The Diffusion Monte Carlo (DMC) Method

In this approach, the ground state of the system is found by modeling a diffusion process.

Diffusion and random walks

Consider a random walk on a lattice with spacing \(a \) in one dimension. The rule for the walk is that if the walker is at position \(x \) at time \(t \), then at time \(t + h \), the walker moves to the neighbor sites \(x \pm a \) with equal probabilities \(\alpha \) and remains at \(x \) with probability \(1 - 2\alpha \): the sum of the three probabilities add up to 1.

Let’s consider an ensemble of a large number of such walkers. The number density of walkers is \(\rho(x, t) \), which means that, at time \(t \), the number of walkers between \(x \) and \(x + dx \) is \(\rho(x, t)dx \). Note: each walker moves on a lattice, but the lattices of different walkers are in general different.

The master equation

\[
\rho(x, t + h) - \rho(x, t) = \alpha \rho(x + a, t) + \alpha \rho(x - a, t) - 2\alpha \rho(x, t)
\]

says that the density of walkers at \(x \) increases in one time step \(h \) due to walkers from \(x \pm a \) moving to \(x \) with probability \(\alpha \), and decreases due to walkers moving from \(x \) to \(x \pm a \) with probability \(\alpha \).

If \(h \) and \(a \) are both small we can use Taylor expansions

\[
\rho(x, t + h) = \rho(x, t) + h \frac{\partial \rho}{\partial t} + \ldots \\
\rho(x \pm a, t) = \rho(x, t) \pm a \frac{\partial \rho}{\partial x} + \frac{1}{2} a^2 \frac{\partial^2 \rho}{\partial x^2} + \ldots
\]
In the *continuum limit* $h \to 0$, $a \to 0$ with a^2/h held constant, we obtain the *diffusion equation*

$$\frac{\partial \rho}{\partial t} = \gamma \frac{\partial^2 \rho}{\partial x^2},$$

where

$$\gamma \equiv \lim_{h,a \to 0} \frac{\alpha a^2}{h},$$

is called the *diffusion constant* for the system of walkers.

Green’s function for the diffusion equation

The density of walkers at time t can be computed from the initial density using the formula

$$\rho(y, t) = \int dx \ G(x, y; t) \rho(x, 0), \quad G(x, y; t) = \frac{1}{\sqrt{4\pi \gamma t}} e^{-(x-y)^2/(4\gamma t)},$$

where $G(x, y; t)$ is a *Green’s function* with the properties

$$G(x, y; 0) = \delta(x - y), \quad \text{and} \quad \int dx \ G(x, y; t) = 1.$$
In fact, $G(x, y; t)$ is the probability that a walker at x (or y) at time $t = 0$ moves to y (or x) at time t. This provides a way of implementing the random walk:

- Choose a step size Δt in time
A walker at $x(t)$ at time t moves to $x(t + \Delta t) = x(t) + \eta \sqrt{\Delta t}$, where η is chosen randomly from a Gaussian distribution with variance $\sigma^2 = 2\gamma$.

Let’s consider this step as a trial step in the Metropolis algorithm. Do we need to make a Metropolis type test before accepting the step? The answer is no, because the step is chosen according to a probability function which drives the distribution exactly to equilibrium as a function of time t.

Another way of seeing that every step can be accepted is from the physical meaning of diffusion. Typically, we have a dilute collection of non-interacting particles in a medium which can be considered to be a heat bath at constant temperature T. The particles undergo random thermal motion due to collisions with the molecules of the medium. The temperature of the medium determines the diffusion constant via Einstein’s relation

$$\gamma = \frac{k_B T}{\beta},$$

where β is the drag coefficient, e.g., $\beta = 6\pi \eta R$ for Brownian spheres of radius R moving in fluid with kinematic viscosity η (not to be confused with the Gaussian deviate in the step). Since the diffusing particles are non-interacting, there is no energy cost when they move.
Connection with quantum mechanics

Consider the time-dependent Schrödinger equation for a free particle moving in one dimension:

\[i\hbar \frac{\partial \psi(x, t)}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \psi(x, t)}{\partial x^2}, \]

where \(m \) is the mass of the particle. This equation can be written

\[\frac{\partial \psi(x, t)}{\partial t} = \frac{i\hbar}{2m} \frac{\partial^2 \psi(x, t)}{\partial x^2} = \gamma_{\text{im}} \frac{\partial^2 \psi(x, t)}{\partial x^2}, \]

which is exactly of the form of a diffusion equation, but with and imaginary diffusion constant

\[\gamma_{\text{im}} = \frac{i\hbar}{2m}. \]

Another way to write this equation with a real diffusion constant is to analytically continue the time \(t \rightarrow -i\tau \) to imaginary values:

\[\frac{\partial \psi(x, \tau)}{\partial \tau} = \frac{\hbar}{2m} \frac{\partial^2 \psi(x, \tau)}{\partial x^2}. \]

Thus the motion of a quantum particle is equivalent to diffusion of a cloud of particles in imaginary time!
Diffusion leads the system into its ground state

Any initial wave function of the system can be expanded in a complete set of energy eigenfunctions:

\[\Psi(x, 0) = \sum_{n=0}^{\infty} c_n \psi_n(x) . \]

The solution of the real time Schrödinger equation is then

\[\Psi(x, t) = \sum_{n=0}^{\infty} c_n e^{-iE_n t / \hbar} \psi_n(x) . \]

The solution of the imaginary time equation is got by analytically continuing this solution to imaginary time \(t \to -i\tau \):

\[\Psi(x, \tau) = \sum_{n=0}^{\infty} c_n e^{-E_n \tau / \hbar} \psi_n(x) . \]

As \(\tau \to \infty \), each mode in this equation is exponentially damped, with higher energies damped faster than lower energies. The ground state wave function can be extracted using the following limit:

\[\lim_{\tau \to \infty} e^{E_0 \tau / \hbar} \Psi(x, \tau) = \lim_{\tau \to \infty} \sum_{n} c_n e^{-(E_n - E_0) \tau / \hbar} \psi_n(x) = c_0 \psi_0(x) . \]

This result is the basis of the diffusion Monte Carlo approach.
Diffusion with a potential energy term

The equations considered above were for a free particle. A free particle is not very interesting, so let’s generalize this approach to a particle moving in a potential $V(x)$ for which the imaginary time equation to be solved is

$$\frac{\partial \psi(x, \tau)}{\partial \tau} = \frac{1}{2} \frac{\partial^2 \psi(x, \tau)}{\partial x^2} - V(x)\psi(x, \tau),$$

where we have set $\hbar = 1$ and $m = 1$.

We have seen that if $V = 0$, then this equation can be solved using a Green’s function

$$\rho(y, \tau) = \int dx \ G(x, y; \tau)\rho(x, 0), \quad G(x, y; \tau) = \frac{1}{\sqrt{2\pi \tau}}e^{-(x-y)^2/(2\tau)},$$

for the probability density $\rho(x, \tau) = |\psi(x, \tau)|^2$. This solution preserves probability (or total number of particles in the diffusion problem).

The problem with adding the potential energy term is that it spoils this conservation of probability. This can be seen by neglecting the kinetic energy term:

$$\frac{\partial \psi(x, \tau)}{\partial \tau} = -V(x)\psi(x, \tau), \quad \psi(x, \tau) = e^{-V(x)\tau}\psi(x, 0),$$
which implies that

\[
\lim_{\tau \to \infty} \psi(x, \tau) = \begin{cases}
0 & \text{where } V(x) > 0 \\
\psi(x, 0) & \text{where } V(x) = 0 \\
\infty & \text{where } V(x) < 0
\end{cases}
\]

Depending on the potential, the net probability \(\int dx \lvert \psi(x, \tau) \rvert^2 \) could go to zero or to infinity!

In the diffusion Monte Carlo method, this problem with the potential energy term is solved by modifying the equation as follows:

\[
\frac{\partial \psi(x, \tau)}{\partial \tau} = \frac{1}{2} \frac{\partial^2 \psi(x, \tau)}{\partial x^2} - (V(x) - E_T) \psi(x, \tau),
\]

where the quantity \(E_T \) is adjusted as a function of \(\tau \) so that the probability (number of walkers in the diffusion approach) remains constant. If in the limit \(\tau \to \infty \) the solution \(\psi(x, \tau) \to \psi(x) \) becomes independent of \(\tau \), i.e., \(\partial \psi / \partial \tau = 0 \), then

\[
-\frac{1}{2} \frac{d^2 \psi(x)}{dx^2} + V(x) \psi(x) = E_T \psi(x),
\]

that is, \(\psi(x, \tau) \) tends to an eigenfunction of the quantum mechanical problem, and \(E_T \) is the energy eigenvalue!
Diffusion Monte Carlo algorithm

The DMC algorithm is based on the ideas that the kinetic energy term can be represented by diffusion of random walkers, and the potential energy causes the number of walkers at a given point \(x \) to grow or decay. A simple form of the algorithm is as follows:

Initialization: Choose a time step \(\Delta \tau \) and a target number \(N_T \) of random walkers which are randomly located in a region where the wave function is expected to be large. Also choose a value for the parameter \(E_T \).

Time Step: The following two operations are carried out on each of the current number \(N \) of walkers:

- **Diffusion Step:** The kinetic energy shifts the walker to a new position with a step chosen at random from a Gaussian distribution with variance \(\Delta t \), exactly as in the case of a free particle.

- **Branching Step:** The potential energy, modified by the \(E_T \) parameter, causes a growth or decay in the number of walkers. This effect is implemented by computing

 \[
 q = e^{-\Delta \tau [V(x) - E_T]}
 \]

 The value of \(q \) determines whether this walker dies, survives, or is cloned. Note that \(q > 0 \). Let \(\lfloor q \rfloor \) be its integer part. Then \(q - \lfloor q \rfloor \) lies between 0 and 1. The walker is replaced with \(\lfloor q \rfloor \) identical copies with probability \(1 - (q - \lfloor q \rfloor) \) and \(\lfloor q \rfloor + 1 \) copies with probability \(q - \lfloor q \rfloor \).

Adjusting the value of \(E_T \): At the end of the time step, the number of walkers \(N \) will have changed due to branching. If \(N > N_T \), then we need to increase \(E_T \) which will tend to reduce \(q \) and hence tend
to kill walkers. Conversely, if $N < N_T$, then reducing E_T will increase q and hence tend to generate more clones. This can be done for example by letting

$$E_T \rightarrow E_T + \alpha \ln \left(\frac{N_T}{N} \right),$$

where α is a small positive parameter.

Diffusion Monte Carlo program for the 3-D harmonic oscillator

The following program implements the DMC algorithm outlined above for the 3-D harmonic oscillator which has ground state energy and wave function

$$E_0 = \frac{3}{2}, \quad \psi_0 = \frac{e^{-r^2/2}}{(2\pi)^{3/2}},$$

using units with $m = \omega = \hbar = 1$.

```cpp
// Diffusion Monte Carlo program for the 3-D harmonic oscillator

#include <cmath>
#include <cstdlib>
#include <fstream>

PHY 411-506 Computational Physics 2

Wednesday, April 9
```
#include <iostream>
using namespace std;

#include "../tools/random.hpp"

const int DIM = 3; // dimensionality of space

Potential energy function

This function evaluates the potential energy of the harmonic oscillator in \(D \) dimensions given the position \(\mathbf{r} \) of the oscillator.

```cpp
double V(double *r) { // harmonic oscillator in DIM dimensions
    double rSqd = 0;
    for (int d = 0; d < DIM; d++)
        rSqd += r[d] * r[d];
    return 0.5 * rSqd;
}
```

double dt; // Delta_t set by user
double E_T; // target energy

// random walkers
int N; // current number of walkers
int N_T; // desired target number of walkers
double **r; // x,y,z positions of walkers
bool *alive; // is this walker alive?

Dynamical adjustment of array storage

Since the number of walkers \(N \) will change with time, we can either allocate large-enough arrays to accommodate this growth, or we can grow the arrays dynamically if necessary while the program is running. The following function is called when the \(N \) might have changed and we wish to check whether an index is legal. If the array is too small to accommodate that index, it is replaced with a larger array with the values of the original elements preserved.

This can also be achieved automatically by using C++ `std::vector` objects instead of dynamically allocated arrays. The `resize` member function changes the number of components of the vector without changing the values of components in the smaller of the old and new vectors.
void ensureCapacity(int index) {

 static int maxN = 0; // remember the size of the array

 if (index < maxN) // no need to expand array
 return; // do nothing

 int oldMaxN = maxN; // remember the old capacity
 if (maxN > 0)
 maxN *= 2; // double capacity
 else
 maxN = 1;
 if (index > maxN - 1) // if this is not sufficient
 maxN = index + 1; // increase it so it is sufficient

 // allocate new storage
 double **rNew = new double* [maxN];
 bool *newAlive = new bool [maxN];
 for (int n = 0; n < maxN; n++) {
 rNew[n] = new double [DIM];
 if (n < oldMaxN) { // copy old values into new arrays
 for (int d = 0; d < DIM; d++)
We need to measure the energy, its variance, and the wave function of the ground state.

// observables

double ESum; // accumulator for energy
double ESqdSum; // accumulator for variance
double rMax = 4; // max value of r to measure psi
const int NPSI = 100; // number of bins for wave function
double psi[NPSI]; // wave function histogram

void zeroAccumulators() {

}
ESum = ESqdSum = 0;
for (int i = 0; i < NPSI; i++)
 psi[i] = 0;
}

void initialize() {
 N = N_T; // set N to target number specified by user
 for (int n = 0; n < N; n++) {
 ensureCapacity(n);
 for (int d = 0; d < DIM; d++)
 r[n][d] = uniform_dist() - 0.5;
 alive[n] = true;
 }
 zeroAccumulators();
 E_T = 0; // initial guess for the ground state energy
}

One Diffusion Monte Carlo step

The following function implements the Diffusion Monte Carlo step algorithm on a particular walker. Recall that

- A Gaussian diffusive step is taken with step size $\sqrt{\Delta t}$.
- A branching step is implemented with the walker dying, surviving or being cloned, depending on its potential energy.

```cpp
void oneMonteCarloStep(int n) {
    // Diffusive step
    for (int d = 0; d < DIM; d++)
        r[n][d] += normal_dist() * sqrt(dt);

    // Branching step
    double q = exp(- dt * (V(r[n]) - E_T));
    int survivors = int(q);
    if (q - survivors > uniform_dist())
        ++survivors;
}
```
// append survivors-1 copies of the walker to the end of the array
for (int i = 0; i < survivors - 1; i++) {
 ensureCapacity(N);
 for (int d = 0; d < DIM; d++)
 r[N][d] = r[n][d];
 alive[N] = true;
 ++N;
}

// if survivors is zero, then kill the walker
if (survivors == 0)
 alive[n] = false;

One time step Δt

One time step Δt consists in the following:

- One DMC step is performed on each walker in turn.
To make the living walkers easier to access, dead walkers are removed from the arrays.

- E_T is adjusted to drive N towards N_T.
- Data is accumulated to measure $\langle E \rangle$, its variance, and the ground state wave function.

```c++
void oneTimeStep() {

    // DMC step for each walker
    int N_0 = N;
    for (int n = 0; n < N_0; n++)
        oneMonteCarloStep(n);

    // remove all dead walkers from the arrays
    int newN = 0;
    for (int n = 0; n < N; n++)
        if (alive[n]) {
            if (n != newN) {
                for (int d = 0; d < DIM; d++)
                    r[newN][d] = r[n][d];
                alive[newN] = true;
            }
        }
}
```
++newN;
}
N = newN;

// adjust E_T
E_T += log(N_T / double(N)) / 10;

// measure energy, wave function
ESum += E_T;
ESqdSum += E_T * E_T;
for (int n = 0; n < N; n++) {
 double rSqd = 0;
 for (int d = 0; d < DIM; d++)
 rSqd = r[n][d] * r[n][d];
 int i = int(sqrt(rSqd) / rMax * NPSI);
 if (i < NPSI)
 psi[i] += 1;
}
}
The **main function to steer the calculation**

The user specifies the number of walkers, the time step size, and number of time steps. After initialization, 20% of the specified number of time steps are run to equilibrate the walkers. Then the production steps are taken. The Monte Carlo wave function and the exact wave function, both normalized unity in the plotting interval, are output to a file.

```cpp
int main() {
    cout << " Diffusion Monte Carlo for the 3-D Harmonic Oscillator\n" << " -----------------------------------------------\n";
    cout << " Enter desired target number of walkers: ";
    cin >> N_T;
    cout << " Enter time step dt: ";
    cin >> dt;
    cout << " Enter total number of time steps: ";
    int timeSteps;
    cin >> timeSteps;
    initialize();
}
```
// do 20% of timeSteps as thermalization steps
int thermSteps = int(0.2 * timeSteps);
for (int i = 0; i < thermSteps; i++)
 oneTimeStep();

// production steps
zeroAccumulators();
for (int i = 0; i < timeSteps; i++) {
 oneTimeStep();
}

// compute averages
double EAve = ESum / timeSteps;
double EVar = ESqdSum / timeSteps - EAve * EAve;
cout << " <E> = " << EAve << " +/- " << sqrt(EVar / timeSteps) << endl;
cout << " <E^2> - <E>^2 = " << EVar << endl;
double psiNorm = 0, psiExactNorm = 0;
double dr = rMax / NPSI;
for (int i = 0; i < NPSI; i++) {
 double r = i * dr;
 psiNorm += pow(r, DIM-1) * psi[i] * psi[i];
 psiExactNorm += pow(r, DIM-1) * exp(- r * r);
 psiNorm = sqrt(psiNorm);
 psiExactNorm = sqrt(psiExactNorm);
 ofstream file("psi.data");
 for (int i = 0; i < NPSI; i++) {
 double r = i * dr;
 file << r << 't' << pow(r, DIM-1) * psi[i] / psiNorm << 't'
 << pow(r, DIM-1) * exp(- r * r / 2) / psiExactNorm << 'n';
 }
 file.close();
}
Output of the program

Diffusion Monte Carlo for the 3-D Harmonic Oscillator
Enter desired target number of walkers: 300
Enter time step dt: 0.05
Enter total number of time steps: 4000
\(\langle E \rangle = 1.49113 \pm 0.0127478 \)
\(\langle E^2 \rangle - \langle E \rangle^2 = 0.650031 \)