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The Nuclear factor I (NFI) transcription factor family consists of four genes (Nfia, Nfib, Nfic and Nfix) that
regulate the development of multiple organ systems in mice and humans. Nfib is expressed in both lung
mesenchyme and epithelium andmice lacking Nfib have severe lung maturation defects and die at birth. Here
we continue our analysis of the phenotype of Nfib−/− lungs and show that Nfib specifically in lung
mesenchyme controls late epithelial and mesenchymal cell proliferation and differentiation. There are more
PCNA, BrdU, PHH3 and Ki67 positive cells in Nfib−/− lungs than in wild type lungs at E18.5 and this increase in
proliferation marker expression is seen in both epithelial and mesenchymal cells. The loss of Nfib in all lung
cells decreases the expression of markers for alveolar epithelial cells (Aqp5 and Sftpc), Clara cells (Scgb1a1)
and ciliated cells (Foxj1) in E18.5 lungs. To test for a specific role of Nfib in lung mesenchyme we generated
and analyzed Nfibflox/flox, Dermo1-Cre mice. Loss of Nfib only in mesenchyme results in decreased Aqp5, Sftpc
and Foxj1 expression, increased cell proliferation, and a defect in sacculation similar to that seen in Nfib−/−

mice. In contrast, mesenchyme specific loss of Nfib had no effect on the expression of Scgb1a1 in the airway.
Microarray and QPCR analyses indicate that the loss of Nfib in lung mesenchyme affects the expression of
genes associated with extracellular matrix, cell adhesion and FGF signaling which could affect distal lung
maturation. Our data indicate that mesenchymal Nfib regulates both mesenchymal and epithelial cell
proliferation through multiple pathways and that mesenchymal NFI-B-mediated signals are essential for the
maturation of distal lung epithelium.
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Introduction

The Nuclear factor I (NFI) family of transcription factors functions
both in mammalian development and in adenoviral DNA replication
(de Jong and van der Vliet, 1999; Nagata et al., 1982, 1983). In
vertebrates, theNFI family consists of four genes,Nfia,Nfib,Nfic andNfix,
that encode proteins which bind as homo- and heterodimers to the
consensus sequence TTGGC(N5)GCCAA on duplex DNA (Gronostajski,
1986; Meisterernst et al., 1988). NFI-binding sites have been identified
in the promoter, enhancer and silencer regions of more than 100
genes expressed in multiple organs, including brain, lung, liver and
intestine (Gronostajski, 2000). Here we address the role of Nfib in lung
development.
Lung immaturity is a major problem in premature infants. It is
associated with respiratory distress syndrome, an acute lung problem
that presents shortly after birth, and bronchopulmonary dysplasia, a
chronic lung disease of premature infants (Coalson et al., 1999; Jobe,
2005). Previous studies of mice lacking Nfib revealed defects in lung
development and Nfib−/− mice die at birth with immature lungs
(Grunder et al., 2002; Steele-Perkins et al., 2005). At E18.5 Nfib−/−

lungs lack saccules, have an increased DNA content, and decreased
levels of surfactant protein transcripts. This phenotype indicates that
Nfib plays an important role in lung maturation. Previous studies also
showed that NFI-B can directly regulate the expression of genes in
lung epithelium (Bachurski et al., 2003). However, the specific cell
types in which Nfib is required for normal lung development, and the
critical target genes regulated by Nfib during lung maturation remain
unknown.

Lung development is regulated by mesenchymal–epithelial in-
teractions (Deimling et al., 2007; Demayo et al., 2002; Morrisey and
Hogan, 2010). Some signals from epithelial and/or mesenchymal cells
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that control smooth muscle cell differentiation and vasculogenesis
have been well characterized, including the VEGF-A (Akeson et al.,
2003; White et al., 2007; Zeng et al., 1998), PDGF (Hellstrom et al.,
1999; Li and Hoyle, 2001), andWNT (Cohen et al., 2009; Li et al., 2002;
Shu et al., 2002) signaling pathways. In contrast, the signaling
pathways from mesenchymal cells that influence epithelial cell
proliferation and differentiation are less well understood. One
mesenchymal-expressed factor that is known to affect lung epithelial
cell proliferation and differentiation is FGF-10. Fgf10 is expressed in
mesenchyme and Fgf10−/− mice were characterized by the absence of
lungs (Min et al., 1998). Overexpression of FGF-10 in late lung
development results in the impairment of lung branching and
attenuation of distal epithelial cell differentiation (Clark et al., 2001;
Nyeng et al., 2008), suggesting that FGF-10 must be tightly regulated
for normal lung development. However, much more information is
needed regarding how mesenchyme regulates lung maturation.

Here we demonstrate an essential role of Nfib in lung maturation
using Nfib−/− mice and mice in which Nfib is deleted specifically in
mesenchyme using Dermo1-Cre. We show that whileNfib is expressed
in bothmesenchyme and epithelium during lung development, loss of
Nfib specifically in mesenchyme affects both mesenchymal and
epithelial cell proliferation, and distal epithelial cell differentiation.
These data demonstrate a heretofore unrecognized pathway of
mesenchymal regulation of late epithelial maturation. In addition,
microarray and QPCR analyses were used to identify biochemical
pathways regulated by NFI-B that appear important for lung
maturation.

Materials and methods

Histology and immunohistochemistry

Fetal lungs were dissected and fixed in 4% paraformaldehyde
overnight at 4 °C. After paraffin embedding, 4 μm sections were cut
and stained with hematoxylin and eosin. For immunohistochemistry,
antibodies against the following proteinswere used: CC10 (Santa Cruz
T-18, 1:200), pro-SPC (Chemicon AB3786, 1:2000), PCNA (Santa Cruz
FL-261, 1:200), phospho-histone H3 (Sigma HTA28, 1:200), cleaved
Caspase-3 (Cell Signaling #9661, 1:200), Ki67 (Abcam ab15580,
1:400), TTF-1 (Dako 8G7G3/1, 1:200), Vimentin (Sigma LN-6, 1:400),
Caveolin-1 (Santa Cruz N-20, 1:200), smooth muscle actin (SMA)
(Sigma 1A4, 1:5000), AQP5 (Alomone labs AQP-005, 1:200) and NFI-B
(Active Motif 1:1000). In general, primary antibodies were incubated
with slides overnight at 4 °C. After a PBS wash, slides were incubated
with secondary antibodies (Alexa 488 or Alexa 568, Invitrogen) for 1 h
at room temperature and auto-fluorescence was eliminated with 0.5%
Sudan black B. TOPRO3 (Invitrogen, 1:5000) was used as a nuclear
counterstain on some sections. For BrdU staining, pregnant mice were
injected with 0.1 mg/g BrdU 2 h before sacrifice, lungs were fixed and
processed, and sectionswere stained using a BrdU staining kit (Zymed).

Statistics

Comparisons were made between at least three KO and littermate
control mice. Statistical significance was assessed using the two-tailed
student t-test in Microsoft Excel. P values of less than 0.05 were
considered statistically significant. Values for all experiments are
expressed as the mean +/− SD. In all QPCR analyses duplicate or
triplicate PCR reactions from each of at least 3 biological replicates
were analyzed. For statistical quantification of cell number using
immunohistochemistry, 15 random fields were imaged from 3mice of
each genotype. A minimum of 100 positive cells were counted for
each condition. Intra-litter comparisons of each genotype were used
whenever possible and multiple litters were assessed for consistency
of phenotype. The numbers of fluorescent and total cells were
quantified using Image J software.
RNA extraction and RT-QPCR

RNAwas extracted with TRIzol reagent (Invitrogen) and 2–5 μg was
used for random hexamer primed cDNA synthesis with Superscript II
(Invitrogen). Transcript levels were quantified by quantitative PCR
(QPCR)with a Bio-Rad iCycler real-time PCRmachine using SYBR Green
as described previously (Steele-Perkins et al., 2005). All results were
normalized to β2-microglobulin levels. Sequences of the primers are
available upon request.
Chromatin immunoprecipitation (ChIP) assay

E16.5 lungs were isolated from wild type embryos, minced and
fixed with 1% formaldehyde. Chromatin was sheared to ~200–500 bp
using a Branson Sonifier 250 sonicator. Immunoprecipitation was
performed with a ChIP assay kit (Upstate Biotechnology) and αNFI-B
antibody (Geneka Biotechnology). After immunoprecipitation and
reversal of cross-links the chromatin was subjected to PCR and QPCR.
ChIP analysis was performed on E16.5 lung in an effort to identify
potential early mesenchymal targets of Nfib that could contribute to
the later morphological phenotype seen at E18.5. The large number of
biochemical and morphological differences between E18.5 wild type
and mutant lungs and the increase in epithelial NFIB expression could
complicate the identification of direct mesenchymal NFIB targets at
this stage.
Transient transfection assays

Mouse embryo fibroblasts (MEFs) were isolated from WT E13
embryos as described previously (Plasari et al., 2009). Cells were
transfected using Lipofectamine as recommended by the manufac-
turer with vectors expressing GFP or NFIB2 from the CMV promoter
(Chaudhry et al., 1999). After 48 h cells were harvested using Trizol,
RNA was isolated, cDNA was prepared using random primers and
QPCR was performed with primers specific for Elastin as described
earlier.
Gene targeting and mouse strains

A targeting vector was constructed with a 4.4 kb 5′ homology arm
containing all of exon 2 of Nfib and 300 bp of intron 2, with a loxP site
inserted 363 bp 5′ to the start of exon 2. The 5′ arm was followed by
an FRT-flanked PGK-neo expression cassette in the opposite tran-
scriptional orientation, a 3′ loxP site, the contiguous 3.6 kb 3′
homology arm and a PGK-diphtheria toxin A chain cassette in the
opposite transcriptional orientation (Fig. S1A) (Campbell et al., 2008).
Cre-mediated recombination deletes all of exon 2, 363 bp of intron 1
and 300 bp of intron 2. This vector was linearized with AscI,
electroporated into J1 ES cells and G418-resistant colonies were
picked, expanded and banked until PCR screening was completed.
Five of six correctly targeted clones (6 targeted/256 total) were
thawed, targeting was confirmed, and two were expanded and
injected into C57Bl/6 blastocysts to generate chimeric animals.
Chimeras were bred with C57Bl/6 females and agouti progeny were
screened for the presence of the targeted conditional KO allele by PCR.
Nfibflox/flox mice survive birth with no overt lung phenotype, grow to
adulthood and at E18.5 express ~70–80% of wild type levels of Nfib.

Dermo1-Cre mice were kindly provided by David Ornitz (Yu et al.,
2003). Nfibflox/flox mice were crossed with Dermo1-Cre mice to
generate Nfibflox/+, Dermo1-Cre offspring. Nfibflox/+, Dermo1-Cre mice
were then crossed to Nfibflox/flox mice to generate mesenchymal-
specific Nfib null mice. All mice were genotyped using PCR and
sequences of the primers are available upon request. All protocols
were approved by the IACUC at Roswell Park Cancer Institute.



Fig. 1. Expression of NFI-B in mesenchyme and epithelium during lung development.
Paraffin sections of E14.5 (A), E16.5 (B), and E18.5 (C, D) lungs were immunostained for
NFI-B expression. At E14.5 and E16.5, NFI-B was expressed predominantly in
mesenchyme. At E18.5, NFI-B was expressed in both epithelial cells (TTF-1 positive
cells) (C) and mesenchymal (Vimentin positive cells) (D). The dashed lines denote the
border between epithelial and mesenchymal cells in bronchioles. Arrows denote the
colocalization of NFI-B and TTF-1 (C) or NFI-B and Vimentin (D). Insets in C and D show
a 5× magnification. TOPRO-3 shows nuclear staining. Scale bars, 50 μm.

244 Y.-C. Hsu et al. / Developmental Biology 354 (2011) 242–252
Microarray analysis

Total RNAwas isolated from three differentNfibflox/flox andNfibflox/flox,
Dermo1-Cre lungs at E18.5 using TRIzol reagent (Invitrogen) and then
purified using an RNeasy Mini Kit (Qiagen). The purified RNA was
examinedusing anAgilent Bioanalyzer 2100 (Agilent Technologies) and
then labeled and hybridized to Affymetrix GeneChip Mouse Genome
430 2.0 Arrays using the manufacturer's protocol. Three independent
sets of biological replicates (Nfibflox/flox andNfibflox/flox,Dermo1-Cre lungs)
were used. Scanned microarray images were imported into GeneChip
OperatingSoftware (GCOS, Affymetrix) to generate rawsignal values for
each probe. The MAS5.0 algorithm in the ‘Affy’ package of Bioconductor
in the R statistical computing environment was used to generate
expression summary values, followed by trimmed mean global
normalization to bring the mean expression values of all six GeneChips
to the same scale (Gentleman et al., 2004). For data quality control,
MAS5.0 present/absent calls were used to filter out probe sets whose
expression intensities were close to background noise across the
majority of samples. Specifically, filtering of three ‘present calls’ was
applied to either the Nfibflox/flox or Nfibflox/flox, Dermo1-Cre group, with
25,086unique transcripts passing thequality control.Weused the linear
model implemented in Limma program to calculate the level of gene
differential expression (Smyth, 2004).Transcripts that were altered at a
P-value less than 0.05 and with at least 1.5-fold expression change
between Nfibflox/flox, Dermo1-Cre and Nfibflox/flox mice were considered
significant and used for further analysis. These differentially expressed
genes were analyzed for statistically enriched gene ontology terms
using the NCBI DAVID package with the default setting (Huang da et al.,
2007). The mRNA expression profiling datasets have been deposited in
the NCBI Gene Expression Omnibus (GEO) data repository (http://
www.ncbi.nlm.nih.gov/geo/) under Accession number GSE24465.

Results

NFI-B is expressed predominantly in mesenchyme at E14.5 and E16.5,
and in both epithelial cells and mesenchyme at E18.5

We showed previously by lacZ staining in heterozygous NfiblacZ/+

mice that Nfib is expressed almost exclusively in mesenchyme at
E14.5–E16.5 but is expressed in both mesenchyme and epithelium by
E18.5 (Steele-Perkins et al., 2005). To assess the expression pattern of
NFI-B in WT mice, αNFI-B antibodies were used for immunohisto-
chemistry on sections of E14.5, E16.5 and E18.5 lungs. As expected,
from E14.5 to E16.5, NFI-B was expressed almost exclusively in the
nuclei of mesenchymal cells surrounding bronchial tubules (dashed
lines, Figs. 1A, B). At E18.5, dual immunostaining showed that NFI-B
was colocalized with both Thyroid Transcription Factor 1 (TTF-1)
(arrows in Fig. 1C, magnified 5× in inset), a bronchiolar and alveolar
type II epithelial cell marker, and Vimentin (arrows in Fig. 1D,
magnified 5× in inset), a mesenchymal cell marker. These data
suggest that NFI-B likely function primarily in mesenchyme until
E14.5 and in both mesenchyme and epithelium after E16.5.

Loss of Nfib increases cell proliferation but doesn't affect apoptosis

We showed previously that the DNA content/total body weight of
E18.5 Nfib−/− lungs was about double that of WT lungs, suggesting
changes ineither cell proliferation or apoptosis late in lungdevelopment
(Steele-Perkins et al., 2005). To assess cell proliferation, antibodies
against proliferating cell nuclear antigen (PCNA), Ki67 or phospho-
histone H3 (PHH3)were used to stain E18.5 lung sections fromNfib+/+

and Nfib−/− embryos. Multiple markers were used to ensure that any
change in proliferation detected was not marker-dependent. The
number of PCNApositive cellswas increased inNfib−/− lungs compared
with Nfib+/+ lungs (Fig. S2A, B) and quantification of these data (PCNA
positive nuclei/ total nuclei) supported this conclusion (Fig. S2C). In
addition, there were more Ki67 positive cells and PHH3 positive cells in
Nfib−/− lungs than inNfib+/+ lungs (Fig. S2G, H, J, K) and quantification
showed an increase in the number of cells expressing multiple
proliferation markers in Nfib−/− lungs (Fig. S2I, L). To further assess
cell proliferation, bromodeoxyuridine (BrdU)was injected intomice 2 h
before sacrifice and then detectedwithαBrdU antibodies. BrdU staining
was increased significantly in Nfib−/− lungs compared to Nfib+/+ lungs
(Fig. S2D, E, F). These data indicate that loss of Nfib results in
dramatically increased cell proliferation at E18.5.

Apoptosis in E18.5 lungs was examined by immunostaining of
cleaved Caspase 3. The number of cleaved Caspase 3 positive cells is
similar in Nfib+/+ and Nfib−/− lungs (Fig. S3A, B, C). Together, these
data indicate that loss of Nfib increases lung DNA content through
increasing cell proliferation with no affect on apoptosis.

Loss of Nfib increases both TTF-1 positive and TTF-1 negative cell
proliferation

To identify the hyperproliferative cells in Nfib−/− lungs at E18.5,
αTTF-1 antibodywasused to label epithelial cells. Dual immunostaining
for PCNA and TTF-1 revealedmore double positive cells (PCNA+TTF-1+

cells) (arrows in Figs. 2A, B, magnified 5× in insets) in Nfib−/− lungs
than inNfib+/+ lungs. Quantification of these data (PCNA+TTF-1+ cells/
total TTF-1+ cells) (Fig. 2C) supported this conclusion. We also
examined TTF-1− cell proliferation. There was a substantial increase
in TTF1−PCNA+ cells, indicating an increase in TTF-1− cell proliferation
(Fig. 2C). Dual immunostaining for Ki67 and TTF-1 was used to further
assess TTF-1+ and TTF-1− cell proliferation. These data indicate
that more of both Ki67+TTF-1+ and Ki67+TTF-1− cells are present in
Nfib−/− lungs than inNfib+/+ lungs (Figs. 2D–F,magnified 5× in insets).
These data are consistent with our previous PCNA analysis and show
that lossofNfib leads to an increase in proliferation of both epithelial and
mesenchymal cells during lung development.

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/


Fig. 2. Loss of Nfib increases both epithelial (TTF-1+) and mesenchymal (TTF-1−) cell proliferation. Paraffin sections of E18.5 lungs from Nfib+/+ and Nfib−/− embryos were stained
for both PCNA and TTF-1 (A, B) or for both Ki67 and TTF-1 (D, E). Immunostaining reveals there are more PCNA+TTF-1+ cells (arrows) and Ki67+TTF-1+ cells (arrows) in Nfib−/−

lungs compared with Nfib+/+ lungs. Insets in panels A, B, D and E show a 5×magnification. Quantification (C, F) indicates there are more PCNA+TTF-1− cells and Ki67+TTF-1− cells
in Nfib−/− lungs compared with Nfib+/+ lungs. Arrows denote the colocalization of PCNA and TTF-1 or Ki67 and TTF-1 and the region of magnification; *Pb0.05; Scale bars, 50 μm.

Fig. 3. Nfib−/− lungs exhibit decreased epithelial cell differentiation at E18.5. E18.5 lung sections from Nfib+/+ and Nfib−/− embryos were stained for AQP5 (type I epithelial cell
marker) (A, B), pro-SPC (type II epithelial cell marker) (C, D) and CC10 (Clara cell marker) (E, F). Loss of Nfib at E18.5 lungs led to decreased expression of all three epithelial cell
markers. RT-QPCR analysis (G) reveals Aqp5, Sftpc and Scgb1a1 and Foxj1 expression is significantly decreased in Nfib−/− lungs at E18.5. PI and TOPRO3 staining show nuclei;
*Pb0.05; Scale bars, 50 μm.
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Fig. 4. Dermo1-Cre reduces NFI-B expression in Nfibflox/flox lungs in mesenchyme, but not
in epithelium. Lung sections from E16.5 Nfibflox/flox (A) and Nfibflox/flox, D1-Cre (B)
embryos stained for NFI-B showed Dermo1-Cre eliminated almost all NFI-B in
mesenchyme at E16.5. Immunostaining for NFI-B (C, D) in E18.5 Nfibflox/flox and
Nfibflox/flox, D1-Cre lungs reveals Dermo1-Cre eliminated NFI-B expression throughout
the lung mesenchyme at E18.5 but didn't affect NFI-B expression in the epithelial cells
(arrows). Insets show a 5×magnification. Arrows denote NFI-B in bronchiolar epithelial
cells and the region of magnification; Scale bar, 50 μm.

Table 1
Loss of Nfib in mesenchyme results in perinatal lethality.

No. of live animals of each genotype from Nfibflox/+, D1-Cre X Nfibflox/flox matings

Genotype Nfibflox/+ Nfibflox/flox Nfibflox/+, D1-Cre Nfibflox/flox, D1-Cre

Observed 10 14 9 0
Expected 10 10 10 10

4 litters were examined in this experiment. The expected numbers are based on the
number of Nfibflox/+ progeny obtained.
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Loss of Nfib results in decreased epithelial type I, type II, ciliated cell and
Clara cell differentiation

To confirm and extend our previous findings that Nfib is essential
for epithelial cell differentiation, we performed both RT-QPCR and
immunohistochemistry for several cell-type-specific markers. Aqua-
porin 5 (Aqp5), an alveolar type I cell marker, was essentially absent
from Nfib−/− lungs compared with Nfib+/+ lungs (Figs. 3A, B),
consistent with the result of RT-QPCR (Fig. 3G). Expression of pro-
surfactant protein C (Sftpc), an alveolar type II cell marker, was also
decreased in Nfib−/− lungs (Figs. 3C, D) and confirmed by RT-QPCR
(Fig. 3G). Since alveolar type II cells potentially differentiate into type I
alveolar cells during lung injury and lung development (Sugahara et
al., 2006), loss of Nfib could affect alveolar type II cell differentiation
directly and indirectly reduce alveolar type I cell number. Both
Immunostaining and RT-QPCR for CC10 (Scgb1a1), a Clara cell marker,
showed a dramatic decrease in CC10 expression in Nfib−/− lungs
versus Nfib+/+ lungs (Figs. 3E–G). In addition, the levels of Foxj1
transcripts (a ciliated cell marker) were dramatically reduced in the
Nfib−/− lungs (Fig. 3G). These data indicate that loss of Nfib results in
defects in both distal and proximal epithelial cell differentiation.

Dermo1-Cre deletes a floxed Nfib allele specifically in lung mesenchyme

Because Nfib is required for lung maturation and is expressed
almost exclusively in mesenchyme at E14.5, we proposed that Nfib in
lung mesenchyme may regulate the phenotype seen in Nfib−/− lungs.
To test this hypothesis, we created a conditional Nfib allele (Nfibflox)
such that exposure to Cre deletes exon 2 and ~660 bp of adjacent
intronic sequence (Fig. S1A). Nfibflox/flox mice have no overt lung
phenotype, survive to adulthood, are fertile, and at E18.5 express at
least ~70–80% of wild type levels of Nfib (data not shown). To
determine the effect of deleting Nfib exclusively in the mesenchyme,
Dermo1-Cre mice (here termed D1-Cre) were crossed with Nfibflox/flox

mice to generate Nfibflox/+, D1-Cre offspring. Nfibflox/+, D1-Cre mice
were then crossed to Nfibflox/flox mice to generate mesenchymal-
specific Nfib null mice (here termed Nfibflox/flox, D1-Cre). By E16.5, D1-
Cre had efficiently eliminated NFI-B expression in lung mesenchyme
(Fig. 4A, B arrows, magnified 5× in insets). At E18.5, D1-Cre had no
obvious affect on NFI-B expression in epithelium (arrows in Figs. 4C,
D, magnified 5× in insets), indicating thatNfibwas deleted specifically
in the mesenchyme of Nfibflox/flox, D1-Cre mice. These data are
consistent with previous studies showing that D1-Cre specifically
deletes floxed alleles only in lung mesenchyme, but not lung
epithelium (De Langhe et al., 2008;White et al., 2006; Yu et al., 2003).

Perinatal lethality and sacculation defects in Nfibflox/flox, D1-Cre mice

No live Nfibflox/flox, D1-Cre mice were recovered at P0 from 4 litters
(Table 1), while all other genotypes were found in appropriate
numbers. This lethality occurs perinatally since the number of animals
of each genotype recovered at E16.5 and E18.5 was near the predicted
Mendelian frequency of 1:1:1:1 (12 Nfibflox/+ mice, 11 Nfibflox/+, D1-
Cre mice, 8 Nfibflox/flox mice and 12 Nfibflox/flox, D1-Cre mice, 5 litters).
Perinatal lethality is consistent with our previous results with Nfib−/−

mice (Steele-Perkins et al., 2005).
Our and other studies previously found a defect in sacculation in

Nfib−/− mice (Grunder et al., 2002; Steele-Perkins et al., 2005).
Therefore, we examined the morphology and histology of Nfibflox/flox,
D1-Cre lungs at E18.5. Like Nfib−/− lungs, Nfibflox/flox, D1-Cre lungs
were larger than Nfibflox/flox lungs (Fig. 5A). Histological analysis of
E18.5 lungs showed that lungs from Nfibflox/flox, D1-Cre mice had a
severe defect in sacculation, while those from control Nfibflox/flox mice
were well sacculated (Figs. 5D, E). In addition to the defect in
sacculation, we found aberrant clefts in Nfibflox/flox, D1-Cre lungs at
E16.5 and E18.5 (arrows in Figs. 5C, F). Similar clefts were seen
previously in Nfib−/− lungs (Steele-Perkins et al., 2005). These data
show that the Nfibflox/flox, D1-Cre lungs share multiple aberrant
morphological changes with Nfib−/− lungs.

Loss of Nfib in mesenchyme increases cell proliferation

To determine whetherNfib in lungmesenchyme is required for the
control of cell proliferation during lung maturation, we performed
PHH3 immunostaining on E18.5 Nfibflox/flox and Nfibflox/flox, D1-Cre lung
sections. There were more PHH3 positive cells in Nfibflox/flox, D1-Cre
lungs than in Nfibflox/flox lungs (Fig. S4A, B), indicating a higher rate of
proliferation at E18.5 in the former. Ki67 staining was also performed
on E16 and E18.5 lung samples. These data show more Ki67 positive
cells in Nfibflox/flox, D1-Cre lung at both E16.5 and E18.5 (Fig. S4D–G).
Quantification of the immunostaining (Fig. S4C, H) was consistent
with the data from Nfib−/− lungs (Fig. S2C–L) in showing an increase
in cell proliferation.

Loss of Nfib in mesenchyme increases both TTF-1 positive and TTF-1
negative cell proliferation

To determine whether the increased proliferation in Nfibflox/flox,
D1-Cre lungs was predominantly in the epithelial or mesenchymal
compartments, we performed dual staining for TTF-1 and Ki67 on
sections of E16 and E18.5 lungs. Notably, more Ki67+TTF-1+ cells

image of Fig.�4


Fig. 5. Sacculation and lungmorphology is affected by loss of Nfib in mesenchyme. Dissected left lobes of Nfibflox/flox andNfibflox/flox,D1-Cre lungs are shown unstained at E18.5 (A), and
H&E stained at E16.5 (B, C) and E18.5 (D, E, F). Nfibflox/flox, D1-Cre lungs were larger than Nfibflox/flox lungs (A). H&E staining shows abnormal clefts (arrows in C, F) in Nfibflox/flox, D1-Cre
lungs at E16.5 (C) and E18.5 (F). At E18.5, there is increased mesenchyme thickness and reduced sacculation in Nfibflox/flox, D1-Cre lungs. Scale bar, 50 μm.

Fig. 6. Loss of Nfib in mesenchyme increases TTF-1 positive and TTF-1 negative cell proliferation. Paraffin sections of E18.5 and E16.5 lungs from Nfibflox/flox and Nfibflox/flox, D1-Cre
embryos were stained for both Ki67 and TTF-1 (A, B, C, D). Insets show a 5× magnification. Immunofluorescence staining reveals there were more Ki67+TTF-1+ cells (arrows) in
Nfibflox/flox, D1-Cre lungs compared with Nfibflox/flox lungs at E16.5 and E18.5 (E). The percentage of Ki67+TTF-1− cells was also higher in Nfibflox/flox, D1-Cre lungs at E16.5 (F). In
contrast, the percentage of Ki67+TTF-1− cells was similar between Nfibflox/flox and Nfibflox/flox, D1-Cre lungs at E18.5 (F). Arrows denote the colocalization of Ki67 and TTF-1 and the
region of magnification; *Pb0.05; Scale bar, 50 μm.
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were present in Nfibflox/flox, D1-Cre lungs relative to Nfibflox/flox lungs
indicating increased proliferation of epithelial cells (arrows in
Figs. 6A–D, magnified 5× in insets). Quantification confirmed an
increase in the percentage of Ki67+TTF-1+ cells (Fig. 6E). Further-
more, we determined the percentage of Ki67+TTF-1− cells at E16.5
and E18.5. The percentage of Ki67+TTF-1− mesenchymal cells in
Nfibflox/flox, D1-Cre lungs was higher at E16.5 and then decreased to a
level similar to that seen in Nfibflox/flox lungs by E18.5 (Fig. 6F). These
data indicate that loss of Nfib in mesenchyme results in an increase in
both TTF-1+and TTF-1− cell proliferation during lung development.
However, at E18.5 the apparent rate of TTF-1− cell proliferation
appears similar in Nfibflox/flox and Nfibflox/flox, D1-Cre lungs, which is
different from that seen in Nfib+/+ vs. Nfib−/− lungs (Figs. 2D–F). We
discuss later possible reasons for these relatively minor differences in
apparent TTF-1− cell proliferation.

Loss of Nfib in mesenchyme affects epithelial cell differentiation and
surfactant gene expression

As done with Nfib−/− lungs, we assessed multiple epithelial cell
differentiation markers in Nfibflox/flox, D1-Cre lungs by immunostain-
ing. AQP5 and pro-SPC stainingwas significantly reduced inNfibflox/flox,
D1-Cre lungs relative to Nfibflox/flox lungs (Figs. 7A–D). RT-QPCR
analysis showed that Aqp5 and Sftpc transcript levels were also
significantly decreased with loss of Nfib in the mesenchyme (Fig. 7G).
In addition, as was seen in germline Nfib KO lungs (Fig. 3G) the
expression of the ciliated cell marker Foxj1 was substantially
decreased in the Nfibflox/flox, D1-Cre lungs (Fig. 7G). In contrast,
Fig. 7. Loss of Nfib in mesenchyme affects type I and type II epithelial cell differentiation. E1
(A, B), pro-SPC (C, D) and CC10 (E, F). AQP5, pro-SPC and Foxj1 transcript expression w
immunostaining and RT-QPCR revealed CC10 (Scgb1a1) protein and transcript levels were
Sftpa1, Sftpb and Sftpd expression was significantly reduced in Nfibflox/flox, D1-Cre lungs (H).
Scgb1a1 (CC10) expression was similar in Nfibflox/flox and Nfibflox/flox,
D1-Cre lungs as assessed by both immunostaining (Figs. 7E–F) and RT-
QPCR (Fig. 7G). These data show that mesenchymal Nfib is clearly
required for Type I, Type II and ciliated cell differentiation, but fail to
support a role of mesenchymal expression of Nfib in the regulation of
Clara cell differentiation.

RT-QPCR analysis showed that mRNA levels of the other surfactant
proteins, including surfactant protein A (Sftpa1), surfactant protein B
(Sftpb) and surfactant protein D (Sftpd), were dramatically decreased
in Nfibflox/flox, D1-Cre lungs compared with Nfibflox/flox lungs at E18.5
(Fig. 7H). Thus, loss of Nfib in mesenchyme results in defects in distal
epithelial cell differentiation as assessed by surfactant protein gene
expression.

Loss of Nfib in mesenchyme affects the expression of genes related to
lipid production, extracellular matrix, cell adhesion and the FGF
signaling pathway

To assess potential target genes of NFI-B that could affect cell
proliferation and distal epithelial cell differentiation during lung
maturation, we performed microarray analysis on RNA from E18.5
Nfibflox/flox and Nfibflox/flox, D1-Cre lungs. Genes with expression
changes of 1.5 fold or greater and p-values of b0.05 were selected
for further analysis (see Table S1).

The expression of genes involved in a number of biological
processes, including extracellular matrix and cell adhesion appear
affected by loss ofNfib in lungmesenchyme (Fig. 8A). To confirm these
expression data, the transcript levels of several genes, including
8.5 lung sections from Nfibflox/flox and Nfibflox/flox, D1-Cre embryos were stained for AQP5
as also reduced in Nfibflox/flox, D1-Cre lungs, as shown by RT-QPCR (I). In contrast,

similar in Nfibflox/flox and Nfibflox/flox, D1-Cre lungs. Along with reduced Sftpc expression,
*Pb0.05; Scale bars, 50 μm.
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Elastin (Eln), Fibronectin (Fn1), collagen, type IV, alpha 3 (Col4a3) and
Ephrin A3 (Efna3), were examined using RT-QPCR. The RT-QPCR data
are consistent with our microarray data (Figs. 8B–E), indicating an
effect on genes involved in extracellular matrix production and cell
adhesion in Nfibflox/flox, D1-Cre mice. The transcripts levels of Tenascin
C (Tnc), an extracellular matrix protein involved in lung vasculogen-
esis and smooth muscle cell differentiation (Cohen et al., 2009) were
also examined. Therewas no significant change of Tnc transcript levels
between Nfibflox/flox and Nfibflox/flox, D1-Cre lungs (fold change=1,
P=0.5) (Fig. S5).

In addition, we examined the expression of Fgf7 and Fgf10
transcripts because both of these FGFs are expressed in lung
mesenchyme and have been implicated in epithelial cell differenti-
ation as part of a paracrine pathway (Min et al., 1998; Nyeng et al.,
2008; Shannon et al., 1999). Interestingly, Fgf7 expression is
significantly decreased in Nfib−/− lungs (fold change=−1.6,
P=0.03) but essentially unchanged in Nfibflox/flox, D1-Cre lungs (fold
change=−1.2, p=0.2) (Fig. 8F). Increased levels of Fgf10 transcripts
were detected in both Nfib−/− and Nfibflox/flox, D1-Cre lungs (Fig. 8G),
suggesting an excess of FGF-10 might attenuate epithelial cell
differentiation and trigger cell proliferation, as was seen previously
in Fgf10 overexpressing mice (Nyeng et al., 2008).

Finally, lipid and surfactant production are critical for lung
function. Our microarray analysis also found decreased expression
of several genes related to lipid and surfactant protein production
(Table S2), suggesting that multiple pathways influencing epithelial
cell function and differentiation are altered in Nfibflox/flox, D1-Cre lungs.
Fig. 8. Microarray and RT-QPCR analysis show changes in the expression of genes involved i
(A) Microarray studies show that loss of Nfib in mesenchyme influences the expression of
several genes from the microarray data were confirmed by RT-QPCR from lung RNA isolate
expression of Fgf7 and Fgf10 were measured using RT-QPCR from lung RNA isolated from E
Elastin is an NFI-B target gene during lung development

We next asked whether any of the genes whose expression was
affected by loss of Nfib might be direct NFI-B target genes. A NFI
binding site between−401 and−415 in the human Elastin gene was
characterized previously using in vitro DNA-binding assays and
transient transfection analysis (Degterev and Foster, 1999). We
examined the corresponding sequence of the mouse Eln promoter
and identified 3 putative NFI binding sites located between −467 bp
and −344 bp in a region highly homologous to the human ELN
promoter (Fig. 9A). To test whether these sites are bound by NFI-B in
vivo in E16.5 mouse lungs we performed ChIP analysis. Both standard
PCR and QPCR indicate that NFI-B binding occurs in the region
containing these three predicted NFI-B binding sites (Figs. 9B–C). In
contrast, there is no enrichment in the region of the first intron of β2-
microglobulin, the negative control region used in our ChIP assay
(Figs. 9B–C). These data indicate that NFI-B binds to this region of the
mouse Eln promoter at E16.5. To determine whether NFI-B could
activate endogenous Eln expressionwe transfectedMEFs with either a
control GFP vector or a vector expressing NFI-B2 from the CMV
promoter (Fig. 9D). The NFI-B2 isoform was used because it is the
major spliced isoform of NFIB in lung (data not shown). Transient
expression of NFI-B2 increased Eln expression by ~4 fold in MEFs
when compared to the control GFP vector. Taken together these data
indicate that Nfib can regulate Eln expression, most likely through the
conserved NFI binding sites in the promoter region. Since Eln is
expressed exclusively in mesenchyme (Mariani et al., 1997; Pierce et
n extracellular matrix, cell adhesion and FGF signaling pathway in Nfib−/− E18.5 lungs.
genes associated with extracellular matrix and cell adhesion. Decreased expression of
d from E18.5 Nfib mesenchyme-specific knockout and WT mice (B–E). In addition, the
18.5 Nfib knockout, mesenchyme-specific knockout and WT mice (F–G). *Pb0.05.

image of Fig.�8


Fig. 9. The promoter region of Eln is bound by NFI-B during lung development and NFI-B can activate endogenous Eln expression. Three putative NFI binding sites were found in the
mouse Eln promoter (A). ChIP-PCR (B) and ChIP-QPCR (C) were performed as described in methods and indicate that NFI-B in binds to the mouse Eln promoter in E16.5 mouse lungs.
Transient expression of NFI-B in MEFs increases the expression of endogenous Eln expression (D). *Pb0.05.

250 Y.-C. Hsu et al. / Developmental Biology 354 (2011) 242–252
al., 2006), we propose Eln as a mesenchyme-specific target gene of
Nfib. We are currently investigating which other genes whose
expression is affected by loss of Nfib may be direct targets of NFI-B.

Discussion

Here we show a critical role for mesenchymal expression of NFI-B
in regulating fetal lung maturation. We confirmed that NFI-B is
expressed predominantly in lung mesenchyme at E14.5 and in both
epithelial cells and mesenchyme at E18.5 (Fig. 1). Loss of Nfib results
in lung hyperplasia and inhibition of Clara cell, ciliated cell, and distal
epithelial cell differentiation (Figs. 2 and 3, S2). Further, the data from
our conditional KO mice show that the loss of Nfib in only
mesenchyme appears responsible for the majority of defects seen in
Nfib−/− lungs, with the exception of the inhibition of Clara cell
differentiation (Figs. 4–7, S4). Finally, the microarray analysis reveals
that Nfib in mesenchyme may directly regulate the expression of
genes related to the synthesis of extracellular matrix, cell adhesion
and the FGF signaling pathway (Figs. 8 and 9). Taken together, these
data provide new insights into the role of mesenchymal Nfib in the
regulation of cell proliferation and maturation in the lung.

NFI-B regulates lung maturation and cell proliferation

Previous studies showed that loss of Nfib in all cells in the lung
prevents normal lung maturation (Grunder et al., 2002; Steele-
Perkins et al., 2005). Here, similar though not identical defects in lung
maturationwere found in Nfibflox/flox, D1-Cre lungs, indicating that Nfib
expression specifically in mesenchyme is required for normal lung
maturation. In contrast, CC10 expression was decreased in Nfib−/−

lungs but unchanged in Nfibflox/flox, D1-Cre lungs, suggesting a possible
direct effect of NFI-B on Clara cell differentiation. Further loss-of
function and gain-of-function studies on Nfib in lung epithelium will
be needed to address this possibility.

Cell proliferation and relatively low levels of apoptosis occur
throughout embryonic lung maturation (Stiles et al., 2001). A fraction
of lung mesenchymal cells undergo apoptosis during the pseudo-
glandular and saccular stages of lung development, and this process is
more obvious around birth (Kresch et al., 1998; Scavo et al., 1998). In
our Nfib-deficient lungs, there is no change in the number of cleaved
Caspase 3 positive cells at E18.5 (Fig. S2A-C). In contrast, an increase
in cell proliferation marker expression was observed in both germline
Nfib-deficient and mesenchyme-specific Nfib deficient lungs (Figs. 2
and 6, S2 and 4). These data strongly indicate that an increase in cell
proliferation rather than a decrease of apoptosis is the cause of the
increase in DNA content and lung size in Nfib-deficient mice. We
observed increases in proliferation marker expression in both TTF+

and TTF− cells in germline Nfib-deficient lungs at E18.5 (Fig. 2).
Interestingly, in the mesenchyme-specific Nfib-deficient lungs there
was an increase in proliferation marker expression in both cell
populations at E16.5, but no apparent increase in expression in
mesenchymal cells at E18.5 (Fig. 6). The lack of increased proliferation
marker expression in the TTF− cells at E18.5, despite the clear loss of
Nfib in the TTF− cells, may indicate that Nfib in TTF+ lung epithelium
can influence the proliferation of TTF− cells during lung maturation.
Further studies where Nfib is deleted specifically in epithelial cells are
needed to address this issue.

Prenatal glucocorticoid treatment has been a standard therapy to
stimulate lung maturation in premature infants (Crowley, 1995;
Liggins, 1968, 1969; Liggins and Howie, 1972). Glucocorticoid
receptor (GR)−/− (Cole et al., 1995) and corticotrophin-releasing
hormone (Crh)−/− (Muglia et al., 1999) mice display defective lungs
with few or no saccules and an increase in cell proliferation, similar in
many respects to the phenotype of Nfib-deficient lungs. While the
expression levels of these two genes is not reduced in Nfib-deficient
lungs (data not shown), it is possible that NFI-B may function
downstream of GR signaling and/or may cooperate with GR to
promote lung maturation. Indeed the transcription of several GR-
regulated genes has been shown to be co-regulated both positively
and negatively by NFI proteins (Chaudhry et al., 1999; Hebbar and
Archer, 2007). Since microarray data from E18.5, GR−/− lungs has
been published (Bird et al., 2007), it will be of interest to identify
common lung maturation-related genes in the Nfib−/− and GR−/−

microarray data which could relate to the common morphological
changes seen in these mutant lungs.

Mesenchymal NFI-B regulates epithelial cell differentiation

Defects of distal epithelial cell differentiation were found in both
Nfib−/− and Nfibflox/flox, D1-Cre lungs, indicating NFI-B may regulate

image of Fig.�9
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this process through paracrine signaling. Among the genes whose
transcript levels are reduced in Nfibflox/flox, D1-Cre lungs is Fibronectin 1
(Fn1) Fn1 is necessary for epithelial cell differentiation in primary
cultures of lung epithelial cells (Isakson et al., 2001; Olsen et al., 2005;
Roman, 1997). It is possible that decreased mesenchymal expression of
Fn1 could affect distal epithelial cell differentiation in our Nfib-deficient
mice. Eln transcript expression was decreased ~3 fold in Nfib-deficient
lungs (fold change=−3.0, P=0.007). Elastin synthesis is required for
breath and lung extension (Shifren andMecham, 2006; Starcher, 2000)
and Eln−/− mice die by P3.5 with lung alveolar defects (Wendel et al.,
2000). In addition, mechanical stretch has been demonstrated to
promote type II epithelial cell differentiation (Sanchez-Esteban et al.,
2001; Wang et al., 2009). While Eln−/− mice show no lung maturation
defects at E18.5 (Wendel et al., 2000), it is possible that the reduction in
Eln expression, in conjunctionwith the decreased expression of Fn1 and
other genes, could inhibit lung extension inNfib-deficientmice and thus
inhibit epithelial cell differentiation. Previous studies showed that the
human ELN promoter contained an NFI binding site that was required
for NFI-induced expression of the promoter in transient reporter assays
(Degterev and Foster, 1999). Here we have demonstrated that NFI-B
binds to the Eln promoter in mouse lungs in vivo at E16.5 and can
activate endogenous Eln expression (Fig. 9). It will be important in
future studies to determine how direct binding of NFI-B to the Eln
promoter in vivo regulates Eln expression and whether decreased Eln
expression in Nfib−/− lungs directly or indirectly influences lung
maturation. In addition, it will be important to assess gene expression
profiles atmultiple stages of lung development to determine howmany
of the changes in gene expression seen in the E18.5 Nfibflox/flox, D1-Cre
lungs reflect direct targets of Nfib that could mediate the lung-
maturation phenotype, versus secondary changes due to the altered
differentiation state of the mutant lungs.

While the initial microarray data showed no significant difference in
the levels of Fgf10 transcripts (fold change=1.2, P=0.13), subsequent
QPCR analysis showed that Fgf10 expressionwas consistently increased
in both Nfib−/− (fold change=2.0, P=0.0007) and Nfibflox/flox, D1-Cre
lungs (fold change=2.1, P=0.003). Such discrepancies indicate the
importance of careful testing of individual candidate genes from
microarray analysis by QPCR. The overexpression of Fgf10 during lung
development results in some changes similar to those seen in Nfib-
deficient lungs, including lung hyperplasia and inhibition of distal
epithelial cell differentiation (Clark et al., 2001; Nyeng et al., 2008).
However, the defects in branching morphogenesis, increase in pro-SPC
and TTF-1 expression, and the formation of a layer of smooth muscle
cells around the lung perimeter seen in lungs in which Fgf10 is highly
overexpressed were not observed in Nfib-deficient lungs. This may be
due to differences in the timing, degree and spatial distribution of Fgf10
overexpression in the two systems. In future studies, it will be useful
to determine whether reduction of Fgf10 expression can partially
rescue thedefects ofNfib-deficient lungs by crossing Fgf10−/+micewith
Nfib−/+ mice.

Previous studies on lung maturation focused primarily on genes
expressed in lung epithelial cells, such as Klf5 (Wan et al., 2008), Tgfb1
(Zhou et al., 1996), Cebpa (Berg et al., 2006; Martis et al., 2006), Vegf
(Zeng et al., 1998), T1a (Millien et al., 2006), GR (Manwani et al.,
2010), Carm1 (O'Brien et al., 2010), Pparγ (Simon et al., 2006), Alk5
(Xing et al., 2010) and Pdgfa (Li and Hoyle, 2001). There is far less data
on how gene expression in mesenchyme regulates lung maturation.
Here we found that Nfib in lung mesenchyme is necessary for lung
maturation and epithelial cell differentiation. These studies suggest
that Nfib in lung mesenchyme regulates cell proliferation and distal
epithelial cell differentiation through regulation of the expression of
genes related to extracellular matrix deposition, cell adhesion and/or
FGF signaling. Future studies will focus on defining in more detail the
molecular mechanisms by which NFI-B in mesenchyme affects
epithelial cell differentiation and both epithelial and mesenchymal
cell proliferation during lung maturation.
Supplementarymaterials related to this article can be found online
at doi:10.1016/j.ydbio.2011.04.002.
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