Cyclic (pertaining to a group)
Having an element a which is a generator, i.e., for which 
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Criterion for ai = aj
Let a be an element of a group G.  If a has an infinite order, then all distinct powers of a are distinct group elements.  If a has a finite order, say n, then 
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and ai = aj if and only if n divides
i-j.

Corollaries of criterion for ai = aj
(1) 
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(2) ak = e implies |a| divides k.
Criterion for 
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Let |a| = n.  Then 
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 if and only if

gcd(n,i) = gcd(n,j).
Generators of cyclic subgroups
Let 
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 be a cyclic group of order n.  Then 
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 if and only if gcd(n,k) = 1.
Generators of Zn
An integer k in Zn is a generator of Zn if and only if
gcd(n,k) = 1.
Fundamental Theorem of Cyclic Groups
Every subgroup of a cyclic group is cyclic.  Moreover, if 
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is a divisor of n.  In addition, for each positive divisor k of n, the group 
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has exactly one subgroup of order k, namely 
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Subgroups of Zn
For each positive divisor k of n, the set 
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 is the unique subgroup of Zn of order k.  Furthermore, these are the only subgroups of Zn.
Number of elements of each order in a cyclic group
If d is a positive divisor of n, the number of elements of order d in a cyclic group of order n is φ(d).

Number of elements of order d in a finite group
In a finite group, the number of elements of order d is divisible by φ(d).
Euler phi function, denoted φ(d)
φ(1) = 1.

For n > 1, φ(n) is the number of positive integers less than n and relatively prime to n.
Subgroup lattice
A diagram showing the relationships among the various subgroups of a group.
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