Predication and NP Structure in an Omnipredicative Language: The Case of Khoekhoe

Michael Hahn

2014

1 The Phenomenon

Launey (1994, 2002) has proposed the concept of omnipredicativity, describing languages where members of all major open word classes can function equally and without derivation as predicates, and in which the predicative use is primary and referential use is derived syntactically by relativation. Omnipredicativity is different from the lack of word classes: in Classical Nahuatl, the language studied by Launey, nouns and verbs are clearly distinguished by their morphological properties, but on the syntactic level, nouns and verbs can both be used predicatively and referentially in the same ways.

While there has been interest in the analysis of nonverbal predication in HPSG (e.g., Bender, 2001, Henri & Abeillé, 2007), to our knowledge, predication in languages exhibiting omnipredicativity has not been addressed in HPSG. In this paper, we examine noun phrases and predication in Khoekhoe, a Khoisan language spoken in Namibia and South Africa. We show that it exhibits features typical of ‘omnipredicative’ languages and present a formal HPSG analysis, in which members of all open word classes enter the syntax as predicates and in which all argument NPs are derived in a uniform manner as projections of pronominal elements, modified by relative clauses. Despite the radical differences between Khoekhoe and European languages in the relevant areas, our analysis will crucially build on standard components of HPSG analyses. No special rule licensing predicative use of nouns is required, and referential use will be derived based on Sag’s (1997) analysis of English relative clauses.

In Khoekhoe, there are three open word classes: verbs, nouns, and adjectives. They are clearly distinguished, first, by the derivation morphemes applicable to them: only verbs and adjectives allow valencey-changing suffixes (passive, reflexive, reciprocal, applicative, pronominal object markers), while only nouns can form diminutives. Second, only nouns can have inherent gender. Third, adjectives and nouns have a fixed order within NPs: adjectives can modify nouns, but not the other way around. Nonetheless, the three classes show striking similarities in their syntactic behavior.

Khoekhoe is an SOV language. The V slot may be occupied by a word from any of the three open word classes: a verb (1a), an adjective (1b), or a noun (1c-d). Both commons nouns (1c) and proper nouns (1d) can be used. Even deictic elements can act as predicates (1e-f). While the choice of the TAM marker depends on the predicate, the syntactic behaviour of the different predicates is entirely parallel.

1. saa=ts ge ra |khii
 ‘You are coming.’
 (1a)

2. om=s ge a kai
 house=3s DECL TAM big
 ‘The house is big.’

3. saa=ts ge a gao-ao
 ‘You are a king.’

4. saa=ts ge a Petru
 ‘You are Petrus.’

5. om=s ge a nee
 ‘The house is this one.’

6. tii=ta ge a saa
 I=1s DECL TAM you
 ‘I am you.’

Khoekhoe NPs are not marked for definiteness and the choice of definiteness in the translations is arbitrary.
Unlike languages like Russian and Arabic, it is not possible to simply analyze these clauses as copulative structures. The crucial point is that the predicative element in (1c-f) is not an NP as it would occur in an argument position. In Khoekhoe, argument NPs generally end with a person-gender-number (PGN) morpheme \(=b \) in 2a-b, \(=ts \), \(=ta \) and \(=s \) in 1), which is not found when a noun is used as a predicate. Compare the NP \(g\text{ao-ao}=b \) in (2) with the predicative noun \(g\text{ao-ao} \) in (1c):

\[
\begin{align*}
\text{(2) a. } & \ [g\text{ao-ao}=b \text{ ge ra }] \text{ khii } \text{ b. } [g\text{ao-ao}=b \text{ } \text{ !oa ra mi}i]
\end{align*}
\]

\‘The king is coming.’ ‘I am speaking to the king.’

On the other hand, there is a close parallelism between argument NPs headed by a noun and free relative clauses functioning as arguments. Free relative clauses consist of a clause containing a gap (or a resumptive pronoun) and a final PGN morpheme indicating the index features of the referent:

\[
\begin{align*}
\text{(3) a. } & \ [\text{come }] \text{ TAM=3MS } \text{ b. } \text{ see=1S TAM=3MS}
\end{align*}
\]

\‘the one (m.) who is coming’ ‘the one (m.) I am seeing’

Formally, a major difference between the relative clauses in (3) and the argument NPs in (2) seems to be that the NPs do not contain a TAM marker. But this just reflects a usage preference: an NP may carry a TAM marker \(g\text{ao-ao a}=b \text{ king TAM=3MS } \text{‘the king’} \), compare this with (1b)) and a verbal predicate may occur without a TAM marker \((saa=ts \text{ ge } k\text{hii } \text{‘you come’}, \text{ cf. } \text{ (1a)}), \) but these options are dispreferred, possibly because nouns generally denote permanent properties for which TAM marking within an argument NP would add no information.

Argument NPs headed by a noun may also be marked for negation in a way completely parallel to predicates:

\[
\begin{align*}
\text{(4) a. } & \ [\text{come=2MS DECL TAM } \text{ km=2MS DECL TAM } \text{ km=3MS DECL TAM}
\end{align*}
\]

\‘You are coming.’ ‘You are a king.’ ‘He is a king.’

Since the TAM marker \(a \) and the declarative clause type marker \(ge \) are optional in clauses like (5b-c), this has the consequence that expressions which look like noun phrases, such as \(g\text{ao-ao}=b \text{ in } \text{(5c)} \), may constitute clauses. This is reminiscent of the situation in Nahuatl, where a noun phrase may constitute an utterance, which Launey considers typical of ‘omnipredicative’ languages.

The parallelism extends to more complex NPs with modifiers, since nouns may form complex predicates with modifiers such as adjectives (6a) and relative clauses (7a):

\[
\begin{align*}
\text{(6) a. } & \ [\text{Petru=3MS DECL TAM friendly person } \text{ Petru NEG} \text{ Petru NEG=3MS}
\end{align*}
\]

\‘Petru is not Petru.’ ‘the one who is not Petru’

The same behaviour is exhibited by all members of closed word classes that may, when combined with a PGN marker, form an argument NP. For instance, argument NPs that have traditionally been regarded as personal pronouns such as \(saa=ts \text{ ‘you (m.s.)’} \) actually consist of a deictic element that may also function as a predicate (as in 1f), and a PGN marker. The only lexical elements that can function referentially but not as predicates are the PGN markers
themselves, which are also used as enclitic subject pronouns. Any more complex NP can be analyzed as consisting of a relative clause or a predicate and a PGN marker. As this is exactly the structure of free relative clauses in Khoekhoe, we claim that all NPs (except for the bare PGN markers) are free relative clauses – as argued for Classical Nahuatl by Launey (Launey, 2002, 117). As Khoekhoe nouns are essentially predicates and phrases only become referential by the addition of PGN markers, we assume that the PGN marker always is the head, which is compatible with the general head-final word-order of Khoekhoe. We will henceforth refer to Khoekhoe argument ‘NPs’ as DPs.

2 Analysis

We assume that not only verbs, but also nouns, adjectives, and some other words including deictics enter the syntax as predicates, with a non-empty SUBJ list, and that any phrase with an empty COMPS list and a non-empty SUBJ list may combine with a subject DP in a head-subj-phrase to form a clause. For instance, we assume the following entries for the noun khoe ‘person’ and the adjectivee khoexa ‘friendly’:

\[(8) \]

\[
\begin{array}{c}
\text{CAT} \\
\text{COMPS} \langle \rangle \\
\text{HEAD} \langle \text{noun} \rangle \\
\text{CONT} \langle \text{INCONT} \text{person}' \rangle \\
\text{PARTS} \langle \text{person}', \alpha(x_i) \rangle \\
\wedge \{ \alpha \succ \text{person}' \}
\end{array}
\]

\[
\begin{array}{c}
\text{CAT} \\
\text{COMPS} \langle \rangle \\
\text{HEAD} \langle \text{adjective} \rangle \\
\text{CONT} \langle \text{INCONT} \text{friendly}' \rangle \\
\text{PARTS} \langle \text{friendly}', \alpha(x_i) \rangle \\
\wedge \{ \alpha \succ \text{friendly}' \}
\end{array}
\]

where \(DP \) is an abbreviation for a saturated structure with head pgn-marker. The left structure is very similar to those resulting from a lexical rule licensing predicative nouns in English assumed, for instance, by Ginzburg & Sag (2001), but nouns do not have corresponding non-predicative lexical entries in Khoekhoe.

The semantic contribution is formalized using the underspecified framework of Lexical Resource Semantics (LRS, Richter & Sailer, 2003). INCONT is the core semantic contribution, while PARTS contains all subterms of the overall semantics that are contributed by the word. Informally, the description states that khoe contributes the term person’ and that some term containing person’ is applied to \(x_i \), the index of the subject. If the predicate consists only of the noun khoe, its overall semantic representation will be person'(x_i), while it will be more complex if modifiers are added. It is not possible to simply state that the representation should be person(x_i), as non-intersective modifiers may be added. We may note that exactly the same semantic analysis can be assumed in an LRS analysis for English, where the noun would carry the index \(i \) in its INDEX feature, not on its SUBJ list.

Complex nominal predicates While the predicative word classes behave in very similar ways when used as predicates, they show differences in their abilities to modify other elements. We assume that the choices are formalized by lexical rules. For instance, adjectives may have their MOD value set to the SYNSEM value of a noun stem so that adjectival modifiers can combine with nouns to form complex predicates like khoexa khoe in (6a). We assume the structure in (9) for modifying adjectives like khoexa ‘friendly’ in khoexa khoe ‘friendly person’. If the predicate consists only of the adjective and the noun khoe ‘person’, \(\alpha \) will have to be identified with friendly’, \(\beta \) with person’, and \(\gamma \) with friendly’(person’), so that the overall semantic representation will read friendly’(person’, x_i), which is the standard Montagovian analysis for ‘\(X_i \) is a friendly person.’ (Montague, 1973). The semantic analysis is again the same as for English.

\[^{2}\text{There are two exceptions to this claim. First, two or more coreferent NPs with identical PGN marking can be serialized, yielding a single NP. Second, NPs may have a possessive marker consisting of åå and the PGN marker adequate for the possessor, which follow the PGN marker of the NP. Both cases can be accounted for easily by adding two phrasal types, the first one recursively licensing NPs consisting of two coreferent NPs, and the second one licensing NPs consisting of an NP and a possessive marker.} \]
To ensure that nouns form a complex predicate with modifiers and complements and to prevent other elements like the TAM marker from intervening between the elements of the complex predicate, we use the boolean-valued LEX feature, essentially the way it is used to enforce formation of verbal complexes (Müller, 2002). In this sense, complex nominal predicates have the same status as complex verbal predicates. The precise constraints will be discussed in the full paper.

Relative clauses and DPs There are two basic types of relative clauses: modifying relative clauses, which modify a noun and form with it a complex nominal predicate, and independent relative clauses, which modify a PGN marker and form with it an argument DP. As in Sag (1997)’s analysis of English, modifying relative clauses are clauses whose MOD value is the SYNSEM value of the projection of a noun, allowing them to combine with a noun to form a complex nominal predicate (10a). Similarly, predicates or clauses in free relative clauses select a PGN marker via MOD (10b):

Thus, DPs are constructed from clauses or predicates by adjunction to a PGN marker via the ordinary head-adject-phrase type. Spurious ambiguities resulting from recursive application are prevented by the LEX feature. As there are PGN markers for all persons, the analysis correctly predicts the availability of non-first-person DPs, which Launey considers typical of the ‘omnipredicative’ type. An example is sa {nao=ta ‘I, your uncle’ in (11):

As adjunction is in principle optional, PGN markers may also form complete DPs by themselves, but independently required constraints on the LEX feature enforce that this is only possible in the subject position in sentences like those in (5), as shown in Hahn (2013).

PGN Markers On the semantic level, the PGN marker contributes a box in the sense of Discourse Representation Theory (DRT, Kamp & Reyle, 1993), which binds the variable representing the DP’s referent. Its contents are filled in by the contributions of the other constituents. We assume the following entry for the first-person PGN marker =ts as in (1a):

(11) [sa ||nao=ta]=s ta ≠ûû?
 your uncle=1S=2FS TAM eat
 ‘Are you (trying to) eat me, your uncle?’
Khoekhoe does not appear to have generalized quantifiers, as Jelinek (1995) has argued for Straits Salish. Numerals and elements like *huu* ‘every’ are actually predicates.

Example Analysis Figure 1 shows the analysis of (6a). For simplicity, we show a flat structure on the clause level, which may be replaced with one of the more complex structures that have been proposed for Khoekhoe clause structure (Washburn, 2001, den Besten, 2002, Hahn, 2013).

The head of the S node is the complex predicate *khoexa khoe* ‘(be a) friendly person’, whose head is the noun *khoe* ‘(be a) person’, modified by the adjective *khoexa* ‘(be) friendly’. The complex predicate subcategorizes for a subject, which is realized by the DP *Petru=b*. It consists of the predicative proper name *Petru* and the PGN morpheme =b, with which it forms a *head-adjunct-phrase*. As it is headed by the PGN morpheme, the syntactic parts of its SYNSEM information are inherited from it, with the exception of the LEX feature.

On the semantic level, the representation of the complex predicate is *friendly*(person, x), as discussed above. The DP contributes the DRT box and the entry *x_i* = *petrus*, which is the contribution of the predicate *Petru*. The resulting semantic representation for the sentence is then given by:

```
(13)  x_i = petrus
       friendly'(person', x_i)
```

Figure 1: Analysis of (6a).

References

