(Group) homomorphism
A mapping φ from a group G into another group H that is operation preserving, i.e., for which φ(ab) = φ(a)φ(b) for all a, b in G.
Kernel of a homomorphism, denoted Ker φ
The set 
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Properties of elements under homomorphisms
Let φ be a homomorphism from a group G to a group 
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 and g be an element of G.  Then

(1) φ carries the identity of G to the identity of 
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.

(2) φ(gn) = [φ(g)]n for all n in Z.

(3) If |g| is finite, then |φ(g)| divides |g|.

(4) Ker φ is a subgroup of G.

(5) If φ(g) = h, then 
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Some properties of subgroups under homomorphisms
Let φ be a homomorphism from a group G to a group 
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 and H be a subgroup of G.  Then

(1) 
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 is a subgroup of 
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(2) If H is cyclic, so is φ(H).

(3) If H is Abelian, so is φ(H).

(4) If H is normal in G, then φ(H) is normal in φ(G).

(5) If |Ker φ| = n, then φ is an n-to-1 mapping from G onto φ(G).

More properties of subgroups under homomorphisms
Let φ be a homomorphism from a group G to a group 
[image: image8.wmf]G

 and H be a subgroup of G.  Then

(6) If |H| = n, then |φ(H)| divides n.

(7) If 
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(8) If 
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(9) If φ is onto and Ker φ = {e}, then φ is an isomorphism from G to 
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Kernels are normal

Let φ be a group homomorphism from G to 
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.  Then 
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First Isomorphism Theorem
Let φ be a group homomorphism from G to 
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.  Then the mapping from G/Ker φ to φ(G) given by 
[image: image17.wmf] Ker (g)
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 is an isomorphism.
In symbols, G/Ker φ ≈ φ(G).
Normal subgroups are kernels 
Every normal subgroup of a group G is the kernel of a homomorphism of G.  In particular, a normal subgroup N is the kernel of the mapping g→gN from G to G/N.
Pullback
Same as inverse image.

The N/C theorem
Given a subgroup H of G, N(H) /C(H) is isomorphic to a subgroup of Aut(H).
Natural homomorphism from G to G/N
The mapping γ:G→G/N for which γ(g) = gN.
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