhyay et al., 1998.

The four cysteine residues are located within the
C-terminal 2/3rd of the ~200aa DNA-binding/
dimerization domain, in a subdomain shown to be
sufficient for NFI dimerization, low-affinity site-specific
DNA binding, and interaction with adenovirus DNA
polymerase (Dekker et al., 1996). The N-terminal ~1/3
of the ~200aa DNA-binding/dimerization domain is
highly basic (Meisterernst et al., 1989), appears to fold
into a stable alpha-helical subdomain that can bind
DNA non-specifically, and, when fused to the C-terminal
2/3 subdomain, can increase NFI DNA-binding affinity
~100-fold (Dekker et al., 1996) (Fig. 1, Basic helix).
This subdivision of the DNA-binding/dimerization
domain into two independent subdomains may be of
evolutionary interest. As mentioned above, while the
vertebrate NFI DNA-binding domains are encoded pre-
dominantly by single large exons (532 nt, 177.3 aa), the
C. elegans NFI DNA-binding domain is encoded by five
exons that may represent the ancestral gene structure
(Fig.2). Thus, the vertebrate NFI-DNA-binding
domains may be composed of subdomains that were
encoded by separate exons during the early evolution of
the NFT gene. It will be of interest to examine the NFI
gene structure in other simple metazoans to determine
the pathway of evolution of the NFI DNA-binding
domain.

While the NFI DNA-binding/dimerization domain is
often described as an ~200-220 aa domain encoded
predominantly by a single exon, the minimum size of
this domain may differ slightly between the four NFI
genes, and more C-terminal regions of the proteins may
influence DNA-binding affinity. For example, while ini-
tial studies demonstrated that the N-terminal 220 aa
domain of the human NFI-C/CTF protein could bind
specifically to DNA, a larger molecule of 399 aa bound
to DNA with a somewhat higher affinity (Mermod
et al., 1989). Likewise, a 199 aa fragment of porcine
NFI-C bound specifically, but weakly, to NFI-site DNA,
while a C-terminally extended 247 aa protein was fully
active (Meisterernst et al., 1989) However, these differ-
ences in binding affinity may be due to improved protein
folding of the larger molecules rather than to additional
DNA contacts. For example, both the NFI-C/CTF and
NFI-A DNA-binding domains can be spliced to multiple
alternative third exons that have no apparent sequence
homology, but each protein product has a similar strong
DNA-binding affinity (Meisterernst et al., 1989;
Mermod et al., 1989; Kruse and Sippel, 1994b). Thus,
an ~200-220aa NFI DNA-binding/dimerization
domain is a useful functional definition.

Since NFI proteins bind to DNA as dimers, several
studies have examined whether heterodimers can form
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between the products of the different NFI genes. Efficient
formation of DNA-binding heterodimers has been
shown between products of all four chicken NFI genes,
with few or no differences being seen in DNA-binding
affinity, specificity, or stability of the dimers Kruse and
Sippel, 1994b). As was seen previously with homodimer
formation of human and porcine NFI-C and rat NFI-A
proteins (Meisterernst et al., 1989; Mermod et al., 1989),
the different chicken NFI proteins needed to be cotran-
slated in order to form heterodimers. Mixing of pre-
formed homodimers yielded no heterodimers. However,
recent studies with a truncated human NFI-B3 isoform
consisting of only the N-terminal 186 residues of NFI-B
suggests that heterodimers between this protein and
other NFI gene products may have different characteris-
tics depending on the ‘partner’ NFI protein (Liu et al.,
1997) (Fig.1, NFI-B, hB3). When expressed in
Drosophila cells, NFI-B3 alone has no DNA-binding
activity and, when coexpressed with a larger NFI-B
protein, inhibits DNA binding by the larger protein
(presumably by formation of non-DNA-binding hetero-
dimers). However, when NFI-B3 was coexpressed with
full-length human NFI-X or NFI-C/CTF proteins,
DNA-binding activity was retained, and DNA-protein
complexes consistent with the predicted sizes of hetero-
dimers between NFI-B3 and the other proteins were
seen. Thus, it appears that NFI-B3 may be either DNA-
binding proficient or deficient depending on its hetero-
dimerization partner. Transcripts encoding the NFI-B3
protein appear to be generated by use of a
polyadenylation/termination signal present in the intron
between exons 2 and 3 of the human NFI-B gene,
leading to the generation of a short transcript containing
only exons 1 and 2 and two amino acids encoded within
the intron (Fig. 1, NFI-B hB3). Although the level of
this NFI-B3 transcript is very low in most human tissues,
it may play a role in modulating NFT activity in MRHF
fibroblasts where it appears to be the only NFI-B
transcript expressed (Liu et al.,, 1997). Whether the
other NFI genes also produce truncated transcripts of
a similar nature is unknown.

7. C-terminal transactivation and repression domains

While the DNA-binding and replication activities of
NFI proteins reside in the N-terminal domain,
C-terminal domains have been implicated in most,
though not all, regulation of gene expression by NFI.
As described above, alternative splicing generates many
variants of the C-terminal domains of NFI proteins,
only a fraction of which have been tested for functional
activity (Fig. 1). The initial cloning and characterization
of NFI-C/CTF transcripts demonstrated that the
C-terminal 100 residues of NFI-C/CTF1 (residues 399—
499) were required for maximal transcriptional activa-

tion of an NFI-site containing promoter in Drosophila
Schneider cells (Mermod et al., 1989). This C-terminal
domain is unusually rich in proline residues (25%) and
has been termed a proline-rich activation domain
(Fig. 2, Proline-rich). When linked to heterologous
DNA-binding domains this 100 residue proline-rich
domain stimulates transcription five- to 10-fold in mam-
malian and Drosophila cells (Mermod et al., 1989;
Martinez et al., 1991; Seipel et al., 1992). However, it
should be noted that in Drosophila cells (which lack
NFTI), regions of NFI-C/CTF1 outside this proline-rich
domain (residues 220-400) increased the ability of the
proline-rich domain to stimulate transcription by
approximately threefold (Mermod et al., 1989), suggest-
ing that the two regions may cooperate in activating
transcription. A similar proline-rich domain required
for transcriptional activation in yeast has also been
identified in the rat NFI-A gene (Monaci et al., 1995).
A more detailed analysis of potential mechanisms of
transcriptional activation by the proline-rich domain of
NFI-C/CTF is given in Section 8.

NFI proteins and binding sites have also been impli-
cated in repression of transcription from several promot-
ers. NFI-binding sites have been identified as negative
regulatory elements of a number of promoters and
‘silencers’, including those at the peripherin (Adams
et al., 1995), eta-globin (Macleod and Plumb, 1991),
glutathione transferase P (Osada et al., 1997a), Pit-1
(Rajas et al., 1998), alphalB adrenergic receptor (Gao
et al., 1996), cartilage matrix protein (Szabo et al.,
1995) and GLUT4 genes (Cooke and Lane, 1999b).
These elements have been identified in transient transfec-
tion assays using specific promoters in a variety of cell
types. However, due to the overlapping expression
pattern of the four alternatively spliced NFI genes, it is
unclear which specific forms of NFI protein mediate
repression at these elements in vivo. Protein domains
that mediate transcriptional repression in transient or
stable transfection assays have been identified in both
rat NFI-A (Monaci et al., 1995; Osada et al., 1997a,b)
and mouse NFI-X proteins. These domains encompass
residues 318-509 of rat NFI-A and residues 190-280 of
mouse NFI-X, and both domains can repress transcrip-
tion of chimeric promoters when fused to the heterolo-
gous GAL4 DNA-binding domain (Nebl and Cato,
1995; Osada et al., 1997b). There is no obvious sequence
homology between the NFI-A and NFI-X repression
domains, suggesting that they may function through
different mechanisms. It is important to note that since
some specific NFI proteins have been shown to activate
transcription under one condition, and repress transcrip-
tion in another, it appears likely that in many instances,
repression and activation by NFI proteins will be both
cell-type- and promoter-specific (see Section §).

The final activity ascribed to C-terminal domains of
NFI proteins is inhibition of the DNA-binding activity
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of NFI. Full-length Xenopus NFI-X proteins (414—
497 aa) have only a weak DNA-binding activity in vitro,
and deletion of the C-terminus yields a 321 aa protein
with increased DNA-binding activity (Roulet et al.,
1995) that inhibits DNA binding in cis is between
residues 322-405 of the NFI-X proteins, is present in
all three alternatively spliced Xenopus NFI-X isoforms
cloned to date, and inhibited the DNA-binding activity
of the heterologous yeast GAL4 DNA-binding domain
when fused in cis. This inhibitory domain also contrib-
utes to transcriptional activation by NFI-X, since dele-
tion of the domain reduced transactivation by NFI-X
proteins approximately fourfold, and fusion of the
domain to GAL4 confers increased transactivation abil-
ity on a GAL4 responsive promoter. The simultancous
decrease in DNA-binding activity in vitro, but increase
in transactivation activity in vivo, suggests that other
proteins may interact with this region to unmask NFI
DNA-binding activity in vivo. No homologous DNA-
binding inhibition domains have been detected on any
mammalian NFI proteins.

8. Mechanisms of transcriptional modulation by NFI
proteins: transactivation

As discussed above, binding sites of NFI proteins
have been implicated in both activation and repression
of promoters. This suggests that NFI proteins likely
affect transcription through multiple mechanisms. The
best studied mechanism used by NFI proteins to activate
transcription is through direct interaction with basal
transcription factors (Fig. 3, top). The largest NFI-C
isoform (NFI-C/CTF1) has an ~100 aa proline rich
domain (Mermod et al., 1989) that contains a single
copy of the heptapeptide repeat from the C-terminal
domain of RNA polymerase II (CTD repeat, PTSPSYS)
(Meisterernst et al., 1989) (Fig. 1, NFI-C). This proline-
rich domain has been shown to function as a transactiva-
tion domain when fused to heterologous DNA-binding
domains (Martinez et al., 1991), and deletion of the
domain from NFI-C drastically reduces transactivation
by NFI-C in Drosophila (Mermod et al., 1989), mamma-
lian (Chaudhry et al., 1998) and yeast cells (Kim and
Roeder, 1993; Wendler et al., 1994; Xiao et al., 1994).
This domain has been shown to interact with both
human TFIIB (Kim and Roeder, 1994) and yeast TBP
(Xiao et al., 1994) in vitro, and deletion of the CTD
repeat abolishes both the interaction with TFIIB and
transactivation in yeast ( Xiao et al., 1994). These studies
indicate that while the CTD repeat is important for
activity, the proline-rich surrounding sequences also
contribute substantially to transactivation. For example,
two alternatively spliced isoforms of NFI-C lacking the
CTD repeat (CTF4 and CTF7) activate transcription in
yeast more potently than does NFI-C/CTF1, which

contains the CTD repeat (Altmann et al., 1994;
Wenzelides et al., 1996). Whether the mechanism of
transactivation of NFI-C isoforms is through interaction
with TFIIB or TBP has not been determined. The other
three NFI genes also encode proteins with proline rich
C-termini, but none contains perfect matches to the
CTD repeat. Thus, while products of all four NFI genes
can activate reporter constructs in human cells (Apt
et al., 1993, 1994; Chaudhry et al., 1998), it is unclear
whether the mechanism of activation is the same for all
the proteins.

A second mechanism proposed for activation by NFI
proteins is through displacement of repressive histones,
either by direct competition for DNA binding or by
interactions of histones with the proline-rich transactiva-
tion domain of NFI-C/CTF1 (Fig. 3, middle). A number
of studies suggest that histone H1 can bind weakly to
consensus NFI-binding sites, and that NFI may activate
transcription by direct displacement of histone binding
at such sites (Ristiniemi and Oikarinen, 1989; Gao et al.,
1998). In addition, the C-terminal proline rich domain
of NFI-C interacts directly with histone H3 in a yeast
two-hybrid assay, suggesting that they may function
together in vivo (Alevizopoulos et al., 1995). Together
with the observation that NFI-C and partially purified
coactivator fractions can overcome the repressive effects
of histone H1 on promoter function in vitro (Dusserre
and Mermod, 1992), these studies lend support to the
model that NFI proteins may activate transcription
through affects on histone (and by inference nucleosome)
binding. Such a mechanism may be of particular impor-
tance at promoters known to contain phased nucleo-
somes, such as the mouse mammary tumor virus
(MMTYV) promoter discussed below.

It is also likely that specific interactions between NFI
proteins and various coactivator proteins play a role in
transcriptional activation (Fig. 3, top). Early studies
showed that the C-terminal proline-rich domain of
NFI-C could bind to coactivator proteins needed for
NFI-C-mediated activation of transcription in vitro
(Tanese et al., 1991; Dusserre and Mermod, 1992). One
specific coactivator shown to interact with the proline-
rich domain is TAFII55, which also interacts with a
number of other transcription factors including Spl,
YY1, USF and HIV TAT (Chiang and Roeder, 1995).
Another potential NFI coactivator protein may be pirin,
a protein identified by interaction with NFI-C in a yeast
two-hybrid screen (Wendler et al., 1997). While the
function of pirin is still unknown, its identification as a
protein that also interacts with the ankyrin repeat of
the Bcl3 oncoprotein suggests that it could integrate the
activity of NFI proteins with other transcription factors,
such as those in the NF«B/re/ family (Dechend et al.,
1999). Other proteins that potentially play a role in NFI
activation of transcription are the p300/CBP family of
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Recruitment of co-activators,
Co-repressors or
Polymerase components

Displacement of activators,
repressors or nucleosomes

Cooperative recruitment of
specific NFI isoforms
by adjacent proteins

Fig. 3. Models for NFI function in vivo. It appears that multiple mechanisms exist by which NFI proteins modulate gene expression in vivo. One
question shared with other transcription factor families is how these diverse NFI gene products, which exhibit identical in vitro DNA-binding
activity, might possess a different target site specificity in vivo. (Top) One mechanism by which NFI homo- or hetero-dimers (white ellipsoids) may
regulate transcription is by direct interactions with components of the basal transcription apparatus, co-activators or co-repressors (gray ellipse)
and recruit them to specific promoters. Different domains of NFI proteins may well recruit different molecules. (Middle) A second mechanism for
NFI function may be through displacement of other site-specific transcription factors, nucleosomes, or other molecules (gray ellipse) from promoters
by: (A) direct interference with binding to overlapping sites or (B) steric hindrance of binding to adjacent sites. (Bottom) The multitude of
alternatively spliced NFI gene products and their overlapping patterns of expression suggest one model for enhancing promoter selectivity in vivo.
In-vitro selection of myogenin DNA-binding sites from cell extracts [CASTing (Funk and Wright, 1992)] has shown that NFI proteins may
cooperate with myogenin in binding to adjacent sites on DNA. Such cooperative interactions with other site-specific transcription factors (gray
ellipse) may preferentially recruit specific NFI isoforms to a restricted subset of promoters in vivo. Cell- or tissue-specific expression of these site-
specific transcription factors, or of the co-activators and co-repressors discussed above, may also explain the ability of some NFI isoforms to
activate a promoter in one cell type but repress the same promoter in another cell type. Studies of inOvivo binding specificity by NFI isoforms will

allow direct testing of these models.

coactivators. The C-terminal proline-rich domain of
NFI-C/CTF1 cooperates in transactivation with residues
451-682 of CBP in a mammalian two-hybrid assay,
suggesting potential interactions between these proteins
in vivo (Leahy et al., 1999). NFI proteins also interact
specifically with the Ski oncoprotein in vitro, and expres-
sion of Ski protein can potentiate activation by NFI
proteins in transiently transfected Drosophila cells
(Tarapore et al., 1997). Together with the observation
that overexpression of p300/CBP or SRC-1 coactivators
can overcome repression of the MMTV promoter by
truncated forms of NFI-C (Chaudhry et al., 1999), these
data suggest that NFI proteins may interact with a
variety of coactivator proteins in vivo, and the relative
importance of any given coactivator may be cell-type-
or promoter-specific.

9. Mechanisms of transcriptional modulation by NFI
proteins: repression

As is seen with transactivation, it seems likely that
multiple mechanisms exist by which NFI proteins can
repress transcription. One mechanism postulated for
repression by NFI proteins is through direct competition

with more potent transactivators for binding at adjacent
sites (Fig. 3, middle). Competition between NFI proteins
and Spl for binding to adjacent sites has been proposed
as a means for NFI to repress Spl activation of the
mouse ol(I) collagen promoter (Nehls et al., 1991,
1992). Similarly, competition between binding of NFI
with HNF4 and HNF1 for overlapping sites on the rat
pyruvate kinase promoter and albumin enhancer, respec-
tively, is proposed to play a role in NFI repression of
these genes (Bernier et al., 1993; Yamada et al., 1997).
Such competition may even play a role in cell-type-
specific activation/repression by NFI proteins, where
the balance between activation and repression may be
dependent on the specific isoforms of NFI expressed in
a given cell type.

NFI-binding sites have also been seen to promote
repression under conditions where competition between
binding sites is unlikely (Macleod and Plumb, 1991;
Adams et al., 1995; Szabo et al., 1995; Gao et al., 1996;
Osada et al., 1997a; Crawford et al., 1998; Rajas et al.,
1998; Cooke and Lane, 1999b; Leahy et al., 1999). In
these instances, the specific form of NFI protein mediat-
ing the repression is unknown since no studies have
examined the NFI isoforms present in the relevant cells.
However, several studies have shown that specific
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C-terminal regions of NFI proteins can function as
repressors when attached to heterologous DNA-binding
domains, supporting the hypothesis that direct repres-
sion by NFI proteins occurs in vivo (see Section 7). It
is unknown as to how these repression domains of NFI
function, but they may be related to known active
repression processes such as the recruitment of corepres-
sor proteins by hormone receptors, or direct interaction
with the basal transcription apparatus (see Hanna-Rose
and Hansen, 1996; Manley et al., 1996; Pazin and
Kadonaga, 1997 for reviews).

While most studies of NFI repression have focused
on C-terminal repression domains, a subdomain of the
NFI-C DNA-binding domain has been implicated in
repression of the MMTYV promoter. The MMTYV pro-
moter contains an NFI-binding site that is essential for
glucocorticoid induction of the gene (Miksicek et al.,
1987; Cato et al., 1988; Buetti et al., 1989). In human
JEG3 cells deficient in NFI proteins, expression of either
NFI-A, -B, -C or -X isoforms greatly enhances glucocor-
ticoid-dependent MMTYV expression (Bruggemeier et al.,
1990; Chaudhry et al., 1997, 1998). In contrast, in
human HeLa cells that contain high levels of endogenous
NFI proteins, expression of NFI-C or NFI-X proteins
represses glucocorticoid induction of MMTYV expression,
while NFI-A and NFI-B do not (Chaudhry et al., 1999).
Surprisingly, the region of NFI-C required for this
repression is a 160 aa subdomain of the NFI-C that
appears incapable of binding DNA or forming hetero-
dimers with other NFI proteins. Repression by NFI-C
is alleviated by overexpression of the coactivators
p300/CBP and SRC-1 and by high levels of glucocorti-
coid receptor. In addition, repression by NFI-C is
receptor- and cell-type specific, occurring with glucocor-
ticoid but not progesterone induction of the promoter,
and in HeLa and COS-1 but not JEG3 or 293 cells,
receptively. Since the MMTV promoter is known to
contain phased nucleosomes important for its expression
(Richard-Foy and Hager, 1987; Bresnick et al., 1990,
1992; Pina et al., 1990; Archer et al., 1991; Truss et al.,
1993, 1995; Mows et al., 1994), it will be of interest to
determine whether repression by NFI is mediated
through changes in nucleosome structure at the pro-
moter (Blomquist et al., 1996; Truss et al., 1996; Chavez
and Beato, 1997; Smith et al., 1997).

10. Hormonal and signal transduction pathways in which
NFI has been implicated

NFI proteins or binding sites have been shown to
affect the expression of genes regulated by a number of
signal transduction pathways, including those controlled
by insulin (Cooke and Lane, 1999b), TGF- (Rossi
et al., 1988; Riccio et al., 1992; Alevizopoulos et al.,
1995, 1997; Sun et al., 1998), cAMP (Chu et al., 1991;
Lu et al., 1992; Cooke and Lane, 1999a), steroid hor-

mones (Garlatti et al., 1996; Chaudhry et al., 1999),
vitamin D (Candeliere et al., 1996), vitamin B, (Allgood
et al., 1993), TNFa (Alevizopoulos and Mermod, 1996),
FSH (Ohlsson et al., 1993), DNA-PK (Jackson et al.,
1990), thyrotropin (Ortiz et al., 1999) and others. In
most cases, only a single pathway-specific gene or hor-
mone-dependent response has been studied, making
generalization impossible. In addition, since the expres-
sion of NFI proteins can be affected by the growth and
differentiation state of cells (Goyal et al., 1990; Kulkarni
and Gronostajski, 1996), it is difficult to determine
whether the effects of some hormones/growth factors
on NFI proteins are direct or indirect. Even where rapid
insulin-dependent changes in NFI phosphorylation have
been detected and correlated with changes in expression
of a gene containing an NFI-binding site (Cooke and
Lane, 1999b), it is difficult to demonstrate a cause-and-
effect relationship because there is no evidence that
phosphorylation changes in NFI proteins can directly
influence either DNA-binding or transcriptional modu-
lation. Similarly, O-glycosylation of NFI proteins was
demonstrated in 1988 (Jackson and Tjian, 1988), yet it
is still unclear whether this modification affects NFI
function in vivo. To resolve these issues, it will likely be
necessary to: (1) determine the specific isoforms of NFI
present in cell types during hormonal stimulation, (2)
demonstrate the specific biochemical pathways by which
hormones/growth factors affect NFI expression or modi-
fication and (3) develop well-defined in-vitro transcrip-
tion assays that accurately reflect the activity of NFI
proteins in vivo. An additional approach would be to
analyze the hormone function in mice lacking one or
more NFI gene (see Section 11).

11. NFI proteins in development and cancer

Binding sites for NFI proteins have been charac-
terized from genes expressed specifically in almost every
organ system and tissue, including brain (Elder et al.,
1992; Bedford et al., 1998), lung (Bachurski et al.,
1997), liver (Cereghini et al., 1987; Gil et al., 1988a;
Quinn et al., 1988; Corthesy et al., 1990; Jackson et al.,
1993; Cardinaux et al., 1994), kidney (Leahy et al.,
1999), muscle (Funk and Wright, 1992; Spitz et al.,
1997), blood (Fischer et al., 1993; Knezetic and
Felsenfeld, 1993; Rein et al., 1995; Kulkarni and
Gronostajski, 1996), testes (Queralt and Oliva, 1995),
oviduct (Grewal et al., 1992), thyroid (Ortiz et al.,
1999), adrenal medulla (Chu et al., 1991), mammary
gland (Watson et al., 1991; Li and Rosen, 1995; Furlong
et al., 1996), pituitary (Courtois et al., 1990), retina
(Ben-Or and Okret, 1993), olfactory epithelium
(Buiakova et al., 1999; Baumeister et al., 1999) fibro-
blasts (Rossi et al., 1988; Alonso et al., 1996; lozzo
et al., 1997), epithelial cells (Apt et al., 1993), adipocytes
(Graves et al., 1991), chondrocytes (Szabo et al., 1995),
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neurons (Elder et al., 1992; Adams et al., 1995; Bedford
et al., 1998) and glia (Tamura et al., 1988a,b; Amemiya
et al., 1989; Miura et al., 1990; Kumar et al., 1993;
Taveggia et al., 1998; Krohn et al., 1999). For most of
these, the NFI-binding sites have been shown to be
important for the expression of the gene. With such a
diverse set of tissue-specific and developmentally regu-
lated genes under the control of NFI proteins, it appears
likely that NFI proteins play a major role in develop-
ment. However, there have been relatively few studies
that have directly implicated NFI proteins in differentia-
tion and development.

NFI-binding sites were identified in an adipocyte-
specific enhancer (Graves et al., 1991) and an adipocyte-
specific promoter (Singh and Ntambi, 1998), suggesting
that NFI proteins may play a role in adipogenesis.
However, in such studies, what is frequently measured
is an effect on the expression of a terminal differentiation
product, rather than a true effect on the differentiation
process. Similarly, the levels of NFI transcripts and
proteins change during in-vitro differential of human
leukemic  hematopoietic  cells (Kulkarni  and
Gronostajski, 1996), but no effect of specific NFI pro-
teins on differentiation has been demonstrated. Large
changes in the relative expression levels of the four NFI
genes have been noted during embryonic and postembry-
onic development of Xenopus (Roulet et al.,, 1995;
Puzianowska-Kuznicka and Shi, 1996) and mice
(Chaudhry et al., 1997). In the mouse (Chaudhry et al.,
1997), in-situ hybridization demonstrated that the four
NFI genes are expressed in unique, but widely overlap-
ping, patterns during embryonic development, support-
ing the hypothesis that differential expression of the
genes results in differential expression of gene-specific
target proteins during development.

The most direct evidence for a role for NFI proteins
in development comes from the disruption of the NFI-A
gene in mice (Nfia) (das Neves et al., 1999). More than
95% of animals with a homozygous deletion of Nfia die
shortly after birth, and the few survivors develop severe
hydrocephalus and tremors indicating a neurological
defect. All homozygous animals lack a corpus callosum,
the major fiber tract connecting the two hemispheres of
the brain. However, other than agenesis of the corpus
callosum, no major anatomical defects have been
detected. Since some strains of mice show relatively high
frequencies of callosal agenesis (Ozaki and Wabhlsten,
1992; Livy and Wahlsten, 1997, Magara et al., 1999), it
is unclear whether the agenesis of the corpus callosum
contributes directly to the perinatal lethality. Since severe
hydrocephalus develops within 2 weeks after birth in the
rare surviving homozygotes, it is possible that relatively
subtle neuroanatomical defects contribute to early lethal-
ity. In the randomly bred Swiss genetic background, there
is also a significant loss of heterozygous Nfia-deficient
mice, but only if the knockout allele is transmitted by
the maternal parent. This unusual trait suggests either

that heterozygous females show some haploinsufficiency
that affects rearing of heterozygous pups or that imprint-
ing or some other epigenetic process affects the expression
of, or response to, the Nfia gene. Given the early expres-
sion of Nfia in mouse development (9 dpc in heart and
developing brain, widespread expression by 11.5 dpc), it
is somewhat surprising that clear anatomical defects have
been detected only at 16—18 dpc where failure of develop-
ment of the corpus callosum is seen. One possibility is
that the four NFI genes may play partially redundant
roles in various tissues, and defects are seen only where
one gene product is most important. However, no com-
pensatory changes in the expression of the other three
NFI genes has been detected in either whole embryos or
specific embryonic and adult tissues (unpublished data
and das Neves et al., 1999). To address this issue of
functional redundancy, it will likely be necessary to
disrupt all four NFI genes and examine the phenotypes
of animals lacking multiple NFI gene products.

NFI proteins have been implicated in the control of
cell growth in both humans and model systems. The
NFI-B gene is a recurrent translocation partner of the
HMGIC gene in human pleomorphic adenomas (Geurts
et al., 1998). The C-terminus of NFI-B is fused to
HMGIC, and the abberant fusion protein is expressed
in the affected tissue. Although the NFI-B fusion is
found in only a small percentage of tumors, its presence
suggests that abberant expression of this region of
NFI-B may play a role in generation of the tumor. In
contrast, overexpression of NFI proteins renders chick
embryo fibroblasts cells resistant to transformation by
a number of nuclear oncogenes, including fos, jun and
gin (Schuur et al., 1995). While the mechanism of
resistance is not known, the finding that the cells are
not resistant to transformation by several oncogenes
that function in the cytoplasm suggests some specificity
to the suppression of oncogenic susceptability. Finally,
overexpression of NFI-X prevents the growth arrest of
mink lung epithelial cells by TGF-f, further implicating
NFI proteins in the TGF-f signal transduction pathway
and cell proliferation (Sun et al., 1998). Since NFI was
first discovered as a protein required for viral DNA
replication (see de Jong and van der Vliet, 1999 for a
review), the finding that altered expression of NFI
proteins may influence cell proliferation may indicate a
direct role for NFI proteins in cellular DNA replication.
The availability of systems that are deficient in, or
overexpress, specific isoforms of NFI will allow further
investigation into the role of NFI in cell proliferation.

12. Summary
While much information has been gathered regarding

the role of NFI-binding sites and proteins in gene
expression, it is difficult to put it all into a global
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perspective. This is because the control of tissue-specific
gene expression during development is perhaps the most
complex biological regulatory system known and is the
basis for all metazoan development. Clearly, NFI-bind-
ing sites play essential roles in the expression of genes
in multiple organs and tissues, and changes in the
expression levels of various NFI isoforms likely result
in important changes in patterns of gene expression.
The widespread (though spatially and temporally
unique) expression of the four NFI genes, together with
the alternative splicing of NFI transcripts and ability of
the proteins to homo- and heterodimerize, yields a large
number of potential transcriptional activators and
repressors. There are three paths that should yield the
information needed to fully understand the role of NFI
proteins in gene expression and development:

1. The powerful technologies of multi-gene cDNA
(Schena et al., 1998) and oligonucleotide (Lockhart
et al., 1996) arrays, together with both the identifica-
tion and expression of specific NFI isoforms and the
generation of mice and cell lines deficient in specific
NFI gene products, should allow us to determine the
important in-vivo targets of NFI regulation.

2. The use of simpler genetic and developmental systems
that appear to contain only a single NFI gene (C.
elegans, Drosophila and Amphioxus) may yield
insights into the evolution of the NFI gene family
and its functions.

3. The development of defined transcription assays that
accurately reflect in-vivo functions, the use of in-vivo
detection systems such as Chromatin Immuno-
Precipitation [ChIP (Orlando et al., 1997; Marzio
et al.,, 1998; Wathelet et al., 1998; Cosma et al.,
1999)], and the analysis of transcription factor bind-
ing in vivo in living cells (Baumann et al., 1998;
Fukushige et al., 1999; Walker et al., 1999) should
allow us to determine the basic biochemical mecha-
nisms and pathways through which NFI proteins
affect transcription (Fig. 3 bottom).
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