
Automorphism of E



E is an extension of field F.

A ring isomorphism from E onto E.

Galois Group of E Over F


The set of all automorphisms of E that take every element of F to itself.


Denoted .


Fixed field of H


H is a subgroup of .


The set .


Fundamental Theorem of Galois Theory
(Part 1 of 2)





Let F be a field of characteristic 0 or a finite field.  If E is the splitting field over F for some polynomial in , then the mapping from the set of subfields of E containing F to the set of subgroups of  given by  is a one-to-one correspondence.  Furthermore, for any subfield K of E containing F,

1. 



 and  . [The index of  in  equals the degree of K over F.]


Fundamental Theorem of Galois Theory
(Part 2 of 2)



2. 




If K is the splitting field of some polynomial in , then  is a normal subgroup of  and  is isomorphic to .
3. 

.  [The fixed field of  is K.]
4. 


If H is a subgroup of , then .  [The automorphism group of E fixing  is H.]


Solvable by Radicals Over F



Let F be a field, and .







 splits in some extension  of F and there exist positive integers  such that  and  for .
1. 

Solvable Group






A group G has a series of subgroups , where for each ,  is normal in  and  is Abelian.



Splitting Field of  





Let F be a field of characteristic 0 and let .  If E is the splitting field of  over F, then the Galois group  is solvable.




Factor Group of a Solvable Group Is Solvable



A factor group of a solvable group is solvable.


N and G/N Solvable Implies G Is Solvable


Let N be a normal subgroup of a group G.  If both N and G/N are solvable, then G is solvable.


Solvable by Radicals Implies Solvable Group





Let F be a field of characteristic 0 and let .  Suppose that  splits in , where






 and  for .  Let E be the splitting field for  over F in .  Then the Galois group  is solvable.
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