Variational Monte Carlo for Hydrogen and Helium

The Hydrogen Atom

The Hydrogen atom is a system with two particles, electron and proton. The configuration space in which the system moves is therefore six dimensional. By moving to the center-of-mass system, the problem becomes effectively 3 dimensional, with Hamiltonian

\[H = -\frac{\hbar^2}{2m} \nabla^2 - \frac{e^2}{r}, \]

where \(r = r_e - r_p \) is the relative coordinate of the electron with respect to the proton, \(e \) is the magnitude of the electron’s charge, and \(m = m_e m_p / (m_e + m_p) \) is the reduced mass.

Reduction to a one-dimensional problem

By using conservation of angular motion and the fact that the ground state is spherically symmetric, i.e., it has zero orbital angular momentum, the problem can be reduced to one dimension with Hamiltonian operator

\[H = -\frac{\hbar^2}{2m} \left[\frac{d^2}{dr^2} + \frac{2}{r} \frac{d}{dr} \right] - \frac{e^2}{r}, \]

which depends on the radial coordinate \(r \).
Exact solution for the ground state

The exact ground state energy and wavefunction are given by

\[E_0 = -\frac{e^2}{2a_0}, \quad \psi_0(r) \sim e^{-r/a_0}. \]

where the Bohr radius

\[a_0 = \frac{\hbar^2}{me^2}. \]

It is convenient to use atomic units in which \(\hbar = m = e = 1 \) so

\[H = -\frac{1}{2} \left[\frac{d^2}{dr^2} + \frac{2}{r} \frac{d}{dr} \right] - \frac{1}{r}, \quad E_0 = -\frac{1}{2}, \quad \psi_0(r) \sim e^{-r}. \]

Variational trial wave function and local energy

A simple trial wave function for the Hydrogen atom ground state is

\[\psi_{T,\alpha}(r) = e^{-\alpha r}. \]

The local energy for this choice can easily be computed:

\[E_L(r) = \frac{1}{\psi_{T,\alpha}} H \psi_{T,\alpha}(r) = -\frac{1}{2} \left[\alpha^2 - \frac{2\alpha}{r} \right] - \frac{1}{r}. \]

Note two important points about this local energy:
It is minimum and also independent of r at $\alpha = 1$, which gives the exact ground state energy and eigenfunction.

For $\alpha \neq 1$ it is singular at $r = 0$ where the potential diverges. For more complex problems, like the Helium atom to be considered next, these singularities can cause problems with the numerical calculation. To deal with these singularities, cusp conditions are used to restrict the variational parameters.

Two additional problems need to be addressed. Since $r \geq 0$, a one-dimensional Metropolis walker should not be allowed to cross the origin to $r < 0$. Also, the probability that the one-dimensional walker is found between r and $r + dr$ must be proportional to $4\pi r^2$, which is the surface area of a sphere of radius r. We will use a walker in 3 dimensional space. Given a walker position \mathbf{r} and a maximum step size δ, the next trial step is chosen uniformly at random within a cube of side 2δ centered on the point \mathbf{r} and aligned with the coordinate axes. This solves both of the problems above at the expense of making three calls to the random number generator for each trial move.

It is straightforward to adapt the harmonic oscillator program developed in the first lecture to find the ground state of the Hydrogen atom.

Variational Monte Carlo for the Helium Atom

The Helium atom is a 3-particle problem: two electrons orbit around a nucleus, which consists of two protons with charge e each and two neutral neutrons. The nucleus, which is $\sim 8,000$ times more massive than an
electron, can be assumed to be at rest at the origin of the coordinate system. The electrons have positions r_1 and r_2. This is simpler than making a transformation to the center-of-mass system of the three particles, and it is sufficiently accurate.

If we use atomic units with $\hbar = m_e = e = 1$, the Hamiltonian for the motion of the two electrons can be written

$$H = -\frac{1}{2} \nabla_1^2 - \frac{1}{2} \nabla_2^2 - \frac{2}{r_1} - \frac{2}{r_2} + \frac{1}{r_{12}},$$

where $r_{12} = |r_{12}| = |r_1 - r_2|$. The terms $-2/r_i$ represent the negative (attractive) potential energy between each electron with charge -1 and the Helium nucleus with charge $+2$, and the term $+1/r_{12}$ represents the positive (repulsive) potential energy between the two electrons.

A simple choice of variational trial wave function

If the repulsive term $1/r_{12}$ were not present, then the Hamiltonian would be that of two independent Hydrogen-like atoms. It can be shown that the energy and ground state wave function of a Hydrogen-like atom whose nucleus has charge Z are given by

$$E_0 = -\frac{Z^2}{2}, \quad \psi_0 \sim e^{-Zr}.$$

The wave function of the combined atom with two non-interacting electrons would be the product of two such wave functions:

$$\psi(r_1, r_2) \sim e^{-2r_1}e^{-2r_2}.$$
This suggests a trial wave function of the form

\[\Psi_{T,\alpha} = e^{-\alpha r_1} e^{-\alpha r_2}, \]

similar to what was done for the Hydrogen atom. If the electron-electron interaction is neglected, then the average energy with this wave function can be calculated

\[
\langle -\frac{1}{2} \nabla^2_1 - \frac{1}{2} \nabla^2_2 - \frac{2}{r_1} - \frac{2}{r_2} \rangle = 2 \times \frac{\alpha^2}{2} - 4 \times \alpha ,
\]

which has a minimum at \(\alpha = 4 \), which gives \(\langle E \rangle = -4 \). The experimentally measured ground state energy is \(E_0 = -2.904 \). The difference is due to the repulsive electron-electron interaction, which raises the energy. It is straightforward to show that

\[
\langle \frac{1}{r_{12}} \rangle = \frac{5}{8} \alpha.
\]

The average energy including the electron-electron interaction is

\[
\langle -\frac{1}{2} \nabla^2_1 - \frac{1}{2} \nabla^2_2 - \frac{2}{r_1} - \frac{2}{r_2} + \frac{1}{r_{12}} \rangle = \alpha^2 - 4 \alpha + \frac{5}{8} \alpha = \alpha^2 - \frac{27}{8} \alpha .
\]

This expression has a minimum at \(\alpha = 27/16 \), which gives a variational estimate \(\langle E \rangle = -2.8477 \). This shows that the repulsion between the electrons is important. The simple product wave function gives a remarkably good variational estimate just 2% higher than the experimental value.
Padé-Jastrow wave function

We will use the trial wave function

\[\Psi(r_1, r_2) = e^{-2r_1}e^{-2r_2}e^{\frac{r_{12}}{2(1+\alpha r_{12})}}, \]

with \(\alpha \) as a variational parameter. The local energy with this wave function can be calculated

\[E_L(r_1, r_2) = -4 + \frac{\alpha}{(1 + \alpha r_{12})} + \frac{\alpha}{(1 + \alpha r_{12})^2} + \frac{\alpha}{(1 + \alpha r_{12})^3} \]

\[- \frac{1}{4(1 + \alpha r_{12})^4} + \frac{\hat{r}_{12} \cdot (\hat{r}_1 - \hat{r}_2)}{(1 + \alpha r_{12})^2}. \]

VMC program for the Helium Atom

The following program `vmc-he.cpp` implements this trial function choice.

```cpp
// Variational Monte Carlo for the Helium Atom

#include <cmath>
#include <cstdlib>
#include <iostream>
using namespace std;
```
#include "../tools/random.hpp"

using namespace std;

const int NDIM = 3; // dimensionality of space
const int NELE = 2; // number of electrons
int N; // number of walkers
double (*r)[NELE][NDIM]; // walker coordinates in 6-D configuration space

double alpha; // Pade-Jastrow variational parameter
double delta; // trial step size

void initialize() {
 r = new double[N][NELE][NDIM];
 for (int n = 0; n < N; n++)
 for (int e = 0; e < NELE; e++)
 for (int d = 0; d < NDIM; d++)
 r[n][e][d] = uniform_dist() - 0.5;
 delta = 1;
}
double eSum;
double eSqdSum;

void zeroAccumulators() {
 eSum = eSqdSum = 0;
}

double Psi(double *rElectron1, double *rElectron2) {

 // value of trial wave function for walker n
 double r1 = 0, r2 = 0, r12 = 0;
 for (int d = 0; d < 3; d++) {
 r1 += rElectron1[d] * rElectron1[d];
 r2 += rElectron2[d] * rElectron2[d];
 r12 += (rElectron1[d] - rElectron2[d])
 * (rElectron1[d] - rElectron2[d]);
 }
 r1 = sqrt(r1);
 r2 = sqrt(r2);
 r12 = sqrt(r12);
 double Psi = - 2*r1 - 2*r2 + r12 / (2 * (1 + alpha*r12));
 return exp(Psi);
}
double eLocal(double *rElectron1, double *rElectron2) {

 // value of trial wave function for walker n
 double r1 = 0, r2 = 0, r12 = 0;
 for (int d = 0; d < 3; d++) {
 r1 += rElectron1[d] * rElectron1[d];
 r2 += rElectron2[d] * rElectron2[d];
 r12 += (rElectron1[d] - rElectron2[d]) *
 (rElectron1[d] - rElectron2[d]);
 }
 r1 = sqrt(r1);
 r2 = sqrt(r2);
 r12 = sqrt(r12);
 double dotProd = 0;
 for (int d = 0; d < 3; d++) {
 dotProd += (rElectron1[d] - rElectron2[d]) / r12 *
 (rElectron1[d] / r1 - rElectron2[d] / r2);
 }
 double denom = 1 / (1 + alpha * r12);
}
double denom2 = denom * denom;
double denom3 = denom2 * denom;
double denom4 = denom2 * denom2;
double e = -4 + alpha * (denom + denom2 + denom3)
 - denom4 / 4 + dotProd * denom2;
return e;
}

int nAccept;

void MetropolisStep(int walker) {

 // make a trial move of each electron
 double rElectron1[3], rElectron2[3], rTrial1[3], rTrial2[3];
 for (int d = 0; d < 3; d++) {
 rElectron1[d] = r[walker][0][d];
 rTrial1[d] = rElectron1[d] + delta * (2 * uniform_dist() - 1);
 rElectron2[d] = r[walker][1][d];
 rTrial2[d] = rElectron2[d] + delta * (2 * uniform_dist() - 1);
 }

 // Metropolis test
double w = \(\frac{\Psi(r_{\text{Trial}1}, r_{\text{Trial}2})}{\Psi(r_{\text{Electron}1}, r_{\text{Electron}2})} \);
if (\text{uniform_dist()} < w \times w) {
 for (int d = 0; d < 3; d++) {
 r[\text{walker}][0][d] = r_{\text{Electron}1}[d] = r_{\text{Trial}1}[d];
 r[\text{walker}][1][d] = r_{\text{Electron}2}[d] = r_{\text{Trial}2}[d];
 }
 ++nAccept;
}

// accumulate local energy
double e = eLocal(r_{\text{Electron}1}, r_{\text{Electron}2});
eSum += e;
eSqdSum += e \times e;
}

void oneMonteCarloStep() {

 // do Metropolis step for each walker
 for (int n = 0; n < N; n++)
 MetropolisStep(n);
}
int main() {

 cout << " Variational Monte Carlo for Helium Atom\n"
 << " ---------------------------------------\n"
 cout << " Enter number of walkers: ";
 cin >> N;
 cout << " Enter parameter Pade-Jastrow parameter alpha: ";
 cin >> alpha;
 cout << " Enter number of Monte Carlo steps: ";
 int MCSteps;
 cin >> MCSteps;
 initialize();

 // perform 20% of MCSteps as thermalization steps
 // and adjust step size so acceptance ratio ~50%
 int thermSteps = int(0.2 * MCSteps);
 int adjustInterval = int(0.1 * thermSteps) + 1;
 nAccept = 0;
 cout << " Performing " << thermSteps << " thermalization steps ..."
 << flush;
 for (int i = 0; i < thermSteps; i++) {

oneMonteCarloStep();
if ((i+1) % adjustInterval == 0) {
 delta *= nAccept / (0.5 * N * adjustInterval);
 nAccept = 0;
}
}
cout << "\n Adjusted step size delta = " << delta << endl;

// production steps
zeroAccumulators();
nAccept = 0;
cout << " Performing " << MCSteps << " production steps ..." << flush;
for (int i = 0; i < MCSteps; i++)
 oneMonteCarloStep();

// compute and print energy
double eAve = eSum / double(N) / MCSteps;
double eVar = eSqdSum / double(N) / MCSteps - eAve * eAve;
double error = sqrt(eVar) / sqrt(double(N) * MCSteps);
cout << "\n <Energy> = " << eAve << " +/- " << error
 << "\n Variance = " << eVar << endl;
The Padé-Jastrow wave function has the form
\[\Psi(r_1, r_2) = e^{-2r_1}e^{-2r_2}e^{\frac{r_{12}}{2(1+\alpha r_{12})}}, \]
where \(\alpha \) is a variational parameter.

The local energy is given by the equation
\[E_L = \frac{1}{\Psi} \left[-\frac{1}{2} \nabla_1^2 - \frac{1}{2} \nabla_2^2 - \frac{2}{r_1} - \frac{2}{r_2} + \frac{1}{r_{12}} \right] \Psi. \]

Thijssen First Edition (1999) gives the local energy in Eq. (12.10) on page 318:
\[E_L = \frac{\alpha_1}{r_1} + \frac{\alpha_1}{r_2} - \frac{\alpha_1^2}{2(1+\alpha_2 r_{12})} (\hat{r}_1 - \hat{r}_2) - \frac{1}{(1+\alpha_2 r_{12})^3} - \frac{1}{4(1+\alpha_2 r_{12})^4} - \frac{2}{r_1} - \frac{2}{r_2} + \frac{1}{r_{12}}. \]

Thijssen Second Edition (2007) gives the local energy in Eq. (12.12) on page 377:
\[E_L = -4 + (\hat{r}_1 - \hat{r}_2) \cdot (r_1 - r_2) \frac{1}{r_{12}(1+\alpha r_{12})^2} - \frac{1}{(1+\alpha r_{12})^3} - \frac{1}{4(1+\alpha r_{12})^4} + \frac{1}{r_{12}}. \]

These expressions agree for \(\alpha_1 = 2 \) and \(\alpha_2 = \alpha \). Let’s write
\[\Psi = f(r_1)f(r_2)g(r_{12}). \]
where \(f(r) = e^{-2r} \) and \(g(r) = e^{r/(2(1+\alpha r))} \). Then,
\[
\nabla_1^2 f(r_1) g(r_{12}) = (\nabla_1^2 f(r_1)) g(r_{12}) + f(r_1)(\nabla_1^2 g(r_{12})) \\
+ 2(\nabla_1 f(r_1)) \cdot (\nabla_1 g(r_{12})) .
\]

The Laplacian of a scalar function can be computed as follows:
\[
\nabla_1^2 f(r_1) = \vec{\nabla} \cdot (\vec{\nabla} f(r_1)) = (\vec{\nabla} f'(r_1)) \cdot \hat{r}_1 + f'(r_1)\vec{\nabla} \cdot \hat{r}_1 = f''(r_1) + \frac{2}{r_1} f'(r_1) ,
\]
where \(\hat{r}_1 = \vec{r}_1/r_1 \) is a unit vector. Similarly
\[
\nabla_1^2 g(r_{12}) = g''(r_{12}) + \frac{2}{r_{12}} g'(r_{12}) ,
\]
\[
(\vec{\nabla}_1 f(r_1)) \cdot (\vec{\nabla}_1 g(r_{12})) = \hat{r}_1 \cdot \hat{r}_{12} f'(r_1) g'(r_{12}) ,
\]
and
\[
(\vec{\nabla}_2 f(r_2)) \cdot (\vec{\nabla}_2 g(r_{12})) = \hat{r}_2 \cdot \hat{r}_{21} f'(r_2) g'(r_{21}) .
\]
Note that \(r_{12} = r_{21} \), but \(\hat{r}_{12} = -\hat{r}_{21} \).

The derivatives of the scalar functions are easily computed:
\[
\frac{f'(r)}{f(r)} = -2 , \quad \frac{f''(r)}{f(r)} = 4 ,
\]
\[
\frac{g'(r)}{g(r)} = \frac{1}{2(1+\alpha r)^2} , \quad \frac{g''(r)}{g(r)} = \frac{1}{4(1+\alpha r)^4} - \frac{\alpha}{(1+\alpha r)^3} .
\]
Collecting all terms, the local energy is given by

\[
E_L = \frac{f''(r_1) - f''(r_2)}{2f(r_1)} - \frac{g''(r_{12})}{2g(r_{12})} - \frac{f''(r_1)}{r_1f(r_1)} - \frac{f'(r_2)}{r_1f(r_2)} - \frac{2g'(r_{12})}{f(r_1)g(r_{12})} - \frac{f'(r_1)}{r_1} - \frac{f'(r_2)}{r_2} - \hat{r}_1 \cdot \hat{r}_{12}f'(r_1)g'(r_{12}) - \hat{r}_2 \cdot \hat{r}_{21}f'(r_2)g'(r_{12}) - \frac{2}{r_1} - \frac{2}{r_2} + \frac{1}{r_{12}}
\]

Using

\[
\frac{1}{r_{12}} - \frac{1}{r_{12}(1 + \alpha r_{12})^2} = \frac{\alpha}{(1 + \alpha r_{12})} + \frac{\alpha}{(1 + \alpha r_{12})^2}
\]

gives the final form for the local energy

\[
E_L(r_1, r_2) = -4 + \frac{\alpha}{(1 + \alpha r_{12})} + \frac{\alpha}{(1 + \alpha r_{12})^2} + \frac{\alpha}{(1 + \alpha r_{12})^3} - \frac{1}{4(1 + \alpha r_{12})^4} + \hat{r}_{12} \cdot (\hat{r}_1 - \hat{r}_2)
\]

This result does not agree with Thijssen!