Normal subgroup
Notation: 
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 means H is a normal subgroup of G
A subgroup H of G for which aH = Ha for all a in G.
Normal subgroup test
A subgroup H of G is normal in G if and only if 
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 for all x in G.
Factor group, denoted G/H
Let G be a group and H a normal subgroup of G.  Then 
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 is a group under the operation

(aH)(bH) = abH. 
The G/Z Theorem
Let G be a group and Z(G) be the center of G.  If G/Z(G) is cyclic, then G is Abelian. 
G/Z(G) ≈ Inn(G) 
For any group G, G/Z(G) ≈ Inn(G).
Cauchy’s Theorem for Abelian groups
Let G be a finite Abelian group and p a prime that divides |G|.  Then G has an element of order p.

Internal direct product of H and K, denoted 
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Given normal subgroups H and K of G, we say that G is the internal direct product of H and K and write 
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(1) G = HK = 
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Internal direct product 
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Given normal subgroups H1, H2, … Hn of G, we say that G is the internal direct product of H1, H2, … Hn and write  
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if

(1) G = H1, H2, … Hn = 
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(2) 
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 for i = 1, 2, …, n-1.
Isomorphism of internal and external direct products

If a group G is the internal direct product of a finite number of subgroups H1, H2, … Hn, then 
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