
Extension field



F is a field.


A field E for which  and for which the operations of F are those of E restricted to F.


Fundamental Theorem of Field Theory
(Kronecker’s Theorem)





Let F be a field and   a nonconstant polynomial in .  Then there is an extension field E of F in which  has a zero.



 splits in E


E is an extension field of F.



 can be factored as a product of linear factors in .



Splitting field for  over F


F is a field.



An extension field E of F in which  splits, but for which  does not split in any proper subfield of E.



Existence of Splitting Fields






Let F be a field and let  be a nonconstant element of .  Then there exists a splitting field E for  over F.



 








Let F be a field and  be irreducible over F.  If a is a zero of  in some extension E of F, then  is isomorphic to .  Furthermore, if , then every member of  can be uniquely expressed in the form


 


where .

1. 


 




Let F be a field and  be irreducible over F.  If a is a zero of p(x) in some extension E of F and b is a zero of p(x) in some extension E’ of F, then the fields  and  are isomorphic.


Lemma, p. 351









Let F be a field, let  be irreducible over F, and let a be a zero of  in some extension of F.  If  is a field isomorphism from F to F’ and b is a zero of  in some extension of F’, then there is an isomorphism from  to  that agrees with  on F and carries a to b. 





Extending  








Let  be an isomorphism from a field F to a field F’ and let .  If E is a splitting field for  over F and E’ is a splitting field for  over F’, then there is an isomorphism from E to E’ that agrees with  on F.


Splitting Fields Are Unique




Let F be a field and let .  Then any two splitting fields of  over F are isomorphic.


Derivative




Let  belong to .



The polynomial  in .




Properties of the Derivative




Let  and let .  Then

1. 
.
2. 
.
3. 
 



Criterion for Multiple Zeros






A polynomial  over a field F has a multiple zero in some extension E if and only if  and  have a common factor of positive degree in .

Zeros of an Irreducible









Let  be an irreducible polynomial over a field F.  If F has characteristic 0, then  has no multiple zeros.  If F has characteristic , then  has a multiple zero only if it is of the form  for some .


Perfect field



A field F with characteristic 0 or with characteristic p and .


Finite Fields Are Perfect


Every finite field is perfect.


Criterion for No Multiple Zeros




If  is an irreducible polynomial over a perfect field F, then  has no multiple zeros.


Zeros of an Irreducible over a Splitting Field





Let  be an irreducible polynomial over a field F and let E be a splitting field of  over F.  Then all the zeros of  in E have the same multiplicity.



Factorization of an Irreducible over a Splitting Field









Let  be an irreducible polynomial over a field F and let E be a splitting field of .  Then  has the form , where  are distinct elements of E and .
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